FLAVOR PHYSICS & CP VIOLATION

FPCP 2015

NAGOYA, JAPAN - 25-29 May 2015

Baryonic B Decays

Marcello Rotondo

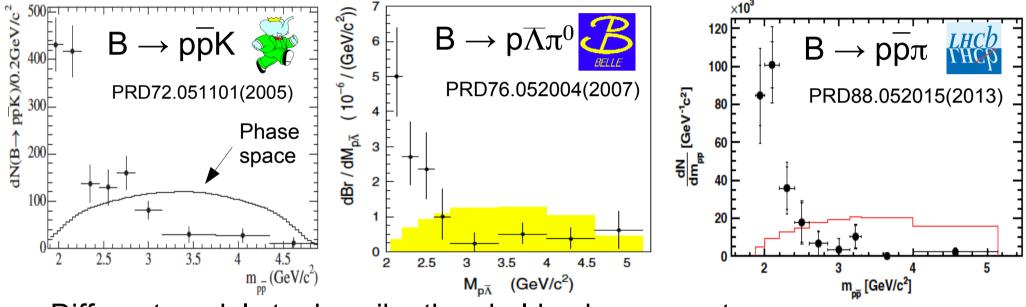
I.N.F.N. Padova
BaBar Collaboration

M.Rotondo FPCP2015

Baryonic B meson decays: why?

- The B $\rightarrow \mathcal{B}1\mathcal{B}2+X$ has large branching fraction ($\mathcal{B} \equiv Baryon$)
 - Inclusive measured BF:

- BF(B
$$\to \mathcal{B}$$
 X)= (6.8 ± 0.6) %

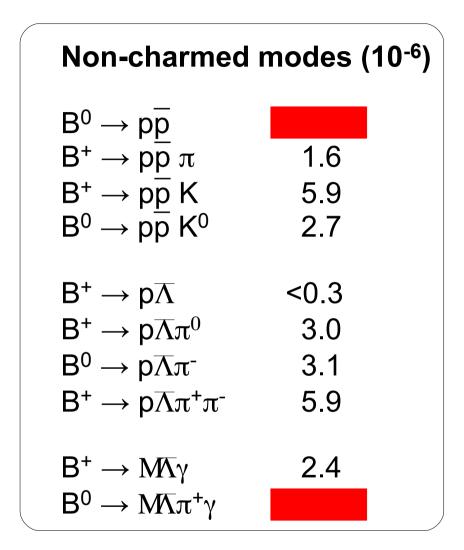

PDG2014

- BF(B
$$\rightarrow \Lambda_c X$$
) = (4.5 ± 1.2) %

- Only about 10% of all baryonic decays are exclusively know so far!
- The relatively high B meson mass allows big variety of baryons in the final state
 - Perturbative QCD cannot be applied:
 - Investigation of quark fragmentation at low q²
 - Tests for phenomenological models

Baryonic B decays: threshold enhancement

- Near threshold enhancement observed in many baryonic B decays
 - The baryon pair in $B \rightarrow \mathcal{B}1\mathcal{B}2+X$ decays are produced near the $\mathcal{B}1\mathcal{B}2$ threshold

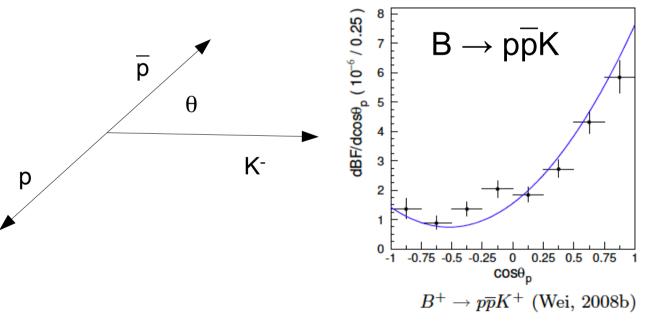

- Different models to describe threshold enhancement
 - Pole model: PRD66,014020 (2002)
 - Final-state interaction: PRC68,052201 (2003)
 - Glueball: PRD66,054004 (2002)
 - Bound state PLB567,273 (2003)

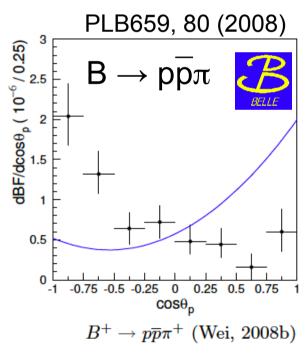
The enhancement is present also in baryon produced in e⁺e⁻ collisions and Ψ decays

Example for Branching Fractions (PDG)

Charmed baryon modes (10⁻⁴)

${\sf B}^0 o \overline{\Lambda}_{\sf c} {\sf p}$	0.2
$B^0 o \overline{\Lambda}_{\mathrm{c}} p \pi^0$	1.9
$B^+ \to \overline{\Lambda}_{c} p \pi^{+}$	2.8
${\sf B^+} ightarrow \overline{\Lambda}_{\sf c} {\sf p} \pi^+ \pi^0$	18.0
$B^0 o \overline{\Lambda}_{\mathrm{c}} p \pi^+ \pi^-$	11.7
$B^+ \to \overline{\Lambda}_{c} p \pi^+ \pi^+ \pi^2$	22.0
$B^+ \rightarrow \Sigma_c^{0} p$	0.37
$B^+ \! o \! \Sigma_{\mathrm{c}}^{} 0} p \pi^0$	4.4
$B^+ \! o \! \Sigma_{c}^{} 0} p \pi^{\scriptscriptstyle{-}} \pi^{\scriptscriptstyle{+}}$	4.4
$B^+ \! o \! \Sigma_{c}^{} p \pi^{-} \pi^{+}$	3.0

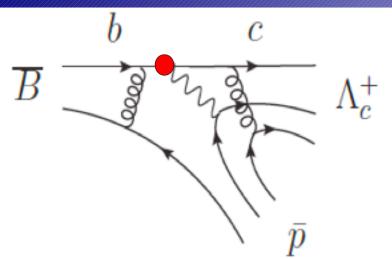


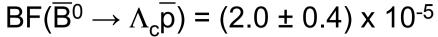

Two-body decays are suppressed

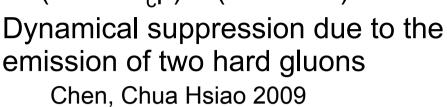
Charmed modes: modes with additional particles can have significant higher BF Crucial if more resonant submodes exists with the same final state Non-charmed: hierarchy seems not visible for more than 2 particles

Baryonic B decays: known problems

- Various models exist. First predictions from Hou and Soni PRL86, 4247(2001)
- The present models are not completely satisfactory, for example the short distance model for $B \to \mathcal{B}_1 \overline{\mathcal{B}}_2 M$ decays by Geng-Hsiao (2006) explains very well the threshold enhancement and the multiplicity pattern...
 - but predicts wrong angular distribution in $B \to p\overline{p}\pi$

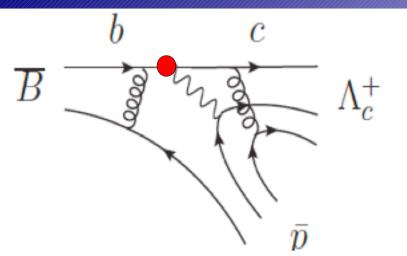





 Long interaction terms and re-scattering effects? Exotic states? Still an open issue that requires further development

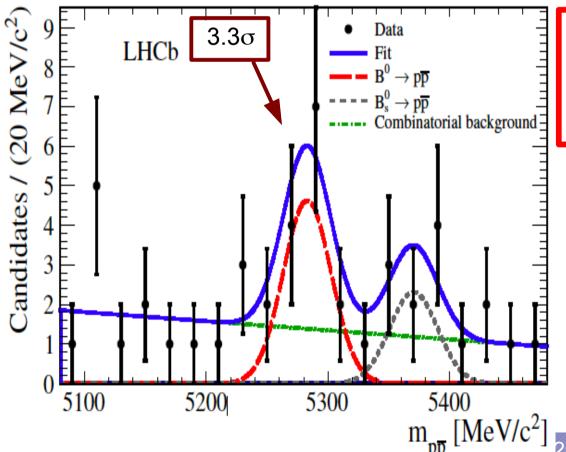
Recent results on non-charmed baryonic B decays

Charmless two-body decays



BF(B \rightarrow pp) ~ 10⁻⁷ because of the suppression due to $|V_{ub}/V_{cb}|^2$

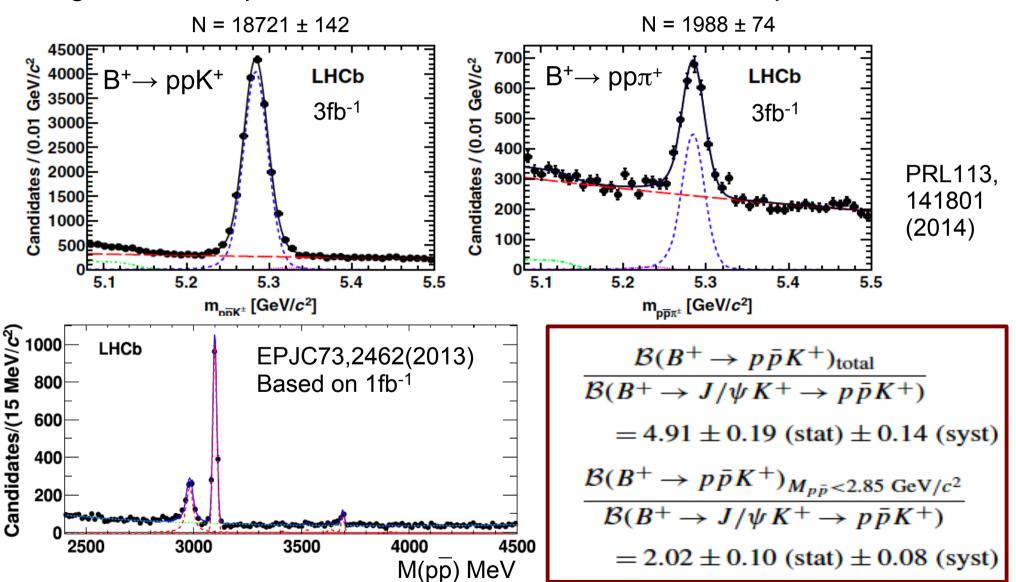
Charmless two-body decays


 $BF(\overline{B}^0 \to \Lambda_c \overline{p}) = (2.0 \pm 0.4) \times 10^{-5}$

Dynamical suppression due to the emission of two hard gluons

Chen, Chua Hsiao 2009

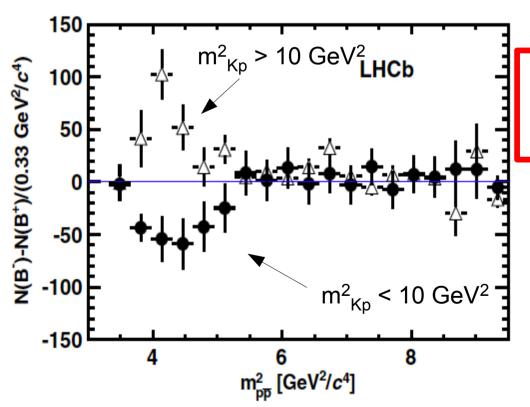
BF(B \rightarrow pp) ~ 10⁻⁷ because of the suppression due to $|V_{ub}/V_{cb}|^2$


$$\mathcal{B}(B^0 \to p\overline{p}) = \left(1.47 \, {}^{+0.62}_{-0.51} \, {}^{+0.35}_{-0.14}\right) \times 10^{-8}$$
$$\mathcal{B}(B^0_s \to p\overline{p}) = \left(2.84 \, {}^{+2.03}_{-1.68} \, {}^{+0.85}_{-0.18}\right) \times 10^{-8}$$

- Incompatible with most of the old theoretical predictions
 - A recent calculation explains well the results Hsiao, Geng PRD91,077501(2015)
 - Predicts also BFs of many other channels accessible at LHCb!

Study of B⁺ \rightarrow ppK⁺ (pp π ⁺)

- First charmless baryonic B decay (Belle, 2002): widely studied
- Huge clean sample: thanks to excellent VELO and RICH performances


- Three-body decays are a laboratory to study strong phase of interfering amplitudes
 - In B⁺ → h⁺h⁻h⁺ decays a CP asymmetry appears at low (h⁺h⁻) masses
 - What happens for pp case?

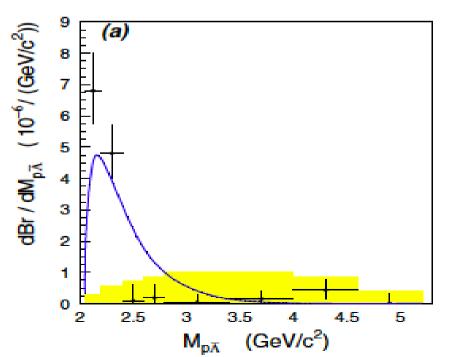
$$A_{\rm raw} = \frac{N(B^- \to p\bar{p}h^-) - N(B^+ \to p\bar{p}h^+)}{N(B^- \to p\bar{p}h^-) + N(B^+ \to p\bar{p}h^+)}$$

$$A_{CP} = A_{\text{raw}}^{\text{acc}} - A_{\text{P}}(B^{\pm}) - A_{\text{det}}(K^{\pm})$$

- Three-body decays are a laboratory to study strong phases of interfering amplitudes
 - In B⁺ → h⁺h⁻h⁺ decays a CP asymmetry appear at low (h⁺h⁻) masses
 - What happens for pp case?

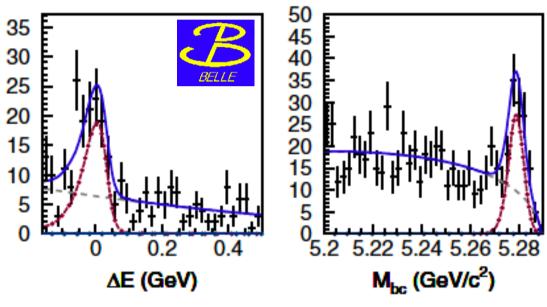
$$\begin{split} A_{\rm raw} &= \frac{N(B^- \to p\bar{p}h^-) - N(B^+ \to p\bar{p}h^+)}{N(B^- \to p\bar{p}h^-) + N(B^+ \to p\bar{p}h^+)} \\ A_{CP} &= A_{\rm raw}^{\rm acc} - A_{\rm P}(B^\pm) - A_{\rm det}(K^\pm) \end{split}$$

- Clear pattern close to the threshold
 - m(pp)<2.85 GeV


$$A_{CP}(m_{Kp}^2 < 10 GeV^2) = -0.036 \pm 0.023 \pm 0.004$$

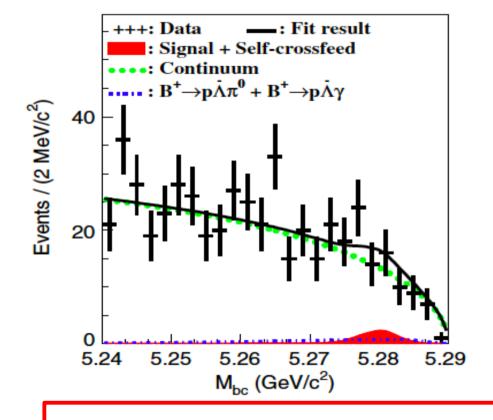
 $A_{CP}(m_{Kp}^2 > 10 GeV^2) = 0.096 \pm 0.024 \pm 0.004$
4.2 σ

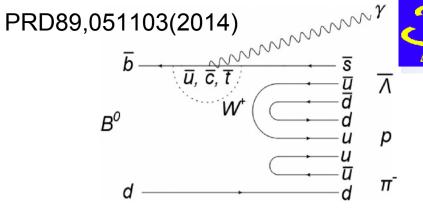
- Similar to B⁺ → h⁺h⁻h⁺: strong phase difference could involve specific mechanism
 - Interference between long-range pp-waves with different angular momenta
 _{M.Suzuki JPG34,283(2007)}


Study of radiative $\overline{B} \to \Lambda \overline{p} \pi^+ \gamma$ decay

- BF(B $\rightarrow \Lambda \overline{p}$) << BF(B $\rightarrow \Lambda \overline{p} \pi^0$)
 - Following the well known multiplicity pattern
- BF(B $\rightarrow \Lambda \overline{p}$) < 0.3 · 10⁻⁶
- BF(B $\rightarrow \Lambda \overline{p} \pi^0$) = (3.0±0.7)· 10⁻⁶

- Radiative baryonic B decays well established
 - BF(B $\to \Lambda \overline{p} \gamma$)=(2.5±0.5)·10⁻⁶
 - Usual enhancement close to the $\mathcal{B}_1\mathcal{B}_2$ mass-threshold




- With higher multiplicity we expect "naturally" a similar/higher rate
 - BF(B $\rightarrow \Lambda \overline{p} \pi \gamma)$ > BF(B $\rightarrow \Lambda \overline{p} \gamma)$

FPCP2015 12

Search for $B \to \Lambda p \pi^+ \gamma$

- With the full dataset 772 x 10⁶ BB
- $\Lambda \rightarrow p\pi$ and E^*_{γ} >1.7 GeV

$$\mathcal{B}(\overline{B}^0 \to \Lambda \overline{p} \pi^+ \gamma) < 6.48 \times 10^{-7} @90\% CL \sim \frac{1}{4} \mathcal{B}(\overline{B}^0 \to \Lambda \overline{p} \gamma)$$

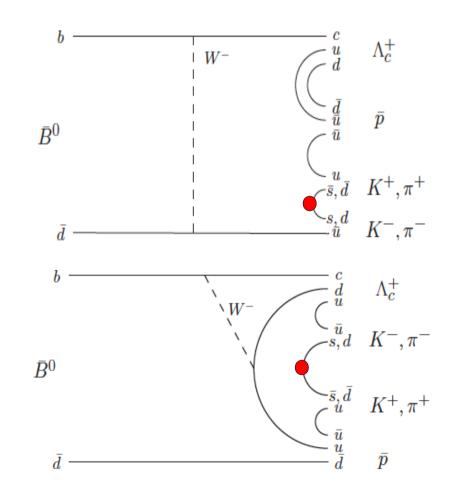
The hierarchy observed in baryonic B decays is not observed in the radiative decays

Recent results on charmed baryonic B decays

Study of $\overline{B} \rightarrow \Lambda_c^+ \overline{p} \ K^-K^+$

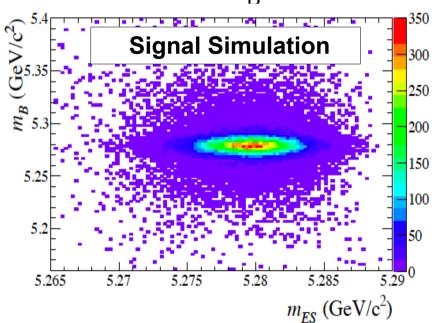
• Similar to $\overline{B} \to \Lambda_c^{ \dagger} \, \overline{p} \, \pi^{\scriptscriptstyle -} \pi^{\scriptscriptstyle +}$

$$\mathcal{B}(\overline{B}^0 \to \Lambda_c^+ \overline{p} \pi^- \pi^+) = (1.17 \pm 0.23) \times 10^{-3}$$

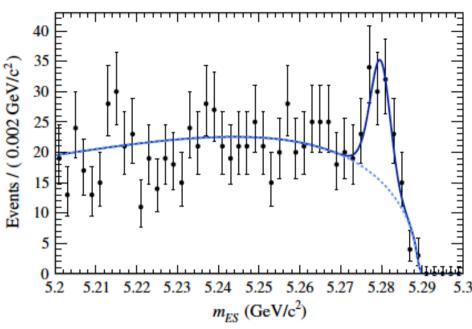

- But for the $\pi^-\pi^+$ mode there are more resonant sub-channels
 - Σ_c^{++} , Σ_c^{0} , ...

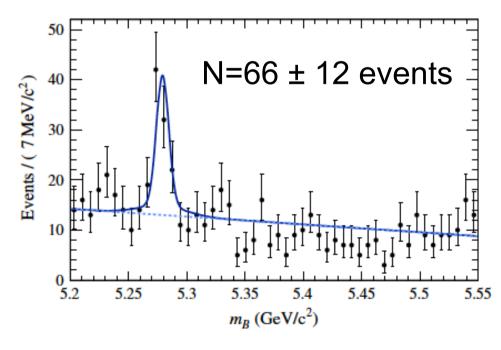
$$\mathcal{B}(\overline{B}^0 \to \Lambda_c^+ \overline{p} \pi^- \pi^+)_{\text{non-res}} \lesssim 50\% \cdot \mathcal{B}(\overline{B}^0 \to \Lambda_c^+ \overline{p} \pi^- \pi^+) = 6 \cdot 10^{-4}$$

 We expect a further suppression for the ss



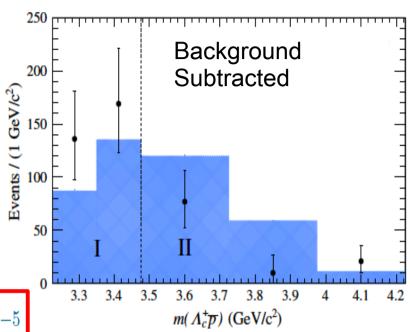
 $s\overline{s}/d\overline{d}$ suppression factor 1/3

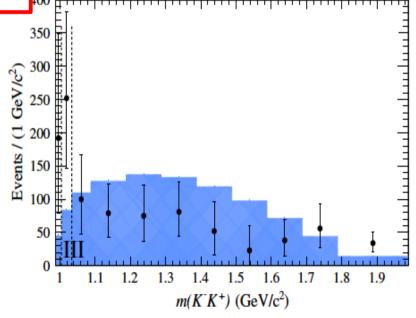



- Full statistics 471·10⁶ BB
- $\Lambda_c \to pK\pi$
- Signal extracted with a fit to the energy-substituted mass m_{ES} and the invariant mass m_B

Significance (statistical only):

$$S = \sqrt{-2\log\left(L_0/L_{\rm sig}\right)} = 5.4\,\sigma$$


- Threshold enhancement not significant
 - consistent with small enhancement observed in B $\rightarrow \Lambda_c p \pi \pi$
- Efficiency determined in 2 different regions of $M(\Lambda_c \bar{p})$ to account for a possible enhancement in the invariant $\mathcal{B}_1 \bar{\mathcal{B}}_2$ mass

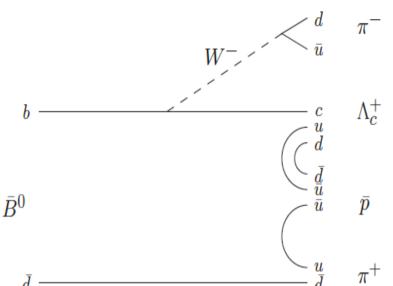

$$\mathcal{B}\left(\overline{B}^0 \to \varLambda_c^+ \overline{p} K^- K^+\right) = \left(2.5 \pm 0.4_{(\mathrm{stat})} \pm 0.2_{(\mathrm{syst})} \pm 0.6_{\left(\varLambda_c^+\right)}\right) \times 10^{-5}$$

Hint for resonance in the KK invariant mass

$$\mathcal{B}\left(\overline{B}^0 \to \Lambda_c^+ \overline{p}\phi\right) < 1.2 \times 10^{-5}$$

No evidence for other resonances

$\overline{B} \rightarrow \Lambda_c^+ \overline{p} K^-K^+$: interpretation


PRD91,031102(2015)

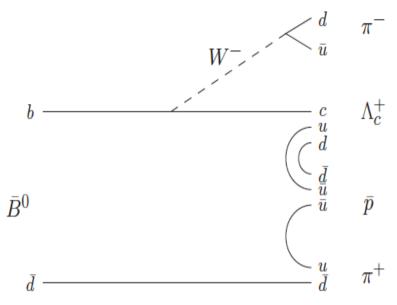
• Comparing $\overline{B} \to \Lambda_c^+ \overline{p} \pi^- \pi^+$ to $\overline{B} \to \Lambda_c^+ \overline{p} K^- K^+$

$$\frac{\mathcal{B}(\overline{B}^0 \to \Lambda_c^+ \overline{p} K^- K^+)}{\mathcal{B}(\overline{B}^0 \to \Lambda_c^+ \overline{p} \pi^- \pi^+)_{\text{non-res}}} \gtrsim \frac{2.5 \cdot 10^{-5}}{6 \cdot 10^{-4}} = \frac{1}{24} < \frac{1}{3}$$

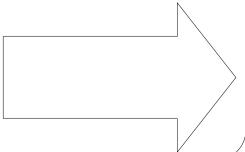
- Simple expectation from ss suppression perhaps does not hold because
 - $\overline B \to \Lambda_c^+ \overline p \ \pi^- \pi^+$ can have contributions not possible for $\overline B \to \Lambda_c^+ \overline p \ K^- K^+$
 - More careful study of all possibile resonant submodes in are needed!

External W emission

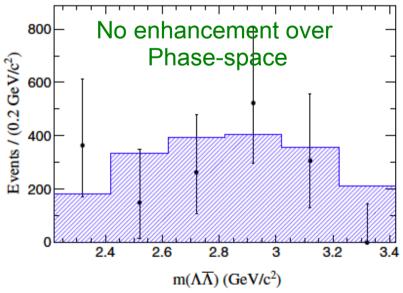
$\overline{B} \rightarrow \Lambda_c^+ \overline{p} K^2 K^+$: interpretation

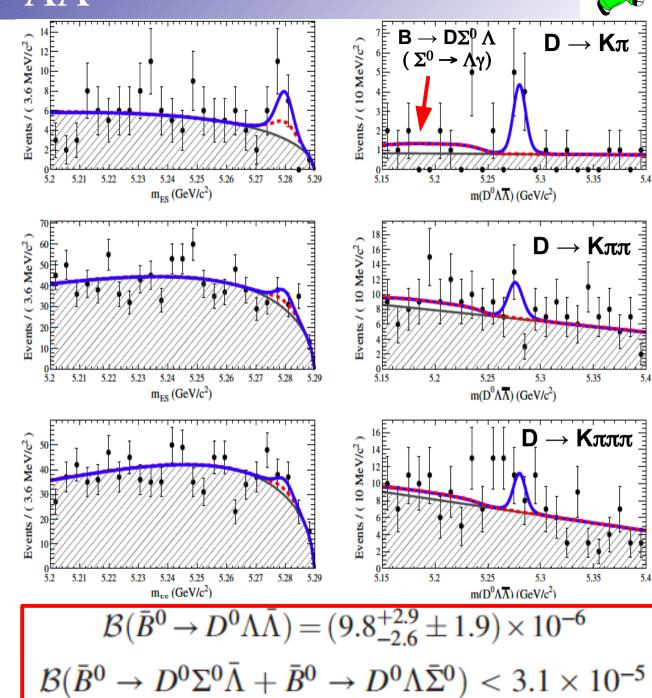

PRD91,031102(2015)

• Comparing $\overline B\to \Lambda_c^{\ +} \ \overline p \ \pi^{\ -}\pi^+ \ \ to \ \overline B\to \Lambda_c^{\ +} \ \overline p \ K^2K^+$

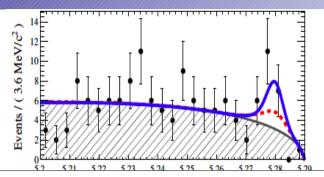

$$\frac{\mathcal{B}(\overline{B}^0 \to \Lambda_c^+ \overline{p} K^- K^+)}{\mathcal{B}(\overline{B}^0 \to \Lambda_c^+ \overline{p} \pi^- \pi^+)_{\text{non-res}}} \gtrsim \frac{2.5 \cdot 10^{-5}}{6 \cdot 10^{-4}} = \frac{1}{24} < \frac{1}{3}$$

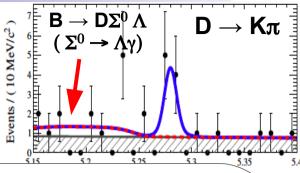
- Simple expectation from ss suppression perhaps does not hold because
 - $\overline B \to \Lambda_c^+ \overline p \ \pi^- \pi^+$ can have contributions not possible for $\overline B \to \Lambda_c^+ \overline p \ K^- K^+$


External W emission


- Simple expectation from ss-suppression in the fragmentation holds in other cases:
 - $B^0 \rightarrow D^0 \Lambda \overline{\Lambda} / B^0 \rightarrow D^0 p\overline{p}$

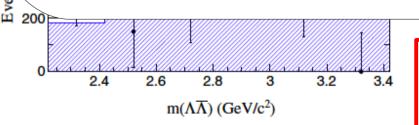
- $B^0 \rightarrow D^0 \Lambda \overline{\Lambda}$
 - $-\Lambda \rightarrow p\pi$
 - D→ Kπ,Kπππ, Kππ
- 2D fit on m_{ES} and m_B, simultaneous for the three different D⁰ decay modes
- Include also the contribution from $B \to D\Sigma^0\Lambda$ ($\Sigma^0 \to \Lambda\gamma$)





uluuluuluuluuluuluuluksessa 5.5

- $B^0 \rightarrow D^0 \Lambda \overline{\Lambda}$
 - $\Lambda \rightarrow p\pi$
 - D→ Kπ.Kπππ. Kππ



- Result consistent with Belle and with the theoretical expectations
- A simple model of hadronization with ss-suppresson holds in this case

$$\frac{\mathcal{B}(\overline{B}^0 \to D^0 \Lambda \overline{\Lambda})}{\mathcal{B}(\overline{B}^0 \to D^0 p \overline{p})} = 0.087 \pm 0.032$$

Expectation is 1/12 = 0.083

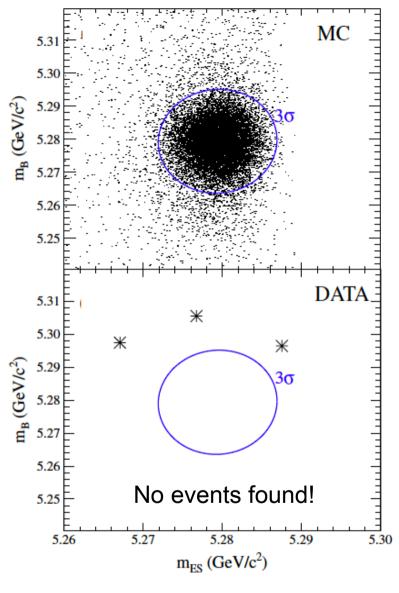
$$\mathcal{B}(\bar{B}^{0} \to D^{0}\Lambda\bar{\Lambda}) = (9.8^{+2.9}_{-2.6} \pm 1.9) \times 10^{-6}$$

$$\mathcal{B}(\bar{B}^{0} \to D^{0}\bar{\Lambda}\bar{\Lambda}) = (9.8^{+2.9}_{-2.6} \pm 1.9) \times 10^{-6}$$

$$\mathcal{B}(\bar{B}^{0} \to D^{0}\bar{\Lambda}\bar{\Lambda} + \bar{B}^{0} \to D^{0}\bar{\Lambda}\bar{\Sigma}^{0}) < 3.1 \times 10^{-5}$$

Study of $\overline{B} \to \Lambda_c^+ \overline{p} p \overline{p}$

- This decay is related to $\overline{B} \to \Lambda_c^+ \overline{p} \pi^- \pi^+$
- The allowed phased space is smaller ~1/1500
 - Large deviations are expected because hadronization can be enhanced in the phase region where pp have an invariant mass close to threshold
 - Possible resonances are absent: suppression?



- This decay is related to $\ \overline{B} \to \Lambda_c^{\ +} \ \overline{p} \ \pi^{\mbox{\tiny -}} \pi^+$
- The allowed phased space is smaller ~1/1500
 - Large deviations are expected because hadronization can be enhanced in the phase region where pp have an invariant mass close to threshold
 - Possible resonances are absent: suppression?

$$\mathcal{B}(\bar{B}^{0} \to \Lambda_{c}^{+} \bar{p} p \bar{p}) \times \frac{\mathcal{B}(\Lambda_{c}^{+} \to p K^{-} \pi^{+})}{0.050}$$

$$< 2.8 \times 10^{-6} \text{ at } 90\% \text{ C.L.,}$$

$$\frac{\mathcal{B}(\bar{B}^{0} \to \Lambda_{c}^{+} \bar{p} p \bar{p})}{\mathcal{B}(\bar{B}^{0} \to \Lambda_{c}^{+} \bar{p} \pi^{+} \pi^{-})_{\text{non-res}}} \lesssim \frac{1}{220}$$

The enhancement over the phase space suppression is smaller than 6.8

Summary I

Charmed baryon modes (10⁻⁴)

$$B^0 \to \overline{\Lambda}_c p$$
 0.2

$$B^0 \to \overline{\Lambda}_c p \pi^0$$
 1.9

$$B^+ \to \overline{\Lambda}_c p \pi^+$$
 2.8

$$B^+ \to \overline{\Lambda}_c p \pi^+ \pi^0$$
 18.0

$$B^0 \to \overline{\Lambda}_c p \pi^+ \pi^-$$
 11.7

$$B^+ \rightarrow \overline{\Lambda}_c p \pi^+ \pi^+ \pi^2$$
 22.0

$$B^+ \rightarrow \Sigma_c^0 p$$
 0.37

$$B^+ \rightarrow \Sigma_c^{0} p \pi^0$$
 4.4

$$B^+ \rightarrow \Sigma_c^{0} p \pi^- \pi^+ 4.4$$

$$B^+ \rightarrow \Sigma_c^{++} p \pi^- \pi^+$$
 3.0

$$B^0 \rightarrow \overline{\Lambda}_c p K^+ K^-$$
 0.25

$$B^0 \rightarrow \overline{\Lambda}_c p \overline{p} p$$
 < 0.028

Non-charmed modes (10⁻⁶)

$B^0 \rightarrow p\overline{p}$	0.015
$B^+ \rightarrow p\bar{p} \pi$	1.6
$P^+ \times n\overline{p} V$	5 O

$$B^{\dagger} \rightarrow p\underline{p} K$$
 5.9 $B^{0} \rightarrow p\overline{p} K^{0}$ 2.7

$$B^+ \to p \overline{\Lambda}$$
 < 0.3

$$B^+ \to p \overline{\Lambda} \pi^0$$
 3.0

$$B^0 \rightarrow p \overline{\Lambda} \pi^-$$
 3.1

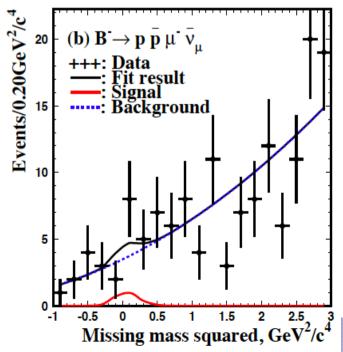
$$B^+ \to p \overline{\Lambda} \pi^+ \pi^-$$
 5.9

$$B^+ \rightarrow p \overline{\Lambda} \gamma$$
 2.4

$$B^0 o p \overline{\Lambda} \pi^+ \gamma$$
 < 0.65

Summary II

- LHCb has evidence of B→pp: BF lower than CKM suppression expectation
 - Study of other rare 2-body baryonic decays would be desirable, only accessible at LHCb due to their small BFs
- LHCb shows a first evidence of CP violation in B→ppK
 - CP should be enhanced in B→ppK*
- Belle search of $B^0 \to p \overline{\Lambda} \pi^+ \gamma$ shows that multiplicity hierarchy predicted by short-range models is violated in this case
- BaBar shows that $B^0 \rightarrow \overline{\Lambda}_c p K^+ K^-$ suppression is beyond the $s\overline{s}$ -contribution
- The B⁰→Λ_cppp from BaBar shows that a significantly enhanced decay rate due to dynamic effects related to the threshold enhancement is not present

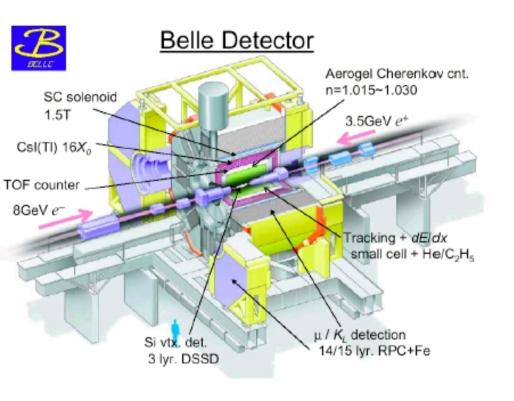

BACKUP

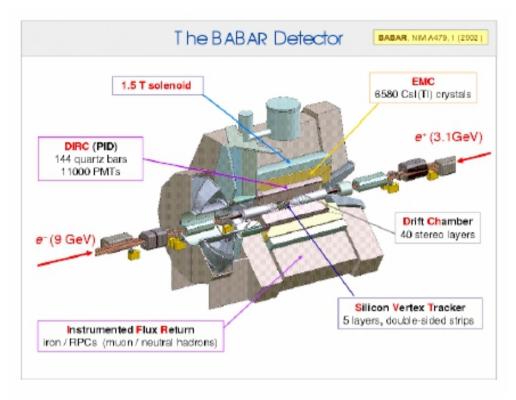
Evidence for semileptonic B→pp lv

- Only external W diagram contributes
 - Help to understand the relative weights with other diagrams
 - Geng, Hsiao PLB704,495(2011) predicts BF=(1.04 ± 0.38)x10⁻⁴
- Data sample 772 MBB
 - Use hadronic tagged B to reduce combinatorics
 - Good identification of protons and lepton
 - Neutrino from the recoil mass

Events/0.20GeV ² /c ⁴	(a) $\overrightarrow{B} \rightarrow \overrightarrow{p} \ \overrightarrow{p} \ \overrightarrow{e} \ \overrightarrow{v}_{e}$ +++: Data -: Fit result -: Signal: Background
Events 0 10 21	
0_	1 -0.5 0 0.5 1 1.5 2 2.5 3 Missing mass squared, GeV ² /c ⁴

Mode	\mathcal{B} (10 ⁻⁶)	U.L. (10^{-6})
$B^- \to p\bar{p}e^-\bar{\nu}_e$	$8.2~^{+3.7}_{-3.2}\pm0.6$	13.8
$B^-\to p\bar p \mu^-\bar\nu_\mu$	$3.1 ^{+3.1}_{-2.4} \pm 0.7$	8.5


 $5.8_{-2.1}^{+2.4} \pm 0.9$


Further investigate of theoretical modeling of Baryonic Form-Factor in B Decays are needed!

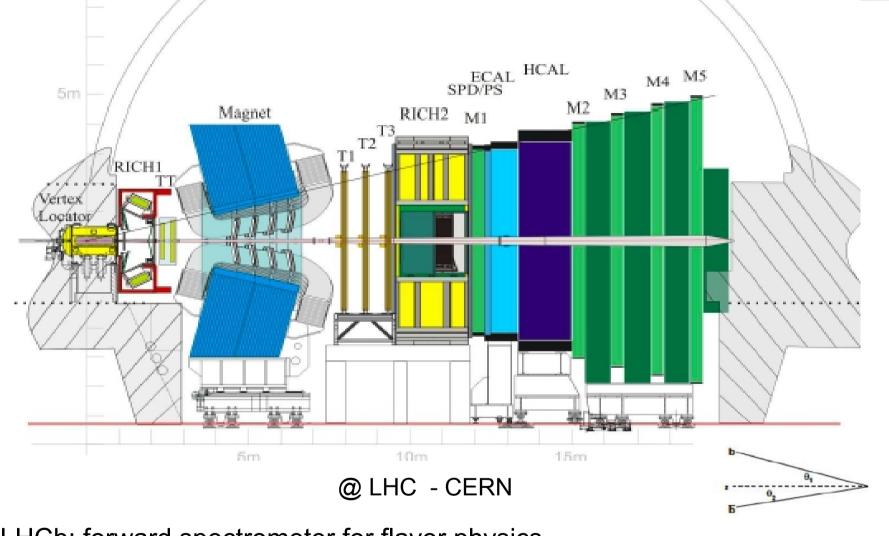
Combined sample

9.6

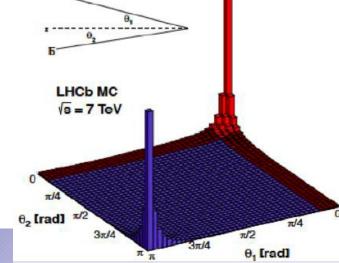
Experiments: B-Factories

@KEK Japan: 1999-2009

@ PEPII - SLAC: 1999-2008


$$e^+e^- \to \Upsilon(4S) \to B\overline{B}$$

$$\stackrel{e^+}{\underset{e^-}{\longrightarrow}} \qquad \stackrel{b}{\underset{b}{\longleftarrow}} \qquad \stackrel{u,d}{\underset{b}{\longleftarrow}}$$


B-Factories: hermetic detectors, low background, Excellent PID, access (mainly) at B^{0/+}

About (771 + 467)x10⁶ e⁺e⁻ BB events in the Belle+BaBar data

Experiments: LHCb

LHCb: forward spectrometer for flavor physics Excellent tracking and vertexing capabilities. Excellent PID performances Access to all hadrons with b-quarks

M.Rotondo

FPCP2015