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Why do we study CP violation
at all?

Its goes back the basic question:
"Why do we exist?”



Big-Bang scenario
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Wilkinson Microwave Anisotropy Probe
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5% Baryonic Matter

0.5% Stars
~.0.3-3% Neutrinos

Dark Energy Dark Matter



A[m-M} (mag)

Am-M} (mag)

Dark Energy

Type la supernova are standard candles for

cosmoloaical observations
Expansion of the Universe Is accelerating

65—70%

Nature of Dark Energy is a matter of speculations
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Big Bang Nucleosynthesis

Generation of light elements

Important Events in the Universe
Time (seconds) Temperature Kelvin)
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Anti-matter search
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Particles and Antiparticles

The relativistic wave equation proposed by Dirac (1928) was able to account
for the intrinsic angular momentum (spin) of the electron.

(7, —+my =0
oX,,
’ Where ¥ four component wave function, 7, - 4x4 matrices.

¢ Writing the plane-wave solution as
w(f,)=ue™, or wy(ty=ue ™ j=1..4

’ Two possible solutlon with “positive energy” and two more with “negative”

1 0 P | [ o

0 1 |E[+m P

U, = L U = 0 u,= 0 u = |E|+m
| E|+m P 1

0] |E|+m] 0 1

‘ Dirac supposed that there was a completely filled sea of negative-energy
states; a “hole” in this sea of the electrons was interpreted as positron



Particles and Antiparticles

‘ Positron was discovered in the cosmic rays by Andersen and by Blackett
and Occhialini in 1933

‘ The antiproton was discovered in the experiments at Berkeley by
Chamberlain, Segre, Wiegand, and Ypsilantis in 1955.
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‘ The existence of antiparticles is a general property of both fermions and
bosons.

‘ The antiparticle having the same mass as the particle, but opposite charge
and magnetic moment.



Invariance in guantum mechanics

Result of a measurement corresnonds to expectation q= J' w* Qudt
value of some operator Q

., O
@ The Schrodinger equation of motion for ¥ 'haws(t) =H Ws(t)
where H is the total energy operator (Hamiltonian)
‘ It gives the energy eigenvalues E of stationary state Hy =Ey

’ Time dependence of vector state Vs , Vs (t) =T (t’ to)Ws (to)

where T(t,t,) =exp[-i(t—t,)H /7]
’ Operator T preserves the norm of wavefunction and T1=T" T =1

is unitary ]

Heisenberg description attributes the time _T-L
‘ dependence to operator Q Q=T QOT’

-1
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Conserved quantum numbers are
assoclated with operators commuting with
the Hamiltonian



Simple examples: translations

‘ Translation in space — continuous transformation

‘ Infinitesimal translation in space or

pi=y(rran =pm+or L - qror Dy <oy

‘ Since the momentum operatoris P = —Iha—
: I
D=(0-or-pl/i#h)
‘ A finite translation Ar can be obtalned by making n steps in succession

D~ lim(1-r- ) —exp(lpAr

Nn—oo

‘ So if Hamiltonian commutes with D, so also does with p

[p.H]=0




Simple examples: rotations
Q Infinitesimal rotations in space O¢ R =1+ 8¢ ﬂ

‘ The operator of the z-component of angular momentum

. o 19 .. O i
Jz:_'h(xa_y_):_'hﬁq R=1+—JZ5¢.

‘ A finite rotation A¢@ can be obtained by maklng n steps in succession

= I|m(1+h J.0¢)" —exp(—J AQ)

N—o0

‘ So if Hamiltonian commutes with R, so also does with J,

[J..H]=

‘ Conservation of angular momentum about an axis corresponds to
invariance of the Hamiltonian under rotations about that axis



Parity

<> Operation of spatial inversion of coordinates ~ (X,Y,Z > —X,—VY,—2)
Is an example of a discrete transformation

<> Repetition of this operation implies P?=1 and the eigenvalue of the
operator will be + 1, this is called the parity P of the system

€ Any spherically symmetric potential has the property H (F) =H (—F) = H(r)
so that [P,H]=0: the bound states have definite parity

<> A familiar example is provided by the hydrogen atom wave functions:

w(r.0,9) = x(r)Y,"(6,9)
=0 YYo= I=1 YW= Zcosd Y= [Esinek”;
=2 Y, =% (Bcos’0-1) Y, =.Esindcosek”
Y7 = [ sin? G
Y"(0,4) > Y "(x -0, 7 +¢)=(-1)Y,"(0,9)
€ Thus the spherical harmonic functions have P = (-2)'



Charge-Conjugation Invariance

’ The operation of charge conjugation reverses the sign of charge and
magnetic moment of a particle (leaving all other coordinates unchanged).

‘ For baryons and leptons, a reversal of charge entails a change in sign of the
baryon or lepton number.

‘ Charge-Conjugation of the fermion anti-fermion bound state. The total
wave function is a product of the three wave functions:

 (total) = d(space) - a(spin) - y(charge)
a(ll) =y, (5. 9. (5,3

a(1,0) = Hlv. (G v (5.-2) + v (5. Dv.(5.- 7)]
a(l-1)=v,(5.- 1)‘#2——1)
0((00)—\/—[;”1 53 (52— v (5. Dvi(5.—3)]

Fermion anti-fermion wave function is anti-symmetrical under particle
Interchange (Fermi statistics)

-1=C- (_1)S+1 : (_1)| —C = (_1)S+I
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Eigenstates of the Charge-Conjugation

Operator
Consider the operation of charge C 7z+> — ‘72'_> =+ 7z+>
conjugation performed on a charged-pion
However, for neutral system C 7T0> = 77‘7[0>, n’ =1
Remember for (40| state C = -)*" so C 7TO> =+‘7TO>-

Note that electromagnetic fields are produced by moving charge which
change sign under charge conjugation. As a consequence, the photon has
C=-1. Since the charge-conjugation quantum number is multiplicative, this
means that a system of n photons has C=(-1)".

Asaresult 7°—2y



Parity of the pion

<> The parity of the neutral pion has been established from observations
of the y-ray polarization in the double Dalitz decay n®->e*e’e*e".

v(2y)~(&-8,)

- scalar

w(2y) ~ (€, xE,)- k - pseudoscalar

€ Since the plane of e+e- lies predominantly
In the plane of the E-vector, measurement
of the angular distribution between the

o

plane of the pairs demonstrates the odd

parity of the neutral pion.

requency

Spherical harmonic functions have P = (—1)"
and 1f we will take into account that fermion
and anti-fermion have the opposite intrinsic

parity the parity of the Jd pair is

P _ (_1)I+1

1.4

Plano et al.,1959

-,
'\\(1 + Kcos 2¢)




Parity Nonconservation in weak decays

‘ In 1956 Lee and Yang came to conclusion that the weak interactions did not
conserved parity — largely on the basis of the fact that the K+ could decay in

two decay modes K+->2x and K*->3m, in which the final states have
opposite parities.

‘ The test parity conservation was performed by Wu et. al (1957).
» H(z—axis)

J(*°Co)

’ 60Co(J=5) decays to 60Ni*(J=4). The relative electron intensities allon
and against the field direction were measured.

ol

‘ As a result I(6’)=1+a0' =l+a%cost9

Where o =-1



Historical remarks

P violation was suggested by Lee and Yang to
resolve 0O-t paradox

loffe, Okun and Rudik showed that Lee and
Yang way leads to C violation

Landau introduced CP

Wau and collaborators observed the angular
asymmetry in the polarized nuclear (-decays

PR 104, 256
1956

JETP 5,328
1957

JETP 5,336
1957

PR 105,1413
1957



CP violation in the K% — n*r~ decay

Christenson, Cronin, Fitch and
Turlay observed 40 events of the { """
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FIG. 1. Plan view of the detector arrangement.
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FIG. 3. Angular distribution in three mass ranges
for events with cosé >0, 9995,
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