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Its goes back the basic question:
“Why do we exist?”

Why do we study CP violation 
at all?



Expanding universe

Big-Bang scenario
Generation of light elements

Black-body radiation
The universe is filled 
with ３°Ｋ

 
photons

Discovery of  Cosmic Background



Wilkinson Microwave Anisotropy Probe

Structure of the Microwave Radiation



Dark MatterDark Energy

Baryonic Matter
Stars

Neutrinos



Dark   Energy
Type Ia supernova are standard candles for 
cosmological observations
Expansion of the Universe is accelerating
Nature of Dark Energy is a matter of speculations



Generation of light elements

Big Bang Nucleosynthesis



Anti-matter search



Where is anti-matter?
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Particles and Antiparticles
The relativistic wave equation proposed by Dirac (1928) was able to account 
for the intrinsic angular momentum (spin) of the electron.

Where        four component wave function,        - 4x4 matrices.

Writing the plane-wave solution as

Two possible solution with “positive energy” and two more with “negative”

Dirac supposed that there was a completely filled sea of negative-energy 
states;  a “hole” in this sea of the electrons was interpreted as positron
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Particles and Antiparticles

The existence of antiparticles is a general property of both fermions and 
bosons. 

The antiparticle having the same mass as the particle, but opposite charge 
and magnetic moment.

Positron was discovered in the cosmic rays by Andersen and by  Blackett 
and Occhialini in 1933

The antiproton was discovered in the experiments at Berkeley by 
Chamberlain, Segre, Wiegand, and Ypsilantis in 1955.

P=6.3GeV/c
Copper target

Cherenkov counters
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Invariance in quantum mechanics
Result of a measurement corresponds to expectation 
value of some operator Q

The Schrodinger equation of motion for ψ
where H is the total energy operator (Hamiltonian)
It gives the energy eigenvalues E of stationary state

Time dependence of vector state         ,

where

sψ

Operator T preserves the norm of  wavefunction and 
is unitary
Heisenberg description attributes the time 
dependence to operator Q



Conserved quantum numbers are 
associated with operators commuting with 

the Hamiltonian
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Simple examples: translations
Translation in space – continuous transformation

Infinitesimal translation in space rδ

Since the momentum operator is 

A finite translation        can be obtained by  making n steps in succession

So if Hamiltonian commutes with D, so also does with p

rΔ
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Simple examples: rotations
Infinitesimal rotations in space δφ

A finite rotation          can be obtained by  making n steps in succession

So if Hamiltonian commutes with R, so also does with 

φΔ

The operator of the z-component of angular momentum
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Conservation of angular momentum about an axis corresponds to 
invariance of the Hamiltonian under rotations about that axis
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Parity
Operation of spatial inversion of coordinates 
is an example of a discrete transformation

Any spherically symmetric potential has the property

so that [P,H]=0: the bound states have definite parity 

A familiar example is provided by the hydrogen atom wave functions:

)()()( rHrHrH =−=
rr

Repetition of this operation implies P2=1 and the eigenvalue of the 
operator will be + 1, this is called the parity P of the system

Thus the spherical harmonic functions have 
lP )1(−=
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Charge-Conjugation Invariance
The operation of charge conjugation reverses the sign of charge and 
magnetic moment of a particle (leaving all other coordinates unchanged).

Charge-Conjugation of the fermion anti-fermion bound state. The total 
wave function is a product of the three wave functions:

For baryons and leptons, a reversal of charge entails a change in sign of the 
baryon or lepton number.

Fermion anti-fermion wave function is anti-symmetrical under particle 
interchange (Fermi statistics)

lSlS CC ++ −=⇒−⋅−⋅=− )1()1()1(1 1



Eigenstates of the  Charge-Conjugation 
Operator

Consider the operation of charge 
conjugation performed on a charged-pion
However, for neutral system

Note that electromagnetic fields are produced by moving charge which 
change sign under charge conjugation. As a consequence, the photon has 
C=-1. Since the charge-conjugation quantum number is multiplicative, this 
means that a system of n photons has C=(-1)n.

+−+ ±≠→ πππC

1, 200 == ηπηπC

Remember for qq state lSC +−= )1( so .00 ππ +=C

As a result γπ 20 →



0π
e+

e+

e−
e−

Parity of the pion
The parity of the neutral pion has been established from observations 
of  the γ-ray polarization in the double Dalitz decay π0->e+e-e+e-. 
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⋅γψ - scalar

kee
rrr
⋅× )(~)2( 21γψ - pseudoscalar

Plano et al.,1959

Since the plane of e+e- lies predominantly 
in the plane of the E-vector, measurement 
of the angular distribution between the 
plane of the pairs demonstrates the odd 
parity of the neutral pion.
Spherical harmonic functions have                    
and if we will take into account that fermion 
and anti-fermion have the opposite intrinsic 
parity the parity of the          pair is   
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Parity Nonconservation in weak decays
In 1956 Lee and Yang came to conclusion that the weak interactions did not 
conserved parity – largely on the basis of the fact that the K+ could decay in 
two decay modes K+->2π

 
and K+->3π, in which the final states have 

opposite parities.

The test parity conservation was performed by Wu et. al (1957).
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As a result 
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60Co(J=5) decays to 60Ni*(J=4). The relative electron  intensities allon 
and against the field direction were measured.

Where  1−=α



Historical remarks

P violation was suggested by Lee and Yang to 
resolve  θ-τ

 
paradox

PR  104, 256        
1956

Ioffe, Okun and Rudik showed that Lee and 
Yang way leads to C violation

JETP 5,328 
1957

Landau introduced CP JETP 5,336 
1957

Wu and collaborators observed the angular 
asymmetry in the polarized nuclear  β-decays

PR 105,1413
1957



CP violation in the K0
L → π+π– decay

Christenson, Cronin, Fitch and 
Turlay observed 40 events of the 
K0

L → π+π– decay PRL 13, 138 1964
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