CP violation in B-meson decays and matter-antimatter asymmetry

Alex Bondar

Budker Institute of Nuclear Physics
Novosibirsk
Lecture 1

October, 2007

Why do we study CP violation at all?

Its goes back the basic question: "Why do we exist?"

Big-Bang scenario

Generation of light elements

Discovery of Cosmic Background

Arno Penzias
with $3^{\circ} \mathrm{K}$ photons
Robert Wilson

Expanding universe

Structure of the Microwave Radiation

Wilkinson Microwave Anisotropy Probe

$$
T=2.725^{\circ} \mathrm{K}, \frac{\delta T}{T} \sim 10^{-5}
$$

Dark Energy

- Type Ia supernova are standard candles for cosmological observations
- Expansion of the Universe is accelerating
- Nature of Dark Energy is a matter of speculations

Big Bang Nucleosynthesis

Generation of light elements

Important Events in the Universe

Time (seconds)

 0

Anti-matter search

Where is anti-matter?

Particles and Antiparticles

The relativistic wave equation proposed by Dirac (1928) was able to account for the intrinsic angular momentum (spin) of the electron.

$$
\left(\gamma_{\mu} \frac{\partial}{\partial x_{\mu}}+m\right) \psi=0
$$

Where ψ four component wave function, $\gamma_{\mu}-4 \times 4$ matrices.
Writing the plane-wave solution as

$$
\psi(\vec{r}, t)=u_{j} e^{i p_{\mu} x_{\mu}}, \quad \text { or } \quad \psi(\vec{r}, t)=u_{j} e^{-i p_{\mu} x_{\mu}} \quad j=1, \ldots, 4
$$

Two possible solution with "positive energy" and two more with "negative"

$$
u_{++}=\left[\begin{array}{c}
1 \\
0 \\
p \\
|E|+m \\
0
\end{array}\right] u_{+}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\frac{-p}{|E|+m}
\end{array}\right] \quad u_{+}=\left[\begin{array}{c}
\frac{-p}{|E|+m} \\
0 \\
1 \\
0
\end{array}\right] u_{-}=\left[\begin{array}{c}
0 \\
\frac{p}{|E|+m} \\
0 \\
1
\end{array}\right]
$$

Dirac supposed that there was a completely filled sea of negative-energy states; a "hole" in this sea of the electrons was interpreted as positron

Particles and Antiparticles

*

Positron was discovered in the cosmic rays by Andersen and by Blackett and Occhialini in 1933

The antiproton was discovered in the experiments at Berkeley by Chamberlain, Segre, Wiegand, and Ypsilantis in 1955.

The existence of antiparticles is a general property of both fermions and bosons.

The antiparticle having the same mass as the particle, but opposite charge and magnetic moment.

Invariance in quantum mechanics

\diamond
Result of a measurement corresponds to expectation value of some operator

$$
q=\int \psi^{*} Q \psi d t
$$

The Schrodinger equation of motion for ψ

$$
i \hbar \frac{\partial}{\partial t} \psi_{s}(t)=H \psi_{s}(t)
$$

where H is the total energy operator (Hamiltonian)

$$
\begin{gathered}
H \psi=E \psi \\
\psi_{s}(t)=T\left(t, t_{0}\right) \psi_{s}\left(t_{0}\right)
\end{gathered}
$$

It gives the energy eigenvalues E of stationary state
Time dependence of vector state ψ_{s}, where

$$
T\left(t, t_{0}\right)=\exp \left[-i\left(t-t_{0}\right) H / \hbar\right]
$$

Operator T preserves the norm of wavefunction and

$$
T^{-1} \equiv T^{*}, T^{-1} T=1
$$ is unitary

Heisenberg description attributes the time dependence to operator Q

$$
Q=T^{-1} Q_{0} T
$$

$i \hbar \frac{d Q}{d t}=i \hbar \frac{\partial Q}{\partial t}+i \hbar \frac{d T^{-1}}{d t} Q_{0} T+i \hbar T^{-1} Q_{0} \frac{d T}{d t}=$
$i \hbar \frac{\partial Q}{\partial t}-H T{ }^{-1} Q_{0} T+T^{-1} Q_{0} T H=i \hbar \frac{\partial Q}{\partial t}+[Q, H]$

Conserved quantum numbers are associated with operators commuting with the Hamiltonian

Simple examples: translations

Translation in space - continuous transformation

Infinitesimal translation in space δr
$\psi^{\prime}=\psi(r+\delta r)=\psi(r)+\delta r \frac{\partial \psi(r)}{\partial r}=\left(1+\delta r \frac{\partial}{\partial r}\right) \psi=D \psi$
Since the momentum operator is $\quad p=-i \hbar \frac{\partial}{\partial r}$

$$
D=(1-\partial r \cdot p / i \hbar)
$$

A finite translation Δr can be obtained by making n steps in succession

$$
D=\lim _{n \rightarrow \infty}\left(1-\partial r \frac{p}{i \hbar}\right)^{n}=\exp \left(\frac{i p \Delta r}{\hbar}\right)
$$

So if Hamiltonian commutes with D, so also does with p

$$
[p, H]=0
$$

Simple examples: rotations

Infinitesimal rotations in space $\delta \phi$

$$
R=1+\delta \phi \frac{\partial}{\partial \phi}
$$

The operator of the z-component of angular momentum

$$
J_{z}=-i \hbar\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)=-i \hbar \frac{\partial}{\partial \phi} \square R=1+\frac{i}{\hbar} J_{z} \delta \phi .
$$

A finite rotation $\Delta \phi$ can be obtained by making n steps in succession

$$
R=\lim _{n \rightarrow \infty}\left(1+\frac{i}{\hbar} J_{z} \partial \phi\right)^{n}=\exp \left(\frac{i}{\hbar} J_{z} \Delta \phi\right)
$$

So if Hamiltonian commutes with R, so also does with J_{z}

$$
\left[J_{z}, H\right]=0
$$

Conservation of angular momentum about an axis corresponds to invariance of the Hamiltonian under rotations about that axis

Parity

Operation of spatial inversion of coordinates

$$
(x, y, z \rightarrow-x,-y,-z)
$$ is an example of a discrete transformation

Repetition of this operation implies $\mathrm{P}^{2}=1$ and the eigenvalue of the operator will be ± 1, this is called the parity P of the system
Any spherically symmetric potential has the property $H(\vec{r})=H(-\vec{r})=H(r)$ so that $[\mathrm{P}, \mathrm{H}]=0$: the bound states have definite parity

A familiar example is provided by the hydrogen atom wave functions:

$$
\begin{array}{ll}
& \psi(r, \theta, \phi)=\chi(r) Y_{l}^{m}(\theta, \phi) \\
l=0 & Y_{0}^{0}=\frac{1}{\sqrt{4 \pi}} ; \quad l=1 \quad Y_{1}^{0}=\sqrt{\frac{3}{4 \pi}} \cos \theta \quad Y_{1}^{1}=\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \phi} ; \\
l=2 & Y_{2}^{0}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right) \quad Y_{2}^{1}=\sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{i \phi} \\
& Y_{2}^{2}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{2 i \phi}
\end{array}
$$

$$
Y_{l}^{m}(\theta, \phi) \rightarrow Y_{l}^{m}(\pi-\theta, \pi+\phi)=(-1)^{l} Y_{l}^{m}(\theta, \phi)
$$

Thus the spherical harmonic functions have $P=(-1)^{l}$

Charge-Conjugation Invariance

The operation of charge conjugation reverses the sign of charge and magnetic moment of a particle (leaving all other coordinates unchanged).

For baryons and leptons, a reversal of charge entails a change in sign of the baryon or lepton number.

Charge-Conjugation of the fermion anti-fermion bound state. The total wave function is a product of the three wave functions:

$$
\begin{aligned}
& \psi(\text { total })=\Phi(\text { space }) \cdot \alpha(\text { spin }) \cdot \chi(\text { charg } e) \\
& \alpha(1,1)=\psi_{1}\left(\frac{1}{2}, \frac{1}{2}\right) \psi_{2}\left(\frac{1}{2}, \frac{1}{2}\right) \\
& \alpha(1,0)=\frac{1}{\sqrt{2}}\left[\psi_{1}\left(\frac{1}{2}, \frac{1}{2}\right) \psi_{2}\left(\frac{1}{2},-\frac{1}{2}\right)+\psi_{2}\left(\frac{1}{2}, \frac{1}{2}\right) \psi_{1}\left(\frac{1}{2},-\frac{1}{2}\right)\right] \\
& \alpha(1,-1)=\psi_{1}\left(\frac{1}{2},-\frac{1}{2}\right) \psi_{2}\left(\frac{1}{2},-\frac{1}{2}\right) \\
& \alpha(0,0)=\frac{1}{\sqrt{2}}\left[\psi_{1}\left(\frac{1}{2}, \frac{1}{2}\right) \psi_{2}\left(\frac{1}{2},-\frac{1}{2}\right)-\psi_{2}\left(\frac{1}{2}, \frac{1}{2}\right) \psi_{1}\left(\frac{1}{2},-\frac{1}{2}\right)\right]
\end{aligned}
$$

Fermion anti-fermion wave function is anti-symmetrical under particle interchange (Fermi statistics)

$$
-1=C \cdot(-1)^{S+1} \cdot(-1)^{l} \Rightarrow C=(-1)^{S+l}
$$

Eigenstates of the Charge-Conjugation Operator

Consider the operation of charge conjugation performed on a charged-pion
However, for neutral system

$$
\begin{aligned}
& C\left|\pi^{+}\right\rangle \rightarrow\left|\pi^{-}\right\rangle \neq \pm\left|\pi^{+}\right\rangle \\
& C\left|\pi^{0}\right\rangle=\eta\left|\pi^{0}\right\rangle, \quad \eta^{2}=1 \\
& C\left|\pi^{0}\right\rangle=+\left|\pi^{0}\right\rangle .
\end{aligned}
$$

Note that electromagnetic fields are produced by moving charge which change sign under charge conjugation. As a consequence, the photon has $\mathrm{C}=-1$. Since the charge-conjugation quantum number is multiplicative, this means that a system of n photons has $\mathrm{C}=(-1)^{\mathrm{n}}$.
As a result $\quad \pi^{0} \rightarrow 2 \gamma$

Parity of the pion

The parity of the neutral pion has been established from observations of the γ-ray polarization in the double Dalitz decay $\pi^{0}->\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{e}^{+} \mathrm{e}^{-}$.

Since the plane of $\mathrm{e}+\mathrm{e}$ - lies predominantly in the plane of the E-vector, measurement of the angular distribution between the plane of the pairs demonstrates the odd parity of the neutral pion.
Spherical harmonic functions have $P=(-1)^{l}$ and if we will take into account that fermion and anti-fermion have the opposite intrinsic parity the parity of the $q \bar{q}$ pair is
$P=(-1)^{l+1}$

Parity Nonconservation in weak decays

In 1956 Lee and Yang came to conclusion that the weak interactions did not conserved parity - largely on the basis of the fact that the K^{+}could decay in two decay modes $\mathrm{K}^{+}->2 \pi$ and $\mathrm{K}^{+}->3 \pi$, in which the final states have opposite parities.

The test parity conservation was performed by Wu et. al (1957).

$60 \mathrm{Co}(\mathrm{J}=5)$ decays to $60 \mathrm{Ni}^{*}(\mathrm{~J}=4)$. The relative electron intensities allon and against the field direction were measured.

As a result

$$
I(\theta)=1+\alpha \frac{\vec{\sigma} \cdot \vec{p}}{E}=1+\alpha \frac{v}{C} \cos \theta
$$

Where $\quad \alpha=-1$

Historical remarks

P violation was suggested by Lee and Yang to resolve $\theta-\tau$ paradox

Ioffe, Okun and Rudik showed that Lee and Yang way leads to C violation

Landau introduced CP

Wu and collaborators observed the angular asymmetry in the polarized nuclear β-decays

PR 104, 256 1956

JETP 5,328 1957

JETP 5,336 1957

PR 105,1413
1957

CP violation in the $K_{L}^{0} \rightarrow \pi^{+} \pi^{-}$decay

Christenson, Cronin, Fitch and
Turlay observed 40 events of the $K^{0}{ }_{L} \rightarrow \pi^{+} \pi^{-}$decay PRL 13, 1381964

FIG. 1. Plan view of the detector arrangement.

FIG. 3. Angular distribution in three mass ranges for events with $\cos \theta>0.9995$.

