Physics of τ Lepton Decays into Hadrons

Simon Eidelman

Budker Institute of Nuclear Physics, Novosibirsk, Russia and Nagoya University, Nagoya, Japan

$\begin{array}{c} \text{Outline}\\ 1. \text{ General properties of } \tau \text{ lepton} \end{array}$

2. Cabibbo-favored decays. CVC

- 3. Decays with η mesons
- 4. Decays with kaons
- 5. Conclusions

Our Goal or Six "What"?

- What hadronic decays exist (or should exist)?
- What is their experimental status?
- What are the branching fractions?
- What are their mechanisms?
- What are theoretical predictions?
- What should we focus on at Belle?

Today we mainly discuss Cabibbo-favored decays, in particular decays into pion final states

Leptons And Quarks

Particle	e ⁻	u	μ^-	С	$ au^-$	t
Q. number	+1	+1/2	+1	+1	+1	+1
Flavor	Electron	Isospin	Muon	Charm	au	Topness
Particle	$ u_e $	d	$ u_{\mu}$	8	$ u_{ au}$	b
Q. number	+1	-1/2	+1	-1	+1	-1

 $LF(e^{-}) = LF(\nu_{e}) \quad LF(\mu^{-}) = LF(\nu_{\mu}) \quad LF(\tau^{-}) = LF(\nu_{\tau})$ $LF(e^{-}) \neq LF(\mu^{-}) \neq LF(\tau^{-}), \quad LF(\nu_{e}) \neq LF(\nu_{\mu}) \neq LF(\nu_{\tau}).$

General

- τ lepton and its neutrino ν_{τ} are two of the six fundamental leptons: e^- , ν_e , μ^- , ν_{μ} , τ^- , ν_{τ}
- As the heaviest lepton, τ may decay into both leptons and hadrons: PDG-2006 lists more than 200 different τ decays
- We can study all interactions allowed in the Standard Model and search for effects of New Physics
- It is a very clean laboratory with no hadrons in the initial and only a few in the final state

au Lepton Factories

Group	$\int L dt$, fb ⁻¹	$N_{\tau\tau}, 10^{6}$
LEP (Z-peak)	0.34	0.33
CLEO (10.6 GeV)	13.8	12.6
BaBar (10.6 GeV)	221	197
Belle (10.6 GeV)	535	477
τ -c (4.2 GeV)	10	32
SuperB	50k	45k

BaBar (~ 400 fb⁻¹) and Belle (~ 700 fb⁻¹) collected together about 1.1 ab⁻¹ B-factory is also a τ factory producing $0.9 \cdot 10^6 \tau^+ \tau^-$ pairs per each fb⁻¹!!

 \mathcal{B} of Cabibbo-favored decays $\propto \cos\theta_C$, while for Cabibbo-suppressed $\propto \cos\theta_C$. $\cos\theta_C \approx |V_{ud}| = 0.97377 \pm 0.00027$, so the suppression $\propto \tan^2\theta_C \approx 18$. Each Wud (Wus) vertex includes the CKM m.e. $V_{ud(us)}$

	How Large is $\mathcal{B}(\tau^- \to e^- \bar{\nu}_e \nu_\tau)$?							
v _t	v_{τ} e^{-} v_{τ} μ^{-} v_{τ} d \overline{v}_{e} τ^{-} \overline{v}_{μ} \overline							
$R_{ au} = rac{\Gamma}{\Gamma}$ QCD an $R_{ au} = 3.$	$R_{\tau} = \frac{\Gamma(\tau^{-} \rightarrow \text{hadrons})}{\Gamma(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau})}, \text{ In asymptotics } (m_{\tau} \rightarrow \infty) R_{\tau} = N_{c} = 3,$ QCD and EW $(\alpha_{s}(m_{\tau}) \sim 0.35;$ $R_{\tau} = 3.058[1 + \frac{\alpha_{s}(m_{\tau})}{\pi} + 5.2 \frac{\alpha_{s}(m_{\tau})^{2}}{\pi} + 26.4 \frac{\alpha_{s}(m_{\tau})^{3}}{\pi} + \ldots + n.p.t.]$							
	Decay mode	$\mathcal{B}, \% (\mathrm{No} \; \mathrm{QCD})$	$\mathcal{B}, \% (\text{QCD})$	$\mathcal{B}, \% \text{ (Exp-nt)}$				
	$e^- \bar{\nu}_e \nu_{\tau}$	20	17.6	17.84 ± 0.06				
	$\mu^- \bar{\nu}_e \nu_{ au}$	20	17.6	17.36 ± 0.06				
	Hadrons + ν_{τ}	60	64.8	~ 65				

Mode	${\cal B}^{({ m th})}$	${\cal B}^{(m exp)}$
$\tau^- \to \pi^- \nu_{\tau}$	$(10.87 \pm 0.05)\%$	$(10.90 \pm 0.07)\%$
$\tau^- \to K^- \nu_{\tau}$	$(7.08 \pm 0.04) \cdot 10^{-3}$	$(6.91 \pm 0.23) \cdot 10^{-3}$

S.Eidelman, BINP

p.10/68

Spectral Functions

S.f. are obtained from the normalized hadronic mass distribution $(1/N_{V/A})(dN_{V/A}/ds)$ and defined separately for various quantum numbers and flavor of the hadronic system:

$$v_{1}(s)/a_{1}(s) = \frac{m_{\tau}^{2}}{6|V_{ud}|^{2}S_{\rm EW}} \frac{\mathcal{B}(\tau^{-} \to V^{-}/A^{-}\nu_{\tau})}{\mathcal{B}(\tau^{-} \to e^{-}\bar{\nu}_{e}\nu_{\tau})}$$

$$\times \frac{dN_{V/A}}{N_{V/A} ds} \left[\left(1 - \frac{s}{m_{\tau}^{2}} \right)^{2} \left(1 + \frac{2s}{m_{\tau}^{2}} \right) \right]^{-1},$$

$$a_{0}(s) = \frac{m_{\tau}^{2}}{6|V_{ud}|^{2}S_{\rm EW}} \frac{\mathcal{B}(\tau^{-} \to \pi^{-}(K^{-})\nu_{\tau})}{\mathcal{B}(\tau^{-} \to e^{-}\bar{\nu}_{e}\nu_{\tau})}$$

$$\times \frac{dN_{A}}{N_{A} ds} \left(1 - \frac{s}{m_{\tau}^{2}} \right)^{-2}$$

Allowed $I^G J^P = 1^+ 1^-$: $V^- = \pi^- \pi^0$, $(4\pi)^-$, $\omega \pi^-$, $\eta \pi^- \pi^0$, $K^- K^0$, $(6\pi)^-$, $\mathcal{B}(V^- \nu_{\tau}) \sim 32\%$ CVC tests showed good agreement of the τ branchings predicted from e^+e^- with τ data (N.Kawamoto, A.Sanda, 1978; F.Gilman, D.Miller, 1978; SE, V.Ivanchenko, 1991, 1997). The very first application of τ data to $a_{\mu}^{\text{had},\text{LO}}$ improved the accuracy by a factor of 1.5 (R.Alemany, M.Davier, A.Höcker, 1998)!

Specific CVC predictions

For some modes there is one final state only in both τ and e^+e^- : $\pi^-\pi^0 \iff \pi^+\pi^-, \,\omega\pi^- \iff \omega\pi^0, \,\eta\pi^-\pi^0 \iff \eta\pi^+\pi^-, \,K^-K^0 \iff K^+K^-$: $v_{\pi^-\pi^0} = \frac{s}{4\pi\alpha^2}\sigma(e^+e^- \to \pi^+\pi^-), \quad v_{\omega\pi^-} = \frac{s}{4\pi\alpha^2}\sigma(e^+e^- \to \omega\pi^0)$

For the 4π channel there are two modes both in τ decay $(\pi^{-}3\pi^{0} \text{ and } 2\pi^{-}\pi^{+}\pi^{0})$ and $e^{+}e^{-}(2\pi^{+}2\pi^{-} \text{ and } \pi^{+}\pi^{-}2\pi^{0})$: $v_{\pi^{-}3\pi^{0}} = \frac{s}{8\pi\alpha^{2}}\sigma(e^{+}e^{-} \to 2\pi^{+}2\pi^{-})$ $v_{2\pi^{-}\pi^{+}\pi^{0}} = \frac{s}{8\pi\alpha^{2}}(\sigma(e^{+}e^{-} \to 2\pi^{+}2\pi^{-}) + \sigma(e^{+}e^{-} \to \pi^{+}\pi^{-}2\pi^{0})).$

For six-pion modes there are three final states in both τ and e^+e^- and only inequalities are possible.

CLEO Test of CVC in $\tau^- \to \pi^- \pi^0 \nu_\tau - II$

S.Eidelman, BINP

p.15/68

Branchings of $\tau^- \to X^- \nu_\tau$ Decay,%

Hadronic	Experiment,	CVC	
State X	2002	Prediction	$\mathcal{B}_{exp}-\mathcal{B}_{CVC}$
$\pi^{-}\pi^{0}$	25.31 ± 0.18	24.76 ± 0.25	0.55 ± 0.31
$\pi^{-}3\pi^{0}$	1.08 ± 0.10	1.07 ± 0.05	0.01 ± 0.11
$2\pi^-\pi^+\pi^0$	4.19 ± 0.23	3.84 ± 0.17	0.35 ± 0.29
$\omega\pi^-$	1.94 ± 0.07	1.82 ± 0.07	0.12 ± 0.10
$\eta\pi^-\pi^0$	0.174 ± 0.024	0.13 ± 0.02	0.044 ± 0.030
K^-K^0	0.154 ± 0.016	0.12 ± 0.03	0.034 ± 0.016
$\phi\pi^-$	< 0.02	< 0.06	-
Total	31.59 ± 0.31	30.28 ± 0.34	1.31 ± 0.46

With more accurate data some deviations have been observed.

May 18, 2007

Nagoya

Muon
$$g - 2$$
 and $\tau - I$

$$\vec{\mu} = g \frac{e}{2m} \vec{s}, \qquad a = (g - 2)/2.$$

 a_{μ} is measured with a $5 \cdot 10^{-7}$ relative accuracy:

G.W. Bennett et al., 2004, 2006 $a_{\mu} = (11659208.0 \pm 6.3) \cdot 10^{-10}.$

Any significant difference of a_{μ}^{exp} from a_{μ}^{th} indicates new physics beyond the Standard Model.

 $a_{\mu}^{\text{th}} = a_{\mu}^{\text{SM}} + a_{\mu}^{\text{non-SM}}, \qquad a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{had}}.$ $a_{\mu}^{\text{had}} = a_{\mu}^{\text{had,LO}} + a_{\mu}^{\text{had,HO}} + a_{\mu}^{\text{had,LBL}}$

Muon
$$g-2$$
 and $\tau - \Pi$

 $a_{\mu}^{\text{QED}} = (116584718.09 \pm 0.14 \pm 0.08) \cdot 10^{-11}$

$$a_{\mu}^{\rm EW} = (15.4 \pm 0.1 \pm 0.2) \cdot 10^{-10}$$

$$a_{\mu}^{\text{had,LO}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{4m_{\pi}^2}^{\infty} ds \; \frac{R(s) \; \hat{K}(s)}{s^2},$$
$$R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)},$$

 $\hat{K}(s)$ grows from 0.63 at $s = 4m_{\pi}^2$ to 1 at $s \to \infty$, $1/s^2$ emphasizes the role of low energies, particularly important is the reaction $e^+e^- \to \pi^+\pi^-$ with a large cross section below 1 GeV.

Muon g-2 and τ – III

Contribution	$a_{\mu}, 10^{-10}$
Experiment	11659208.0 ± 6.3
QED	11658471.8 ± 0.016
Electroweak	$15.4 \pm 0.1 \pm 0.2$
Hadronic	693.1 ± 5.6
Theory	11659180.3 ± 5.6
Exp.–Theory	$27.7 \pm 8.4 \ (3.3\sigma)$

The difference between experiment and theory is $3.3\sigma!$ (K.Hagiwara et al., 2006 claim even 3.4σ)

Muon g - 2 and $\tau - IV$

S.Eidelman, BINP

p.21/68

Corrections to the $\tau^- \to \pi^- \pi^0 \nu_\tau$ Spectral Functions

- $S_{\rm EW} = 1.0233 \pm 0.0006$
- Real photons, loops
- FSR
- $m_{\pi^{\pm}} \neq m_{\pi^{0}}$ (phase space, Γ_{ρ})
- $m_{\rho^{\pm}} \neq m_{\rho^0}$
- $\rho \omega$ interference
- Radiative decays $(\pi\pi\gamma,\pi(\eta)\gamma,l^+l^-)$
- $m_u \neq m_d$ and 2 class currents

V. Cirigliano, G. Ecker,H. Neufeld, 2002M.Davier et al., 2002

$$au^- o \pi^- \pi^0
u_ au - \mathrm{I}$$

Measurements of $\mathcal{B}(\pi^-\pi^0)$

Mode	Group	$N_{\rm ev}, 10^3$	$\mathcal{B},~\%$
$h^-\pi^0$	L3,1995	6.6	$25.05 \pm 0.35 \pm 0.50$
	OPAL,1998	40.5	$25.89 \pm 0.17 \pm 0.29$
	DELPHI,2006	35	$25.740 \pm 0.201 \pm 0.138$
$\pi^{-}\pi^{0}$	CLEO,1994	51	25.36 ± 0.44
	ALEPH,2005	81	$25.471 \pm 0.097 \pm 0.085$

ALEPH systematic errors

Type	π^0	sel	bkg	pid	int	trk	mcs
$\delta,\%$.063	.027	.019	.011	.045	.009	.027

Comparison of CMD-2, SND and KLOE data

Above the ρ meson e^+e^- spectral functions are lower than in τ decays

p.28/68

CVC in the 2π Channel. e^+e^- vs. τ (Branchings)

The branching from all groups is systematically higher than the CVC prediction: $\mathcal{B}_{\tau} - \mathcal{B}_{ee} = (0.92 \pm 0.21)\%$ or 4.5σ from 0. The discrepancy is a 3.6% effect, about twice the SU(2) correction.

Why are e^+e^- and τ Spectral Functions Different?

- Problems with data: underestimated systematics, normalization, rad. corr.
- Problems with SU(2) breaking corrections; Is ChPT reliable? The uncertainty of corrections may be large (K.Maltman, 2005)
- Non (V-A) contribution to e/w interactions (M.Chizhov, 2003) inspired by problems in $\pi^+ \rightarrow e^+ \nu_e \gamma$ (E.Frlez et al., 2003)
- Effect of charged Higgs propagator in τ decay
- $m_{\rho^{\pm}} > m_{\rho^0}$ by a few MeV (S.Ghozzi and F.Jegerlehner, 2003, M.Davier, 2003). Current experiments indicate equality within a few MeV.

$$\tau^- \to (4\pi)^- \nu_\tau - \mathrm{I}$$

1. $\tau^- \rightarrow \pi^- 3 \pi^0 \nu_\tau$

- Because of the high cross-feed usually studied together with other modes having one charged and $n \pi^0$, where $1 \le n \le 4$
- L3 and CLEO collected about 300 events each, with $\mathcal{B}(h^- 3\pi^0 \nu_{\tau})$ of $(1.70 \pm 0.45)\%$ and $(1.15 \pm 0.15)\%$, ALEPH has $\sim 6 \cdot 10^3$ events and $\mathcal{B}(\pi^- 3\pi^0 \nu_{\tau}) = (0.977 \pm 0.069 \pm 0.058)\%$
- PDG-2007: $\mathcal{B}(\pi^{-}3\pi^{0}\nu_{\tau}) = (1.04 \pm 0.08)\%$

2. $\tau^- \rightarrow 2\pi^- \pi^+ \pi^0 \nu_\tau$

- There are several measurements of $\mathcal{B}(h^-h^-h^+\pi^0\nu_{\tau})$ from LEP and CLEO
- Two highest data sets of 16k and 24k belong to ALEPH and CLEO, the corresponding $\mathcal{B}(2\pi^{-}\pi^{+}\pi^{0}\nu_{\tau})$ are $(4.598 \pm 0.057 \pm 0.064)\%$ and $(4.19 \pm 0.10 \pm 0.21)\%$
- PDG-2007: $\mathcal{B}(2\pi^{-}\pi^{+}\pi^{0}\nu_{\tau}) = (4.59 \pm 0.07)\%$

S.Eidelman, BINP

p.36/68

S.Eidelman, BINP

p.37/68

May 18, 2007

 $2\pi^+ 2\pi^-$ dominated by $a_1(1260)\pi$, $\pi^+ \pi^- 2\pi^0$ – by $a_1(1260)\pi$ and $\omega\pi$

S.Eidelman, BINP

p.38/68

Using CMD-2 data on $e^+e^- \to 4\pi$ and CVC we constructed a model for the $\tau^- \to (4\pi)^- \nu_\tau$ decay. Red $-a_1(1260) \to \rho\pi$, blue $-a_1(1260) \to \rho\pi$, $f_0\pi$

This model: $\mathcal{B}(\tau^- \to a_1^- \nu_{\tau})/\mathcal{B}(\tau^- \to 2\pi^- \pi^+ \pi^0 \nu_{\tau}) \approx 0.8$ consistent with CLEO, but in conflict with < 0.44 at 95% at ARGUS

$$\tau^- \to 2\pi^- \pi^+ \pi^0 \nu_\tau$$
 Mechanisms – CLEO

Comparison for CLEO with $\omega \pi$ not subtracted and subtracted. Red – $a_1(1260) \rightarrow \rho \pi$, blue – $a_1(1260) \rightarrow \rho \pi$, $f_0 \pi$

This model is now used in TAUOLA

In the $\pi^- 3\pi^0$ mode $\mathcal{B}_{\tau} = (1.04 \pm 0.08)\%$ vs. $\mathcal{B}_{CVC} = (1.09 \pm 0.08)\%$. In the $2\pi^- \pi^+ \pi^0$ mode $\mathcal{B}_{\tau} = (4.59 \pm 0.07)\%$ vs. $\mathcal{B}_{CVC} = (3.63 \pm 0.21)\%$. The discrepancy is $(0.96 \pm 0.23)\%$ or 21%!!

2nd Class Currents in $\tau^- \to \omega \pi^- \nu_{\tau}$

Hadronic currents in τ decay can be of two classes depending on their *G*-parity $(G = C(-1)^I, \text{ e.g.}, G(\rho) = +1, G(a_1) = -1)$. For strong decays the even number of pions $\Rightarrow G = +1$ while the odd number of pions $\Rightarrow G = -1$.

Two final states $2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}$ and $3\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}$ are observed

CLEO results on
$$\tau^- \to (6\pi)^- \nu_\tau - II$$

Mode	$2\pi^-\pi^+3\pi^0\nu_\tau$	$3\pi^- 2\pi^+ \pi^0 \nu_\tau$
Yield	$139 \pm 12 \ (50 \pm 5)$	$231 \pm 19 \ (45 \pm 8)$
$\operatorname{Eff.},\%$	1.65	4.45
$\mathcal{B}, \ 10^{-4}$	$2.2\pm0.3\pm0.4$	$1.7\pm0.2\pm0.2$

- To obtain inclusive \mathcal{B} they use MC in which τ decays as a mixture of $\eta 3\pi \nu_{\tau}$ and $\omega 3\pi \nu_{\tau}$
- They assume that $\eta 3\pi$ decays proceed via $a_1(1260) \rightarrow f_1(1285)\pi$ and $\omega 3\pi \text{via } \rho(1700)$
- After determining inclusive $\mathcal B$ they separate decays with η and ω

CLEO results on
$$\tau^- \to (6\pi)^- \nu_\tau - \text{III}$$

Mode	$2\pi^-\pi^+\eta\nu_\tau$	$\pi^- 2\pi^0 \eta \nu_{\tau}$	$2\pi^-\pi^+\eta\nu_\tau$
	$\eta ightarrow 3\pi^0$	$\eta \to \pi^+ \pi^- \pi^0$	$\eta \to \pi^+ \pi^- \pi^0$
Yield	$32 \pm 7(3 \pm 2)$	$15 \pm 5(2 \pm 2)$	$49 \pm 10(8 \pm 4)$
Eff.,%	1.28	1.48	4.18
$\mathcal{B}, 10^{-4}$	$2.9\pm0.7\pm0.5$	$1.5\pm0.6\pm0.3$	$1.7 \pm 0.4 \pm 0.3$

They also use their measurements with the $\eta \to 2\gamma$ mode:

$$\bar{\mathcal{B}}(2\pi^{-}\pi^{+}\eta\nu_{\tau}) = (2.3 \pm 0.5) \cdot 10^{-4}, \bar{\mathcal{B}}(\pi^{-}2\pi^{0}\eta\nu_{\tau}) = (1.5 \pm 0.5) \cdot 10^{-4}.$$

These decays come from the axial-vector current. Chiral theory predictions are from $1.2 \cdot 10^{-6}$ to $1.9 \cdot 10^{-3}$.

CLEO results on
$$\tau^- \to (6\pi)^- \nu_\tau - IV$$

Mode	$\pi^{-}2\pi^{0}\omega\nu_{ au}$	$2\pi^{-}\pi^{+}\omega\nu_{\tau}$
Yield	$53 \pm 11(10 \pm 4)$	$110 \pm 19(6 \pm 6)$
Eff.,%	1.39	4.06
$\mathcal{B}, 10^{-4}$	$1.4\pm0.4\pm0.3$	$1.2 \pm 0.2 \pm 0.1$

J.Gao, B.A.Li, 2001 predict in effective large N_c QCD the same $\mathcal{B} \sim 2 \cdot 10^{-4}$ for both modes.

$$\mathcal{B}_V(2\pi^-\pi^+3\pi^0\nu_{\tau}) = (1.1\pm0.4)\cdot10^{-4}, \\ \mathcal{B}_V(3\pi^-2\pi^+\pi^0\nu_{\tau}) = (1.2\pm0.2)\cdot10^{-4}, \\ \text{or} \sim 50\% \text{ and } \sim 70\% \text{ of the inclusive } \mathcal{B}_V$$

 $\tau^- \to (6\pi)^- \nu_\tau$ and Isospin Invariance

There are three possible final states of the $(6\pi)^-$ in $\tau^- \to (6\pi)^- \nu_{\tau}$: $\pi^- 5\pi^0$, $2\pi^- \pi^+ 3\pi^0$ and $3\pi^- 2\pi^+ \pi^0$.

Since six pions, each with I=1, have to add to the total I=1, inequalities arise for the possible combinations of their charges and their relative abundancy:

$$0 \le f_1 = \frac{\pi^{-5}\pi^0}{\operatorname{all}(6\pi)^{-}} \le \frac{9}{35},$$

$$\frac{1}{5} \le f_3 = \frac{2\pi^{-}\pi^{+}3\pi^0}{\operatorname{all}(6\pi)^{-}} \le \frac{4}{5},$$

$$\frac{1}{5} \le f_5 = \frac{3\pi^{-}2\pi^{+}\pi^0}{\operatorname{all}(6\pi)^{-}} \le \frac{4}{5},$$

$$f_1 \le \frac{9}{7}f_3, \quad f_1 \le \frac{9}{7}f_5, \quad f_1 \le \frac{9}{26}(f_3 + f_5)$$

Similar inequalities can be written for the three possible final states of $e^+e^- \rightarrow 6\pi$: $3\pi^+3\pi^-$, $2\pi^+2\pi^-2\pi^0$, $\pi^+\pi^-4\pi^0$ ($6\pi^0$ is forbidden by C-invariance)

Isospin partitions

In 1960 A.Pais studied how isospin conservation affects a system of n pions. Any system can be classified in terms of orthogonal states (partitions), each partition $\Rightarrow (n_1, n_2, n_3)$, where $n_1 + n_2 + n_3 = n$ and $n_1 \ge n_2 \ge n_3$. Internal pion symmetries: n_3 – the number of 3π states with I=0 (ω), $n_2 - n_3$ – the number of 2π systems with I=1 (ρ), $n_1 - n_2$ – the number of single pions.

Partition	State	$\pi^{-}5\pi^{0}$	$\pi^+ 2\pi^- 3\pi^0$	$2\pi^+ 3\pi^- \pi^0$
510	$4\pi\rho$	9/35	2/7	16/35
411	$3\pi\omega$	0	1/5	4/5
330	3 ho	0	4/5	1/5
321	$\pi ho\omega$	0	1/2	1/2

Comparison of CLEO Results with CVC

In 1996 from the sum of $\sigma(e^+e^- \to 2\pi^+2\pi^-2\pi^0)$ and $\sigma(e^+e^- \to 3\pi^+3\pi^-)$ we obtained using CVC: $\mathcal{B}(6\pi) \geq (1.23 \pm 0.19) \cdot 10^{-3}$ and $\mathcal{B}_{5,1}(\mathcal{B}_{3,3}) \geq (0.025 \pm 0.004)\%$. This is larger than the measured \mathcal{B}_V . This discrepancy is even larger if we compare the predicted inclusive $\mathcal{B}(6\pi) \geq (1.23 \pm 0.19) \cdot 10^{-3}$ with $\mathcal{B}_V \approx \mathcal{B}_{5,1} + \mathcal{B}_{3,3} \geq (2.3 \pm 0.5) \cdot 10^{-4}$ assuming that $\mathcal{B}_{1,5}$ is small. This is supported by the observed dominance of the (321) partition meaning also that (510) is small. In addition, CLEO in 1996 set $\mathcal{B}_{1,5} < 2 \cdot 10^{-4}$.

The way out is if $\sigma(e^+e^- \to 6\pi)$ is too high or has a sizable fraction of I=0.

Significant improvement compared to the previous data! The mode $e^+e^- \rightarrow \pi^+\pi^-4\pi^0$ is not measured.

S.Eidelman, BINP

p.51/68

 $\sigma(e^+e^- \to 2\pi^+2\pi^-2\pi^0)$ is smaller than previously!

S.Eidelman, BINP

p.52/68

New CVC calculation is awaited.

May 18, 2007

Nagoya

$$\tau^- \to (3\pi)^- \nu_\tau - \mathbf{I}$$

- This decay proceeds via the axial-vector current
- There are two possible final states: $2\pi^{-}\pi^{+}$ and $\pi^{-}2\pi^{0}$
- Decay is expected to proceed via the $a_1(1260)^-$ meson, which decays with equal probabilities into $\rho^0 \pi^-$ and $\rho^- \pi^0$
- τ decay is the best place to study properties of the $a_1(1260)$: PDG gives for its mass 1230 ± 40 MeV and for its width 250 - 600 MeV
- DELPHI observed a'_1 in τ decays, earlier also seen in $\pi^- p$ and $\bar{p}p$. It is now in PDG as $a_1(1640)$ with mass 1647 ± 22 MeV and width 254 ± 27 MeV.

$$\tau^- \to (3\pi)^- \nu_\tau - \mathrm{II}$$

Measurements of $\mathcal{B}(2\pi^{-}\pi^{+}\nu_{\tau})$ (S=1.3)

Mode	Group	$N_{\rm ev}, 10^3$	$\mathcal{B},~\%$
$h^-h^-h^+$	CLEO, 1995	37.7	$9.51 \pm 0.07 \pm 0.20$
	OPAL,1995	6.4	$9.87 \pm 0.10 \pm 0.24$
	DELPHI,2006	12.2	$9.317 \pm 0.090 \pm 0.082$
$2\pi^{-}\pi^{+}$	CLEO,2003	43	$9.13 \pm 0.05 \pm 0.46$
	ALEPH,2005	29	$9.041 \pm 0.060 \pm 0.076$
	PDG fit, 2007	_	9.33 ± 0.08

May 18, 2007

$$\tau^- \to (3\pi)^- \nu_\tau - \mathrm{III}$$

Measurements of $\mathcal{B}(\pi^{-}2\pi^{0}\nu_{\tau})$ (S=1.3)

Mode	Group	$N_{\tau\tau}, 10^3$	$\mathcal{B},\%$
$h^-2\pi^0$	CLEO,1993	4.6	$8.96 \pm 0.16 \pm 0.44$
	$L3,\!1995$	1.1	$8.88 \pm 0.37 \pm 0.42$
	DELPHI,2006	9.5	$9.498 \pm 0.320 \pm 0.275$
$\pi^{-}2\pi^{0}$	ALEPH,2005	31	$9.239 \pm 0.086 \pm 0.090$
	PDG fit, 2007	_	9.25 ± 0.12

May 18, 2007

$$\tau^- \to (3\pi)^- \nu_\tau - \mathrm{VI}$$

Mode	Wave	$\mathcal{B},\%$
$ ho\pi$	s	60.19
$ ho(1450)\pi$	s	0.56 ± 0.84
$ ho\pi$	d	1.30 ± 0.60
$\rho(1450)\pi$	d	2.04 ± 1.20
$f_2(1270)\pi$	p	1.19 ± 0.49
$f_0(600)\pi$	p	18.76 ± 4.29
$f_0(1370)\pi$	p	7.40 ± 2.71
K^*K	s	3.3 ± 0.5

We learned from τ decays new modes of $a_1(1260)$ decays!

$$\tau^- \to (5\pi)^- \nu_\tau - \mathbf{I}$$

There is only one total inclusive measurement by CLEO: $\mathcal{B}(\tau^- \to (5\pi)^- \nu_{\tau}) = (0.61 \pm 0.06 \pm 0.08)\%$

Mode	Group	$N_{ m ev}$	$\mathcal{B},\%$
$h^-4\pi^0$	CLEO,1993	25	$0.16 \pm 0.05 \pm 0.05$
	ALEPH,2005	957	$0.112 \pm 0.037 \pm 0.035$
	PDG fit, 2007	_	0.10 ± 0.04
Mode	Group	$N_{ m ev}$	$\mathcal{B},~\%$
$h^-h^-h^+2\pi^0$	ALEPH,2005	2.6k	$0.435 \pm 0.030 \pm 0.035$
	PDG fit,2007	_	0.492 ± 0.034

S.Eidelman, BINP

p.60/68

May 18, 2007

$$\tau^- \to (5\pi)^- \nu_\tau - \mathrm{II}$$

Measurements of $\mathcal{B}(\tau^- \to 3h^-2h^+\nu_\tau)$ (S=1.1)

Mode	Group	$N_{\rm ev}$	$\mathcal{B}, 10^{-4}$
$h^-h^-h^+$	CLEO,1994	295	$7.7\pm0.5\pm0.9$
	OPAL,1999	97	$9.1\pm1.4\pm0.6$
	ALEPH,2005	165	$7.2\pm0.9\pm1.2$
	BaBar, 2005	34k	$8.56 \pm 0.05 \pm 0.42$
	DELPHI,2006	96	$9.7\pm1.5\pm0.5$
	PDG fit,2007	_	8.38 ± 0.35

S.Eidelman, BINP

p.62/68

Search for $\tau^- \to (7\pi)^- \nu_{\tau}$

$\tau^- \to 4\pi^- 3\pi^+ (\pi^0) \nu_\tau$

Group	$N_{ au au}$	$\epsilon,\%$	$\mathcal{B}, 90\%$ CL UL
HRS, 1987	$4.1 \cdot 10^4$	18	$1.9 \cdot 10^{-4}$
OPAL, 1997	$2.1 \cdot 10^5$	41	$1.4 \cdot 10^{-5}$
CLEO, 1997	$4.2 \cdot 10^6$	16	$2.4 \cdot 10^{-6}$
BaBar, 2005	$206.6\cdot 10^6$	9	$3.0 \cdot 10^{-7}$

$\tau^- \to 3\pi^- 2\pi^+ 2\pi^0 \nu_\tau$

Group	$N_{\tau\tau}$	$\epsilon,\%$	$\mathcal{B}, 90\%$ CL UL
CLEO, 1994	$1.6 \cdot 10^6$	0.9	$1.1 \cdot 10^{-4}$
BaBar, 2006	$206.5\cdot 10^6$	0.66	$3.4 \cdot 10^{-6}$

Other multiparticle modes from BaBar

abar searched I	or som	le exclusive mode
Mode	$\epsilon,\%$	$\mathcal{B}, 90\%$ CL UL
$4\pi^- 3\pi^+ \nu_\tau$	16	$4.3 \cdot 10^{-7}$
$4\pi^- 3\pi^+ \pi^0 \nu_\tau$	16	$2.5 \cdot 10^{-7}$
$\omega\omega\pi^- u_ au$	1.5	$5.4 \cdot 10^{-7}$

BaBar searched for some exclusive modes:

Theory: $\mathcal{B}(4\pi^{-}3\pi^{+}\nu_{\tau}) = 6 \cdot 10^{-11}$

There are two more unobserved modes with high π^0 multiplicity: $2\pi^-\pi^+4\pi^0\nu_{\tau}$ and $\pi^-6\pi^0\nu_{\tau}$

Vector and Axial-Vector Spectral Functions from ALEPH

ALEPH: $\alpha_s(m_{\tau}^2) = 0.340 \pm 0.005 \pm 0.014$ from 300k τ 's OPAL: $\alpha_s(m_{\tau}^2) = 0.348 \pm 0.009 \pm 0.019$ from 66k τ 's

S.Eidelman, BINP

p.66/68

Summary on Decays with Even N_{π}

Mode	$\mathcal{B}_{\mathrm{exp}},\%$	$\mathcal{B}_{ ext{th}},\%$	Comments
$\pi^{-}\pi^{0}$	25.40 ± 0.10	24.48 ± 0.18	CVC
$\pi^{-}3\pi^{0}$	1.04 ± 0.08	1.09 ± 0.08	CVC
$2\pi^-\pi^+\pi^0$	4.59 ± 0.07	3.63 ± 0.21	CVC
$\omega\pi^-$	1.99 ± 0.08	1.82 ± 0.07	CVC
$(6\pi)^{-}$	$(2.3 \pm 0.5) \cdot 10^{-4}$	$\geq (1.2 \pm 0.2) \cdot 10^{-3}$	CVC

Conclusions

- We already know a lot after CLEO and LEP, Belle and Babar gaining speed
- Big advantages in statistical accuracy and searches for rare modes. Systematic effects may be a problem
- Problems with CVC still exist
- Interesting possibilities for QCD
- Clean laboratory for studies of light mesons
- An excellent testbench for low energy theoretical models
- B factories with 2 ab⁻¹ are also unique τ factories with high potential for New Physics and precision studies in SM