

Introduction: What is a luminosity?

The luminosity is a parameter which characterizes collider capability.

The idea of luminosity comes from a naive model.

If two clouds of solid particles with numbers N_1, N_2 collide each other the number of scattered particles are

$$N = \frac{N_1 * \sigma}{S} \cdot N_2,$$

where S – transverse area of the pack, for particles of radii R $\sigma = \pi (2R)^2$.

If collisions happen with frequency f one get a formula for the scattering rate

$$\frac{dN}{dt} = f \frac{N_1 * N_2}{S} \cdot \sigma_s$$

Coefficient before σ is a **luminosity**.

For real collider with Gaussian spread of particles in beams the luminosity is

$$L = f \frac{N_1 * N_2}{4\pi\sigma_X\sigma_Y}$$

In reality accuracy of such calculation is not high because

- Vertical beam size is few microns difficult to measure.
- Beam–beam alignment is not ideal.

In most cases one should to **measure** luminosity with some process with **known** cross section and

$$L = \frac{Rate}{\sigma_{vis}},$$

where σ_{vis} is a visible (effective) cross section which takes into account

- The process kinematics that part is calculated by theory.
- The geometry and efficiency of the detection system MC simulation.

QED processes

In spite that QED calculations are developed for ~ 50 there are not so many processes which cross section calculated with accuracy of few percents.

Processes used for luminosity measurements at e^+e^- colliders are:

- Single Bremsstrahlung (SBS) $e^+e^- \rightarrow e + e\gamma$
- Bhabha Scattering $-e^+e^- \rightarrow e^+e^-$
- e^+e^- annihilation to $\gamma\gamma$
- e^+e^- annihilation to or $\mu^+\mu^-$

Single Bremsstrahlung – $e^+e^- \rightarrow e + e\gamma$

First order Feynman Diagrams for SBS process

Energy spectrum for SBS γ -quantum in the CM frame is described with formula

$$\frac{d\sigma}{dE_{\gamma}} = \frac{4\alpha r_e^2}{3E} \left(4\frac{E}{E_{\gamma}} + 3\frac{E_{\gamma}}{E} - 4\right) \left(\ln(4\gamma^2 \frac{E - E_{\gamma}}{E_{\gamma}}) - \frac{1}{2}\right)$$

Cross section diverges when $E_{\gamma} \to 0$. So, one can tune SBS rate changing E_{γ} threshold.

For KEKB energies $\sigma(E_{\gamma} > 100 MeV) \sim 10^{-25} cm^2$.

This method was frequently used for luminosities $< 10^{32}$.

Its accuracy is limited with 3-5% level because $\sigma(SBS)$

depends on a transverse beam size.

First order Feynman Diagrams for Bhabha

Bhabha scattering $-e^+e^- \rightarrow e^+e^-$

In CM frame for beam energy E

the cross section of this process is $\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{16 \cdot E^2} \cdot \left(\frac{3 + \cos^2\theta}{1 - \cos\theta}\right)^2$

where θ is a scattering angle ($\theta_{e^-} = \pi - \theta_{e^+}$).

Cross section diverges when $\theta \to 0$. To calculate the Bhabha rate one should take into account the detector solid angle.

For Belle case Bhabha cross section change from

6 nb for $\theta > 50^{\circ}$ – Barrel part

to 50 nb for $\theta > 16^{\circ}$ – Endcaps

 $1 \ nb(nanobarn) = 10^{-9} \cdot 10^{-24} = 10^{-33} cm^2$

For accuracy better than 10% radiation corrections

for Bhabha diagrams should be calculated:

Some photons in the final state are possible,

number of diagrams increased dramatically.

e^+e^- annihilation to $\gamma\gamma$ or $\mu^+\mu^-$

Only annihilation diagram is possible. The is no divergences for their cross section. For Belle energies total cross sections are

 $\sigma(e^+e^-\to\gamma\gamma)\simeq 6~{\rm nb}$ and

about 1 nb for barrel part.

 $\sigma(e^+e^- \to \mu^+\mu^-) \approx 0.3\sigma(e^+e^- \to \gamma\gamma).$

These processes usually used for an integrated luminosity calculation.

Online Luminosity

The on-line measurement used for collider tuning.

These measurements should be frequent enough and reasonably accurate.

Belle has 3 independent systems for online luminosity measurements.

Uses back-to-back coincidence to select Bhabha events – 4 sectors each side.

Counting rate about 1500 Hz. Fake coincidence is about 5%.

If e^+e^- interaction point shifts 1 mm $\delta L/L \approx 1.5\%$

ECL luminosity monitor

- Bhabha rate about 300 Hz.
- Problem: Injection background is large.

- Few Hz rate of injection background.
- Threshold 1.4 GeV \rightarrow 500 Hz of Bhabha rate.

ECL luminosity monitor stability

Offline Luminosity

beginlarge Processes of $e^+e^- \rightarrow e^+e^-$ and $e^+e^- \rightarrow \gamma\gamma$ are chosen.

Event selection criteria (CM frame).

Description	e^+e^-	$\gamma\gamma$
Frame for cuts	CM frame	CM frame
# of charged tracks	≥ 2	< 2
# of ECL clusters	≥ 2	≥ 2
Track momentum	2 tracks > 2.645 GeV	
Cluster max. energy	$> 2.0 { m GeV}$	$> 2.0 { m GeV}$
Sum of ECL energy	$> 4.0 \mathrm{GeV}$	$> 4.0 { m GeV}$
Acollinearity $\delta\psi$	for two tracks $< 10^{\circ}$	for two clusters $< 10^{\circ}$
$acos(-ec{p1}\cdotec{p2})/ec{p1}ec{p1}ec{p2}))$	of opposite charge	1st and 2nd highest
Additional cuts for:	charged tracks	clusters
	$P_t > 0.1 { m GeV}$	$\Delta \phi < 2.3^{ m O}$
	$ dr < 2 \mathrm{cm}, dz < 4 \mathrm{cm}$	
Barrel selection	for two tracks	for two clusters
Polar angle $\theta(CM)$	$46.7^{\circ} - 145.7^{\circ}$	$46.7^{\circ} - 145.7^{\circ}$

Acepatnce calulations

The detector acceptance is restricted to the barrel part only.

To obtain an integrated luminosity one calculate number of Bhabha $(\gamma\gamma)$ event for some period, apply some efficiency corrections and divide it by σ_{vis} from MC calculation.

Generators for Monte Carlo Simulation.

Parameters	BKJ for Bhabha	BHLUMI for Bhabha	BKJ for $\gamma\gamma$
QED	$lpha^3$	α^4	α^3
$\operatorname{correction}$	$0 { m or} 1 { m rad.} \gamma$	many rad. γ	0 or 1 rad. γ
Accuracy	$1{-}2\%$	1.3%	1.3%
	Theoretical estimation	CLEO estimation	CLEO estimation
σ_{vis}	$6.90 \pm .03$	$6.93 \pm .02$	$0.970 \pm .003$

Accuracy of the luminosity measurements

Statistic errors)

For 1 hour run Belle collects about 50 pb^{-1} resulting stat.errors are

.7% — for Bhabha and 1.7% — for $e^+e^- \rightarrow \gamma\gamma$.

In most cases it negligible.

Systematic errors

- Correction to MC
 - ECL inefficiency: is 1% mostly due to Bhabha trigger.
 - CDC inefficiency: usually 0.5%. Sometimes track reconstruction fails.
 - Effect of material in front of ECL: MC description of the detector isn't perfect: Essential for online monitor.
 - Background from other physical processes: Rather small.
 - Instabilities of KEKB, electronics etc

Accuracy of the MC simulation

Inefficiency of ECL trigger versus $\theta = min(\theta_{e^+}, \theta_{e^-})$ in CM frame

The arrow – for the cut position for luminosity.

 $\theta = \min(\theta_{e^+}, \theta_{e^-})$ (CM). Points - exp, hist - MC. Insertion: Ratio of exp. spectrum to MC one.

Long-term stability

Sum of 50 runs per bin. The errors are statistical.

Conclusions

 The online of the KEKB collider is measured online with stat. accuracy 1–2% for 10 sec. Long-term stability is about 1-2% in average.

Some degradation of CsI crystals is observed – about drop 1% for season.

Background conditions becomes harder with increasing of KEKB luminosity.

• The offline luminosity is measured with Bhabha events in the barrel part of the Belle. The systematic error is 1.5%.

Online Luminosity

Belle detector exploits 3 independent systems for online luminosity measurements.

	ZDLM	EFC	ECL
Process	Single Bremsstrahlung	Bhabha	Bhabha and $\gamma\gamma$
Rate at $10^{34} \text{cm}^{-2} \cdot s^{-1}$	$10^{6} 10^{7} \text{ Hz}$	$1500 \ \mathrm{Hz}$	$500 \ \mathrm{Hz}$
Limiting factors	Calibration of	Dependence	Statistical error
for accuracy	orbit dependence	of Z(vertex) position	Beam lost
Beam background	30%	-5%	less 1%
Usage	Bunch2bunch luminosity	Cross check	Main monitor

Table 1: Belle systems for online luminosity control.