Belle II 実験におけるB→Kπγの 解析

B2J analysis meeting July 28(Fri)

東北大学 M2 太田恭平

1. b→sγ

標準模型では、ツリーレベルのFCNC(Flavor Changing Neutral Current)は抑制され、ファイマンダイアグラムはループを含むため、新物理に感度がある。

S

クオークレベル ハドロンレベル (実際に観測可能な事象)

このうち、X_sがK π に壊れる事象が B→K π γ 。具体的な X_s として、 K*(892)、K₂*(1430)、K*(1410)、 K*(1680) などがある。 今回の発表では、この事象のバックグラウンド(以降BGと記す)に ついて主眼を置く。

2. 研究テーマ

本研究でシグナルとして抽出したいのは、B→Kπγ

モチベーションは以下の3つ。

- 1) B中間子がKπγに崩壊するモードを包括的に測定し、それらの共鳴状態 (レゾナンス)や非共鳴状態(ノンレゾナンス)を分離して評価
- 2) 直接的CP対称性の破れの測定
- 3) アイソスピン非対称性の測定

※B→Kπyに壊れるKaonic resonanceのみについて

M(Kπ)のヒストグラム (M(Kπ): Kとπの2体系の不変質量)

B→Kπγのモードでは、 B→K*(892)γ や B→K₂*(1430)γ が支配的 であるため、その他の 共鳴状態や非共鳴状態 やはっきりと観測されて いない。

3. B中間子の再構成

- 以下の5つのモードについて再構成を行なった。
- $B^0 \rightarrow K^*(892)^0 \gamma \rightarrow K^+ \pi^- \gamma$
- $B^0 \rightarrow K_2^* (1430)^0 \gamma \rightarrow K^+ \pi^- \gamma$
- $B^0 \rightarrow K^*(1410)^0 \gamma \rightarrow K^+ \pi^- \gamma$
- B⁰→K*(1680)⁰γ→K⁺π⁻γ
- B⁰→K⁺π⁻γ(ノンレゾナンス)

※ノンレゾナンスの仮定

M(Kπ)分布	一様分布 (1.1GeV <m<3.3gev)< th=""></m<3.3gev)<>
ヘリシティ 角分布	spin1 type(1-cos²θ)
崩壊比	2.6×10 ⁻⁶

sample size : 800[1/fb] (MC6の全データ) Efficiency = $\frac{N_{sig}}{N_{gen}}$ Significance = $\frac{N_{sig}}{\sqrt{N_{sig} + N_{bg}}}$						
0.8GeV <m<sub>κπ<1.15GeV</m<sub>	K*(892)	K ₂ *(1430)	K*(1410)	K*(1680)	Non- resonance	
Efficiency(%)	20.46±0.04	0.204±0.005	1.16 ± 0.011	0.273±0.005	0.543±0.007	
Significance	65.89	0.356	0.219	0.038	0.444	
※K*(892) が極めて支配的。						
1.15GeV <m<sub>κπ<2.0GeV</m<sub>	K*(892)	K ₂ *(1430)	K*(1410)	K*(1680)	Non- resonance	
Efficiency(%)	1.09±0.03	21.75±0.04	22.52± 0.04	19.87±0.03	9.23±0.03	
Significance	6.15	19.92	2.75	1.80	4.78	
※高いM(Kπ)のレゾナンスが支配的だが、ブランチが小さいK*(1410) and K*(1680) はあまり目立たない。						
2.0GeV <m<sub>κπ<2.5GeV</m<sub>	K*(892)	K ₂ *(1430)	K*(1410)	K*(1680)	Non- resonance	
Efficiency(%)	0	0.508±0.007	0.762± 0.009	2.65±0.02	4.91±0.02	
Significance	0	1.07	0.177	0.447	4.49	
※目立って見えるレゾナンスはなくなる。						

今後、これからお話しする最新のqqbar suppressionと π^0/η vetoのカットを最適化して適用して、 改めて結果を出す予定。

4. Continuum background suppression

4.1 イベント形状の特徴

重心エネルギー(10.58GeV)に対して、u、d、s、cの質量は小さいため、 $e^+e^- \rightarrow q\overline{q}$ (q=u、d、s、c) のイベントは大きな運動量を持ち、ジェットとして観測される。

対して、B中間子は重心系においてほぼ静止した状態で生成されるため、崩壊粒子は全方向に均一に分布する。

4.2 FastBDT

- 今回、qqbar BGの除去のために、FastBDTと呼ばれる多変数解析を用いた。その時 インプットする変数として、以下のものを使用した。
- ・インプット変数
- Thrust_{ROE}, ,cos θ_B , |cos θ_{Thrust} |, |cos θ_z |, KSFW moments(14種 + Et + mm2), CleoCones(1~9), sphericity scalar, |cos θ_s |
- Thrust_{ROE}: ROE(Rest Of Event)のスラストの大きさ
- $\theta_{B}: B候補のpolar angle(重心系)$
- θ_{Thrust:}: B候補のスラスト軸とROEのスラスト軸の間の角度
- θ_{z:}: B候補のスラスト軸とビーム軸の間の角度
- Et:ビーム軸に垂直な方向のB候補の娘粒子とROEの運動量の合計
- mm2:missing massの二乗
- θ_{s:}: B候補のsphericity軸とROEのsphericity軸の間の角度
- ※basf2のデフォルトでは、 R_2 (Reduced Fox-Wolfram moment)とThrust_B(B候補のス ラストの大きさ)が含まれているが、 $M(K\pi)$ との相関が比較的大きいので外した。 ※CleoConesは、ROEの粒子のみで計算したものを使用した。

4.3 トレーニングで使用したサンプル

- •BGx1 シグナルサンプル 1.15×10⁵ events (release-00-08-00で作ったものを使用)
- $-B^0 \rightarrow K^* (892)^0 \gamma \rightarrow K^+ \pi^- \gamma$
- $-B^0 \rightarrow K_2^* (1430)^0 \gamma \rightarrow K^+ \pi^- \gamma$
- $-B^0 \rightarrow K^* (1410)^0 \gamma \rightarrow K^+ \pi^- \gamma$

 $-B^0 \rightarrow K^* (1680)^0 \gamma \rightarrow K^+ \pi^- \gamma$

•BGx1 BGサンプル 1.03×10⁵ events

-MC8Øgeneric qqbar

イベント内にY(4S)を含むか、含まないかでトレーニング。 Signal Probabilityをアウトプットする。

4.4 結果

Performance comparsion	Belle I での B ⁰ →K*(892)γ→K+π-γ study の結果 (Belle note 1437)	今回の結果	
Signal efficiecy	83.4%	83.4%	
BG reduction	89.3%	93.3%	
0.14 0.12 0.12 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Background reduction 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	QQsuppresssion Image: Complexity of the second se	

検出効率

0.8

0.85

0.9

0.65

0.7

0.75

0.95 1 Signal efficiency

5.2 π⁰/η vetoにおける留意点

 π^0/η vetoでは、1つのhard photonに対して、全てのsoft photonを組み 合わせて、 $\pi^0(\eta)$ 候補リストを作成し、その中で最も $\pi^0(\eta)$ 確率の高い 候補の確率値を採用するため、BGイベントを見つけることができる。

ー方で、シグナルイベントをBGイベントと間違う可能性を減らすために は、soft photonを少なくし、たまたまnominal massに近い組み合わせが できる可能性を減らす必要がある。soft photon listには、本物のフォト ン以外のイベントも含まれるため、それらを取り除く操作をするのが効 果的と考えられる。

5.3 Belle II 実験における π^0/η veto

- 今回、FastBDTを用いて、Belle II のためのπ⁰/η vetoを作成した。 ・インプット変数
- M_{γγ}, E_{soft}, θ_{soft}, Zmva, minC2Hdist (M_{γγ} とE_{soft}が極めて効果的) M_{γγ}: π⁰/η 候補の不変質量
- E_{soft} : soft photonの実験室系エネルギー
- θ_{soft} : soft photon \mathcal{O} polar angle
- Zmva : soft photonのclusterZernikeMVA(Zernike momentsという、

シャワー形状を表現する変数を使って計算されるMVA output)

minC2Hdist : soft photonのクラスターの位置とhelixとの距離(全ての

helixの中で、その距離が一番近いものを採用)

5.4 hard photonとsoft photonの定義 hard photon : 重心系エネルギー > 1.5GeV かつ 必ずフォトン soft photon : 実験室系エネルギー>20MeV かつ clusterTiming cut

示: ンクテル 青: π^{0} BG(フォトンのみ) 緑: η BG(フォトンのみ) ※ η BG(フォトンのみ) ※ η BR の soft photonの方がやや エネルギーが大きいため、分解能が π^{0} より少し良くなる。

※「clusterTiming cut」 clusterTimingとエネルギーの関係式をフィッティングで求め、 エネルギーごとに異なるclusterTimingのカットをかけた。

5.5 トレーニングで使用したサンプル

•BGx1 B \rightarrow X, γ サンプル π^{0} veto : 2.01×10⁵ events η veto : 2.64×10⁵ events (release-00-08-00で作ったものを使用) $-B \rightarrow X_{su}\gamma$ $-B \rightarrow X_{sd} \gamma$ hard photonがB→X_xy 由来であるもの BGx1 π⁰/ηサンプル π^0 veto : 1.03×10⁵ events η veto : 8.76×10⁴ events -MC8*O*generic sample

正し $\zeta_{\pi^0}(\eta) \rightarrow 2\gamma$ 再構成されたもの(MCマッチングで確認)

 $π^0(η)$ Probabilityをアウトプットする。

5.6 結果

Performance comparsion	Belle I π ⁰ veto (Belle Note 665)	今回の 結果
Signal efficiecy	75%	75%
π^0 BG reduction	80%	88%

Beam BGが増加するBelle II において、 Belle I を上回る結果を得られた。

 π^0 probability(log scale)

Correlation Matrix of $B \rightarrow X_s \gamma$ events for π^0 veto

η probability

η probability(log scale)

Correlation Matrix of $B \rightarrow K\pi\gamma$ events for η veto

obabilityとhard photonの相関 重心系エネルギー : -13 実験室系エネルギー : -8 Polar angle : 2

Phi angle : 0

ηにおいてもπ⁰と同様に、hard photonのエネルギーと弱い相関を持ってしまっている。

5.7 hard photonとの相関について

前述のように、最もπ⁰(η)確率の高いイベントの確率値を採用しているため、π⁰/η BGイベント の相関関係からも影響を受ける。

 ・π⁰ イベントの π⁰ probabilityとhard photonの相関 重心系エネルギー:-7 実験室系エネルギー:-4 Polar angle:3 Phi angle:0
 ホ⁰ · ŋのhard photonのエネ ルギーは、B→X_sγに比べ れば低エネルギーという 特徴があり、直接見ていな

π⁰(η)候補の中から、ランダムでπ⁰(η)候補を
 選んで確率値を採用すると、相関は小さく
 なる(ただし、これは非実用的)。

・シグナルイベントの π⁰ probabilityとhard photonの相関 重心系エネルギー : -4 実験室系エネルギー : -4 Polar angle : 3 Phi angle : 0

るようである。

19

6. 今後

・シグナル抽出のための解析手法を最適化。

・検出効率、BGの見積もり。

 ヘリシティ角分布を用いて、それぞれのレゾナンス、 ノンレゾナンスを分離する。
 ∝ cos²θ_{hel} - cos⁴θ_{hel} (スピン2)
 ∝ 1 - cos²θ_{hel} (スピン1)

・荷電B中間子のモードの解析。

Back up

カット条件

▪K選別

KID>0.6 and chiProb>0.001 and dr<0.2cm and dz<4cm and PrID<1 and $P_{cms}\!\!>\!\!100MeV$

•π選別

<code>PiID>0.3</code> and <code>chiProb>0.001</code> and <code>dr<0.2cm</code> and <code>dz<4cm</code> and <code>EID<0.8</code> and <code>P_{cms}>100MeV</code>

```
chiProb:confidence level of vertex fitting
KID:Kaon probability(=1 - pion probability)
PiID:pion probability(=1 - Kaon probability)
PrID:proton probability
EID:electron probability
```

•γ選別

2.0 GeV < E_{γ}^* < 2.8 GeV and $E_{9/25}$ > 0.94 and 33° < θ_{γ} < 128° (barrel) ※ E_{γ}^* : 重心系エネルギー

Kπ system selection
 chiProb>0.001 and D meson veto

Signal window
 5.272GeV<M_{bc}<5.286GeV
 -0.12GeV<ΛF<0.07GeV

-0.12GeV<ΔE<0.0/GeV

•Best Candidate Selection |ΔE|が一番小さいイベントを選ぶ。

π^0/η veto variables

赤 : **シ**グナル 青 : π⁰ BG 緑 : η BG

soft photon energy[GeV]

soft photon polar angle[rad]

