加速器長基線 ニュートリノ振動実験

2020/6/4, 高エネルギー将来計画委員会 第2回 勉強会 "Intensity フロンティア": J-PARC加速器、加速器長基線 ニュートリノ振動、K稀崩壊の現状、展望、ビヨンド

坂下健(KEK/J-PARC)

Contents

・イントロダクション

・加速器長基線ニュートリノ振動実験の現状と展望

 ・解決すべき問題とその対処プラン

・まとめ

イントロダクション

虆ニュートリノの質量 → 標準模型を超える物理

▶ 重たい右巻きニュートリノの存在? マヨラナ粒子?

▶~ 10¹⁶ GeV(~GUT) scaleまで幅広いエネルギー領域の物理に感度がある

▶ 様々な方法で新しい物理の探索が必要

 ν 振動実験、ステライル ν 探索、 $0\nu\beta\beta$ 探索、 ν mass直接測定

50kton

Super-Kamiokande

(ICRR, Univ. Tokyo)

International collaboration ~500 members, 69 Institutes 12 countries

J-PARC Main Ring (KEK-JAEA, Tokai)

N37

J=PARC

T2Kで見るニュートリノ振動

v_{μ} disappearance

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - (\cos^{4} \theta_{13} \sin^{2} 2\theta_{23} + \sin^{2} 2\theta_{13} \sin^{2} \theta_{23}) \sin^{2} \frac{\Delta m_{32}^{2}L}{4E}$$

残ったv_{\mu}(v_{\mu})のエネルギー分布から
sin²2θ₂₃と Δm^{2}_{32} を決める

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2}2\theta_{13} \sin^{2}\theta_{23} \sin^{2}(\Delta m^{2}_{31} L/4E)$$

+ (CPV term) + (matter term) ...
 $\delta_{CP} \rightarrow -\delta_{CP}$ if $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$ 質量階層性に感度
295kmでは効果が小さい
v_e出現事象をVwell現事象を比較して
CP対称性の破れ(δ_{CP})を探索

T2K: 2019年までの9年間のデータ解析結果

ve候補数 vs ve候補数

 ν -mode :14.9x10²⁰ POT , $\overline{\nu}$ -mode : 16.4x10²⁰ POT

T2K: 2019年までの9年間のデータ解析結果 (v_µ, v_µ事象も合わせて)

9

Total events - neutrino beam

Deep Underground Neutrino Experiment

- 1.2MW neutrino beamline from Fermilab (Illinois, USA) to SURF (South Dakota, USA)
- Far Detector: Liquid argon time projection chamber (1300km downstream)
- Near Detector: composite (574m downstream)

4 18/12/2019 Nicola McConkey I DUNE

Global collaboration

- 34 countries
- 192 institutions
- 1104 collaborators

DUNE Far Detector

- Sanford Underground Research Facility
 - South Dakota
 - 1.5km underground
- 4 x 10kt modules
 - Membrane cryostat
 - Cryostat: 62m x 19m x 18m
 - 17kt total LAr per module
 - Staged installation
- Groundbreaking July 2017
 - Work ongoing!

- · New ν beamline w/ 1.2MW (PIP-II)
- ・Far detector siteのconstruction開始
- ・2026年から実験開始予定 (w/ 20kton)

MANCHESTER

DUNE

T2Kから T2K-II, Hyper-Kamiokande(HK)へ

消えた反物質の謎の解明

CP対称性の破れの大きさ $J_{CP} \equiv \frac{1}{8} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \sin \delta$

混合行列の非対角成分が大きいため、ニュー トリノCP対称性の破れの大きさはクォーク の場合に比べて約3桁大きい可能性がある

ニュートリノCP対称性の破れは物質優勢 宇宙の誕生を説明する有力な手がかり

▶ ニュートリノ振動(+Majorana)で物質優勢
 宇宙を作るモデル

[arXiv:1609.05028. arXiv:1807.06582]

▶ |sin δ |>0.02の場合、δ (Dirac phase)のみ で物質優勢宇宙を作るモデル

[Nucl. Phys. B774 (2007) 1 etc.]

▶ あるモデルでは、δの符号とレプトジェネシスで物質・反物質どちらが残るかに相関がある(δ<0で物質が残る)</p>

[arXiv:2005.01039]

まず $\sin \delta \neq 0$ を確定させて、その大きさの測定へ

振動パラメーターの精密測定 →新しい物理の探索へ

*3世代混合の検証:異なる測定方法の間で「ズレ」がないか検証

- HKだけで(θ₁₃, δ_{CP})を決める ⇔ 原子炉実験のθ₁₃と比較
- 高精度なΔm²測定の比較 e.g. HK⇔JUNO(次期原子炉実験)実験
- * CPTの検証: v_µ disappearance vs \overline{v}_{μ} disappearance (Δm_{ν}^2 v.s. $\Delta m_{\bar{\nu}}^2$)
 - 非常に軽いν質量 → 高いエネルギースケールでのCPT testが可能

[Phys. Lett. B 597, 73, (2004)]

- * Flavor symmetry の検証
 - e.g. θ_{23} 最大混合角? \rightarrow 非常に軽い ν 質量を説明するモデルへのヒント

[arXiv:1405.1521 他]

$T2K \rightarrow T2K-II \rightarrow Hyper-Kamiokande$ (2027~) (Present)

ハイパーカミオカンデ実験

- ·19万トンの有効体積 (~8 x SK)
- ・従来の2倍の高感度光セン
 サーを4万本
- J-PARC 1.3MWニュート
 リノビームを用いた研究、
 陽子崩壊探索など幅広いサ
 イエンス
- ・2019年度から予算化→建
 設開始
- ·2027年度からの測定開始 を目指す

米国DUNE計画と熾烈な競争

ハイパーカミオカンデ実験でのCPV探索

with 190kton Fiducial volume, 1.3MW x 6cycles/year x 10years

Neutrino mode: appearance

Antineutrino mode: appearance

Expected number of ν_{e} appearance signal and background

	Appearance signal	Wrong sign signal	Beam ν_{e} background	NC background	Total	T2K-II	T2K(now)
Neutrino mode	1600	20	260	130	2010	468	90
Antineutrino mode	1200	200	320	200	1920	134	15

高統計な測定が可能

sin *δ* cp=0 棄却の有意度

- ・HK開始(2027年)後、3-4年で5σ
 でのCPV探索が可能
 - 高統計化に伴い系統誤差の影響 が大きくなる

・HKでは δ_{CP} 等の高精度測定も可能

HK開始時にビーム強度を

~1.3MWに、また系統誤差を

3~4%に改善することが重要

- 物質優勢宇宙誕生の解明
- 新しい物理の探索

解決すべき問題

ニュートリノビーム大強度化

J-PARC MRの大強度化(~1.3MW)にあわせて ニュートリノビームラインもアップグレード

当初の設計(750kW)から 強化する項目:

- ▶ビーム熱に対する冷却能力
- ▶高繰り返し化対応
- ▶ 放射化物処理能力

・インターロック

高放射線環境下での運転

HK予算化と同時に大強度化も一部が予算化 HK開始時に>1MWにするためには、それまでのビーム運転が必須

ビームライン大強度化での課題解決にむけてR&D、実装等が進行中

例えば:

Test vacuum chamber for

TEP 2018(10) 103H01 (2018)

7×7のアレイ

PTEP 2018, no.10, 103H01(2018) https://doi.org/10.1093/ptep/pty104

1.061er02 2.123er02 3.184er02

ホーン本体の改良+電源等の増強で、 250kA→320kAに。 同じビームパワーでニュートリノ iplnes fluxを10%増加できる。

ターゲット(+Horn)の形状を最適化して、さらなるflux増加や 20 backgroundとなるwrong sign fluxを減らす検討も進めている

~9% →T2K-II,HKにむけて~4%に改善する

Systematic error on Super-K events

T2K実験の系統誤差

	ν_e	$\overline{\nu}_e$
フラックス+ニュートリノ反応 (ND280により制限)	3.02%	2.86%
ND280により制限されない ニュートリノ反応	7.80%	4.72%
ニュートリノ反応後のハドロン反応	3.02%	2.31%
スーパーカミオカンデ検出器	2.83%	3.79%
計	8.81%	7.03%

νフラックス自体のエラー~10%

▶ ハドロン生成分布の新しいデータを使って~5%になる
 ▶ さらなる低減に向けたハドロン生成分布測定実験を実施

21

▶ニュートリノ原子核反応の理解 「

U

「原子核」との反応は複雑。。

- 様々な測定による ν 原子核反応モデルの改良
- Far det.と同じ水との反応を測定
- モデルにあまり依存しない方法

再構成してしまう

▶ ν e 反応の理解

 ν_{μ}

νe反応断面積の輻射補正が理論計算のみ。実際の測定が必要。

前置検出器(ND280) upgrade

違うoff-axisでの測定、水標的

- ・1.5° off-axisに新しい検出器を設置。2019年ランから 測定開始
- ・ND280(2.5°)のデータと組み合わせることで、特定の ニュートリノエネルギー領域の反応断面積が測定できる →v原子核反応モデルの改善が可能
- ・シンチレーター(CH) & 水(H₂O)が標的 → Far det. と同じ水との反応を測定

新しいホテェレンコン検出器(~1kton)をビームが
 下移動させて1~4度のオフアクス角度で測定
 →Far det.と同じ水との反応を4πで測定

 $\rightarrow \nu e 反応の測定$

・ニュートリノエネルギー毎のニュートリノ原子核
 反応断面積を測定

→v原子核反応モデルの改善

 HKの前置検出器の1つとして、国内外研 究者の協力でR&D・設計等が進行中

高いevent rateの中で検出器を動作させる必要がある

E_{rec} (GeV)

T2K,T2K-IIからHKへ:スケジュール

	2020	2021	2022	2023	2024	2025	2026	2027	2028
J-PARC加速器	電源	増強	RF	· <mark>増強、陽</mark>	 	1で1.3MV	V~		
ビームライン	<mark>高繰り返</mark>	し化対応等	ターゲ	<mark>ット冷却能</mark>	。 <mark>)力対応等</mark>	で1.3MW	に対応		
前置検出器	<mark>N280 ເ</mark>	upgrade							
S T2K,T2K-II	K <mark>-Gd</mark> 準備 CF <i>v</i>)	₩ ~3σ探 原子核反	ਞ索、ND2 忘測定 →	280 upg 系統誤差	radeやS 改善	K-Gdでの			
中間検出器	中間核	è出器施設設	と は し し	装置開発・	製作	設置			
НК	準備工事	トンネル 掘削	空	洞掘削	2 夏	K槽 建設 PI	MT据付	CPV > る _{CP} な	→5σでの探索 ごどの精密測Σ
	NOvA実験:データ収集 DUNE						三実験:デー	-タ収集	
	この期間の「建設・アップグレードと運転の両立」が								
	ぶしい国際競争の中でHKでダイムリーに結果を出りために里安 2 ⁻								27

Beyond δ_{CP}

3世代混合パラメーターのover-constrainな測定,

non-unitarity, non-standard-interaction 等

→高統計、振動パターン測定、違う振動モード?

まとめ

- ・長基線ニュートリノ振動実験では、ニュートリノCP対称性の 破れや振動パラメーターの精密測定などが課題
- ・T2K,T2K-IIでCPの破れを~3σ感度で探索、HKでは高統計、
 高精度な測定から物質優勢宇宙の解明、新物理探索を行う
- ・CP破れへの感度は、まだ統計リミットだが、高統計に伴い 系統誤差の改善も課題になる

系統誤差の改善にむけて様々なアプローチを実施、計画中