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The Al Revolution is Here

The past decade has seen remarkable advances in machine learning and
artificial intelligence.

These technological breakthroughs are reshaping the world around us.

Deep learning also has the potential to revolutionize physics at the LHC.



Deep Learning Breakthrough

ImageNet Challenge
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Deep Learning Breakthrough

In 2012, a deep convolutional neural network won the “ImageNet” image
classification competition by a huge margin (Krizhevsky, Sutskever, Hinton)

This dramatic breakthrough inaugurated the modern revolution in deep learning.
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Deep Learning Breakthrough

Pre deep learning

Humans just
aren’t as good at
30 dog breeds, etc.
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Computer vision
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Computer vision

Classification Object Detection Instance

Classification

+ Localization Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK

AN /
Y

Single object Multiple objects




Computer vision
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Yoruba~ g English~ I_D L D)

Translate from English

N at u ra I I a n g u age dog dog dog dog dog dog dog dog dog Doomsday Clock is three minutes at

dog dog dog dog dog dog dog dog dog twelve We are experiencing characters
and a dramatic developments in the
world, which indicate that we are
increasingly approaching the end

G O Ugle times and Jesus' return

Open in Google Translate Feedback
Advanced Search

i DOOped Language Tools

i pooped my pants

i pooped my pants at school

i pooped on my boyfriend

i pooped hard it overflow Jacob Kluge e Y .
i pooped my pants at work @KlugeJake 5\ J

i pooped a cornish game hen

{1 pooped dhammner ‘ When auto correct hates you and your
i pooped the bed . .
i pooped my pants and i liked it relationship
i pooped today
Google Search ~ I'm Feeling Lucky Can we go to the gym
tomorrow
Sure Abby
Oh boy here we go
Read 8:59 PM
e
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Microsoft
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Apple-

Amazon
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Painting created by Al sells for

Generative modeling stunning $432K

By Tamar Lapin October 26, 2018 | 2:38am | Updated
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there is no one else in the world . this was the only way . :
there s no one else in sight . it was the only way .
they were the only ones who mattered . it was her turn to blink .
they were the only ones left . it was hard to tell .
he had to be with me . it was time to move on .
she had to be with him . he had to do it again .

1 had to do this . they all looked at each other .

1 wanted to kill him . they all turned to look back .

i started to cry . they both turned to face him .

i turned to him . they both turned and walked away .
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Plan of the lecture

|. Machine Learning Basics
2. Intro to Deep Learning

3. Deep Learning at the LHC

| will assume most of you know some collider physics.

| will not assume any familiarity with machine learning
or neural networks.



|. Machine learning basics



Brief (re)fresher on machine learning

“ML is glorified function fitting”

Want to fit a function f(x; 6) with some parameters O (“weights”) to a
collection of examples {x;} in order to achieve some objective.
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xeRdis called the feature space

i=1,...N indexes the training dataset.
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Anomaly detection

“supervised ML”



Brief (re)fresher on machine learning

“ML is glorified function fitting”
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Brief (re)fresher on machine learning

“ML is glorified function fitting”

Want to fit a function f(x; 6) with some parameters O (“weights”) to a
collection of examples {x;} in order to achieve some objective.

Some typical objectives: “supervised ML”
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® Anomaly detection
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_6 T T T T T . Generation
-6 -4 -2 0 2 - 6

“ “unsupervised ML”



MNIST example

image database of 70,000 handwritten digits
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MNIST example

Po(z;0)
' Py (z;0)
0
parameters of Py (x; 6))
L fitting function
Input: handwritten digit image Z P, (g;; 9) — 1]
28x28 pixel intensities i

from MNIST database Output: probability it’sa O, I, ...,9
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Brief (re)fresher on machine learning

“ML is glorified function fitting”

Want to fit a function f(x; 6) with some parameters O (“weights”) to a
collection of examples {x;} in order to achieve some objective.

How to perform the fit?

Loss function quantifies how well the objective
has been achieved.

Y L(P(x6),y) Y L(P(x:0))

(z,y)

Data is labeled Data is not labeled

supervised ML unsupervised ML




Examples of loss functions

“mean-squared error”

— . —_ 2
L= (P(z;0) —y) used for regression

[ = —(y log P(z;0) + (1 —y)log(1 — P(z; 9)))

“binary cross entropy”
used for binary classification

L = —y,log P;(x;0)

“categorical cross entropy”
used for multi-class classification



Examples of loss functions

“mean-squared error”

— . —_ 2
L= (P(z;0) —y) used for regression

[ = —(y log P(z;0) + (1 —y)log(1 — P(z; 9)))

“binary cross entropy”
used for binary classification

L = —y,log P;(x;0)

MNIST example: “categorical cross entropy”
labels “one-hot encoding”  used for multi-class classification
0 —[1,0,...,0]
| = [0,1,...,0]

9 = [0,0,...,1]



Minimizing the loss function

Highly nhonconvex function over a many-dimensional space.
Many local minima.


https://www.cs.umd.edu/~tomg/projects/landscapes/

Gradient descent

(LY(0) = > L(P(x:6),y)
(z,y)
Want to minimize wrt 0.

Obvious idea: 6 — 6 — a 0p(L)(0) “sradient descent method”

o “learning rate” (generalization of Newton-Raphson method)
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Gradient descent: problems

Downsides to gradient descent:

e average over full dataset <L(0)> can be expensive to compute

® poor initial guess or learning rate can lead to becoming stuck in poor local minimum

SLartng pe.

| .ocal mumma

Frror

Global minima



Stochastic Gradient Descent

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

Can actually improve convergence by
using noisy estimator of gradient!

> L(P(z;0),y) —> > L(P(z;0),y)

(x,y)€full dataset (x,y)Eminibatch



Stochastic Gradient Descent

Method:

minibatch |
minibatch 2
minibatch 3

|. Divide up training data into minibatches.
2. Update weights minibatch by minibatch
0 — 0 — adg(L)(0)
(average computed on each minibatch)

3. Repeat until convergence.
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Stochastic Gradient Descent

Method:

minibatch |
minibatch 2
minibatch 3

|. Divide up training data into minibatches.
2. Update weights minibatch by minibatch
0 — 0 — adg(L)(0)
(average computed on each minibatch)

3. Repeat until convergence.

NP~ DOIONN

\ 9562/ 8
A5000b 64
] 636370
74 L | FR
9439¢792¢
¥ 3 66737
/55§08 Y
6858 89%
04 ¢35 43
10 627 2 3

“one epoch”



Overfitting

The fitting function (especially if it is a neural network) may be

overparametrized. So overfitting is a major concern.

AValues
°
g e .
" o
e e
& L R e °
®s
I ' e
..
....... *® 2 0 .
= * e LN

Underfitted

ot
o
-

.
.
.
-
o

AValues

Good Fit/Robust

Overfitted



Overfitting

Many ways to mitigate overfitting problem. Eg early stopping.

Key concept: train/val/test split

Training Set Accuracy

Accuracy

Overfitting

‘Val Set Accuracy Early Stopping

Epoch

Epoch
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Brief (re)fresher on machine learning

“ML is glorified function fitting”

Want to fit a function f(x; 6) with some parameters O (“weights”) to a
collection of examples {x;} in order to achieve some objective.

Finally, what functions to use!

Current trend: deep neural networks!



2. Intro to Deep Learning



What is a (deep) neural network!?

Basic building block of a neural network:

L0 wo

@ synapse
axon from a neuron

. WoZo

cell body f (E w;T; + b)
o Z w;x; + b f i B
- output axon
activation
function

W9

Modeled on biological systems



Activation functions

NNs need a source of non-linearity so they can learn general functions.

This is usually implemented with the activation function.

10 sigmoid " ReLU

R(z) =max(0, 2)

Sigmoid used to be standard. But this led to the vanishing gradient problem.The
RelLU activation was invented to solve this problem. Now it is the standard.



“Fully connected” or “Dense” Neural Network

L
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e
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hidden layer 1 hidden layer 2
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Math. C | Signals S : 303-3 .
ath. Control Signals Systems (1989) 2: 303-314 Mathematlcs Of COﬂthl,

Signals, and Systems

© 1989 Springer-Veriag New Yorkinc.

Expressiveness

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

O h N N ¢¢ k’ ’ h Abstract. In this paper we demonstrate that finite linear combinations of com-
n e re a. S O n W y S WO r I S t at positions of a fixed, univariate function and a set of affine functionals can uniformly
approximate any continuous function of » real variables with support in the unit
* ° ° hypercube; only mild conditions are imposed on the univariate function. Our
t h ey a re u n ' Ve r S a I f.u n Ct’ O n a QP r OX ’ m ato r S results settle an open question about representability in the class of single hidden
. ! _ B - layer neural networks. In particular, we show that arbitrary decision regions can
o be arbitrarily well approximated by continuous feedforward neural networks with
(asy m Ptot I C a I IY) only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities

that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.

N Weighted output from hidden layer | 5+

|

4 0.021

Can fit any function with a single, infinitely-wide hidden layer



Deep neural networks

Simple Neural Network Deep Learning Neural Network
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Expressivity of a neural network increases exponentially with the

number of layers (Delalleau and Bengio, 201 |, Montufar et al 1402.1869,
Ganguli et al 1606.05336, 1606.05340)



End-to-end learning

Machine Learning

& s -7 Il

Input Feature extraction Classification Output

Deep Learning

& — 3377 -

Input Feature extraction + Classification Output

W0D"9DU3ISDIDPSPIDMO] LU0

Universal function approximation and high expressivity means that deep NNs
can learn abstract concepts from low-level, high-dimensional inputs

“Automated feature engineering”

“End-to-end learning”



Example: MNIST in more detail

hidden layer

(rnn = 15 neurons)

Py(x:; 0

output laver

Plx;é’

input layer

(784 neurons)

Pg ZC;H

Pix;H 1

Output: probability it'sa 0, 1, ...,9



Example: MNIST in more detail

0.25 1
Layer (type) Output Shape Param # )
dense 1 (Dense) (None, 512) 401920
dropout 1 (Dropout) (None, 512) 0 0.15 1
dense 2 (Dense) (None, 512) 262656 0.10
dropout 2 (Dropout) (None, 512) 0
0.05 -
dense 3 (Dense) (None, 10) 5130
Total params: 669,706 00 25 50 75 100 125 150 175

Trainable params: 669,706
Non-trainable params: 0

0 0 0 0 0 0
10 1 D
20 0 0 0 0
0 20 0 20 0 20 0 20

prediction: 7 2 I 0 4 I 4 9 6 9

Test accuracy: 0.9831

20 0 20



Convolutional neural network (CNN)

input convi pool1 conv2 pool2 hiddend output

Principal neural network architecture for image recognition.
Invented in 1998 (LeCun, Bottou, Bengio, Haffner)

Achieved 99% accuracy on MNIST!

However, CNNs fell out of favor (until AlexNet in 2012) when they did
not immediately generalize well to more complex image recognition

tasks such as ImageNet.



Convolutional neural network (CNN)

Main idea: features in an image (edges, curves, corners,...eyes, NOSes,...)
are the same no matter where they occur.

Goal:Want to find these features in a translationally invariant way.

Solution: Drag or convolve a “filter” across the image that selects out
interesting features.
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Main idea: features in an image (edges, curves, corners,...eyes, NOSes,...)
are the same no matter where they occur.

Goal:Want to find these features in a translationally invariant way.

Solution: Drag or convolve a “filter” across the image that selects out
interesting features.




Convolutional neural network (CNN)

1
_—
o el twi Itiplication”
Source pixel { 0 }/ 0 elementwise mulitiplication
1 0 L
_—
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v 1 u P
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Finds features in the image in a translation invariant way



Convolutional neural network (CNN)

Can apply multiple filters to image to produce a stack of feature maps

.\

\
_————--"/“‘“?O
Convnet
Filter
One
Feature
Map
< >

All Feature Maps



Convolutional neural network (CNN)
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CNNs typically end with fully connected layers.

These are thought to extract the highest level information and to perform
the actual classification task on the feature maps found by the convolutional

layers.



Convolutional neural network (CNN)

What does the machine learn?

Low-Level| |Mid-Level High-Level Trainable
Feature Feature Feature Classifier

’
'

-
s

3
o2,

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Generative Adversarial Networks (GANSs)

Breakthrough method in generative modeling and unsupervised learning

(Goodfellow et al. 2014)

Training set

Generator

Discriminator

) {Fa ke

vy

Fake image

|dea: train two neural networks: a “generator” that attempts to
generate fake, random images, and a “discriminator” that tries to
tell them apart from a database of real images.



Generative Adversarial Networks (GANSs)

Loan = ) logD(x)+ >  log(l— D(G(2)))

rcreal zErandom

Training is performed “adversarially”
° Discriminator tries to minimize loss
® Generator tries to maximize loss

® Take turns training discriminator and generator to optimize fake image generator



Generative Adversarial Networks (GANSs)

Real or fake?



3. Deep Learning at the LHC



First Stable Beams

LHC and Big Data

proton—-proton collisions at 13 TeV
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First Stable Beams

LHC and Big Data

The data is

* large (billions of events on tape)

e complex (hundreds of particles
per event)

proton—-proton collisions at 13 TeV

* well-understood (Standard Model
of particle physics).

® 600 million collisions per second

Also, it is relatively easy to
® Raw data rate ~ | PB/s (I PB=10"6 GB) generate realistic simulated

® Actual data rate ~ 25 GB/s data.

® Need to trigger on | out of 40,000 events

e ~ |O’s of PB annually



First Stable Beams

LHC and Big Data

The data is

* large (billions of events on tape)

e complex (hundreds of particles
per event)

proton—-proton collisions at 13 TeV

* well-understood (Standard Model
of particle physics).
® 600 million collisions per second
Also, it is relatively easy to

® Raw data rate ~ | PB/s (I PB=10"6 GB) generate realistic simulated
® Actual data rate ~ 25 GB/s data.
e Need to trigger on | out of 40,000 events
e ~ |0’s of PB annually The LHC is a great setting

for deep learning!



Deep Learning Papers

INSPIRE search: ("machine learning" or "deep learning" or neural)
and (hep-ex or hep-ph)

100:-

S (o)) (@)
o o o

H of papers / year

N
o

1995 2000 2005 2010 2015
Year

An explosion of interest in machine learning!



The Landscape of DL @ LHC

CaloGAN
LaGAN Autoencoders pile-up reduction
JUNIPR
i flow EFT Rararpeter
GANs for unfolding cstimation
Regression
Unsupervised METdINIE Supervised
Learning Learnlng Learning
Classification
t findi
ifgo:th':i (unlabeled data) (labeled data)
top tagging
b tagging
Autoencoders WI/Z tagging
CWola q/g tagging
LDA strange tagging
AnoDE full event tagging
SALAD reweighting (DCTR)

Triggering Omnifold



The Landscape of DL @ LHC

CaloGAN N .
Ljﬁlfg; Hrosneoder pile-up reduction
: i-flow . . . EFT Rarameter
GAN:s for unfolding Dimensionalit estimation

Reduction

Regression
Generation

Unsupervised Machine Supervised
Learning Learning Learning

Classification

t findi
ifgorth';gs Anomaly (unlabeled data) (labeled data)
Detection top tagging
b tagging
Autoencoders WI/Z tagging
CWola - : q/g tagging
LDA Stay tuned for many exciting talks on these topics strange tagging
AnoDE (and more) at this workshop! full event tagging
SALAD reweighting (DCTR)

Triggering Omnifold
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Jet classification (“‘tagging”’) c _,f£ 73 GeVir

~ 70% \N’

|25 GeV
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|00 MeV++

++ = Mass from QCD Radiation g é@ O++
slide credit: J. Thaler

Jets from QCD and c é@ R
the Standard Model s @




A popular example: boosted top tagging

Low top pr High top pr

How to differentiate between
these two types of jets?




Low top p

Some obvious ideas:
016 13 TeV
=  [CMs ]
0.14F-Simulation Preliminary _
:C A15, flat p_, n — Top, 470<p_<600 GeV, 65% i
- ’ T — Top, 600<p_<800 GeV, 71% |
0.12 - <u>=20, 25ns ---Top, 800<p_<1000 GeV, 75% |
B ---Top, 1000<pT<1 400 GeV, 78% 7
0.1 QCD, 470<p_<600 GeV, 19% |
B QCD, 600<p_ <800 GeV, 23%
- ---QCD, 800<p_ <1000 GeV, 26% -
0.08- aco, 1000<p_<1400 GeV, 28%
0.06- -
0.04[ —
0.02 —
0_ ,
0

HTT V2 Mass (GeV)

jet mass (Meop Vs 0)

- 0.16

High top pt QCD boosted jet
W boost
VS

13 TeV
L I I I I I I | I I I I I I | I I I ]
0.14}-Simulation Preliminary ]
-110 <mg, <210 GeV i
0.12-aks, flatp_, n — Top, 470<p_<600 GeV, 69% —
n T — Top, 600<pT<800 GeV, 68% |
1 <u>=20, 25ns ---Top, 800<p <1000 GeV, 72% |

O' L ---Top, 1000<pT<1 400 GeV, 68%
i QCD, 470<pT<600 GeV, 14%
0.08+— QCD, 600<p_<800 GeV, 15% —
B ---QCD, 800<p_ '<1000 GeV, 14% ]

- QCD, 1000<p <1400 GeV, 12%
0.06— _
0.04F -
0.02~ ro -
O_ L ‘.; O I T i
0 0.2 0.4 0.6 0.8 1

Ungroomed t,/t,

jet substructure (3 vs |)



State of the art with cuts on kinematic quantities:

QCD jet
mistag rate

107"

10°

10

10°

2

CMS

Simulation Preliminary

) .
’
o
/I
]
"y
'
)

I I I I I I | I I I | I I
800 < p, < 1000 GeV, Inl < 1.5
AR(top,parton) < 0.6

flat o and n

- %
. =
-

—— CMSTT min. m

—— CMSTT top m

—— Filtered (r=0.2, n=3) m
HTT V2 fg,.

—— HTTV2m

—— Pruned (z=0.1, rcut=0.5) m
Q-jet volatility =

—— Softdrop (z=0.1, f=0) m

2 Softdrop (z=0.2, p=1) m

e Trimmed (r=0.2, f=0.03) m

----- Ungroomed t./7,

log(x) (R=0.2)

4 '

I
0.8 1

s

I
0.6

Can deep learning do better??

“ROC curve”

top tagging efficiency



Jet images

Cogan et al 1407.5675,Almeida et al 1501.05968, de Olivera et al 1511.05190

Al Boosted W - qQ’
LD s f
\ AR} 4444 4 [/ o) 1*_
. L
Calorimeter V Jet % i
£ 05
< | m
protpp-pr_oton iy vg- i
prefig ? .t 1E
oy : —I
Jet ./l 0.5~ u
] Figure credit: : f-l.
¥ Wiy i
III’I‘ ‘\\ not to scale B NaChman '1__

[Translated] Pseudorapidity (1)

Jets are naturally images in eta and phi.

Should be able to apply “off-the-shelf” NNs developed for image
recognition to classify jets at the LHC! de Oliveira et al 1511.05190

Pixel p_[GeV]



Other jet representations

Many other ways to represent a jet besides jet images!

Lists of 4-vectors

pTl AW'
Rals /o
&'A\\' noge

input layer——
5 hidden layers
300,150,50,10,5
nodes / hidden layer

simulated top quark jet
anti-kt, R = 0.8, pr = 600 GeV

PO
& @

Point clouds

Sequences

® View anti-k; sequence as a binary tree

¢ Order using depth-first traversal prioritizing jets
with ‘parents’ whose d;; is smaller

Legend
\ . Reconstructed Jet
A T \\ (, )} Recombined PseudoJet
( \ 4
) 8

J

— Q Original particle
° d,s °

if d;; < d,s: Input list ordering 1-2-3-4-5
if d;, > d,s: Input list ordering 4-5-1-2-3

o Kinematic
t <= 0y, nvariants

M M M M

:E E E E Ziy Zig Zig Zig Oirin Oigia

t1=14p=1143=1144=1

92

1214

0:,:33'4 .



Community top tagging comparison

Kasieczka, Plehn et al 1902.09914

104

1
)

Background rejection
-
o
w
e
/

=
o
N
/
/
/
y A
4

10! -

ParticleNet
TreeNiN
ResNeXt
PFN

CNN
NSub(8)
LBN
NSub(6)
P-CNN
LoLa

EFN
nsub+m
EFP
TopoDNN

02 03 04 05 0.6 0.7
Signal efficiency €5

0.0 0.1

0.8

Q:There are many papers
developing jet taggers with
different jet representations
and architectures. How can
we evaluate their relative
strengths and weaknesses!?

A: Let’s perform an apples-
to-apples comparison of
various top taggers on a
common dataset!



Community top tagging comparison
Kasieczka, Plehn et al 1902.09914

AUC | Acc 1/ep (es = 0.3) #Param
single mean median

CNN [16] 0.981 | 0.930 914414 995115 975418 610k
ResNeXt [31] 0.984 | 0.936 | 1122447  1270+£28 1286431 1.46M
TopoDNN [18] 0.972 | 0.916 29545 382+ 5 378 £ 8 59k
Multi-body N-subjettiness 6 [24] | 0.979 | 0.922 792£18 798£12 808+13 57k
Multi-body N-subjettiness 8 [24] | 0.981 | 0.929 867+15 918420 926+18 58k
TreeNiN [43] 0.982 | 0.933 | 1025+11 1202423 1188424 34k
P-CNN 0.980 | 0.930 732424 845413 834414 348k
ParticleNet [47] 0.985 | 0.938 | 1298+46 1412445 1393441 498k
LBN [19] 0.981 | 0.931 83617 859+67 966120 705k
LoLa [22] 0.980 | 0.929 722417 768+11 765+E11 127k
LDA [54] 0.955 | 0.892 151+0.4 151.54+0.5 151.740.4 184k
Energy Flow Polynomials [21] 0.980 | 0.932 384 1k
Energy Flow Network [23] 0.979 | 0.927 633431 729+13 72611 82k
Particle Flow Network [23] 0.982 | 0.932 891+18  1063+£21  1052+£29 82k
GoaT 0.985 | 0.939 | 1368+£140 15494208 35k

Have we found the optimal tagger??



CMS performance study

JME-18-002-PAS

(13 TeV) (13 TeV)
c>)\ 1 O E | | | | | | | | | | | | | | | | | | | | | E (>)~, 1 O E L L L L L L | L |E
s [ CMS ] & | CMS ]
2 [ A : . i 2 [ A : . i
D -~ Simulation Preliminary i} 5 - Simulation Preliminary i
g 1E" Top quark vs QCD multijet E g 1E" Top quark vs QCD multijet 3
g) - 300 <p!"" <500 GeV, "™l <2.4 ] % - 1000 <p"" <1500 GeV, ™" < 2.4 ]
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ol _ 2 Lot —
107E DeepAK8 E 107F .. DeepAK8 :
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- ImageTop - T s ImageTop i
3 ImageTop-MD 5 ::lnagfIOp-MD

107 Moo+t 107F Mg tTetb 2
— =-Mgp + Ty, + b . ~ — BEST .
B — HOTVR i B — HOTVR i
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1 0—4 | | | | | | | 1 0—4 i / L1 J_L L1 ] | Ll 1 1 | Ll 1 | Ll 1 1 | Ll 1 | I |
0 0.4 O 5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Signal efficiency Signal efficiency



CMS performance study

ImageTop-MD DeepAKS8

JME-18-002-PAS
35.9 fb' (13 TeV) 35.9 b (13 TeV)

o 2[ | | | o 2 | | | ]
T r single-u sample Tt e o di-jet sample Moty A Mgrgb
-~ 1.8— PCIIVIS Top quark tagging roTE < NBDT (GATS) -~ 1.8— PCIIVIS Top quark tagging - HoTvR ~4- N,-BDT (CA15) —

< [ Freliminary - BEST imageTop < reliminary

< <

Uy Uiz

@®- DeepAK8-MD ImageTop-MD DeepAKS8

1 4 :_ 1 4 :_ -®- DeepAK8-MD _:

1.2~ 1.2F . o

N o e . o ¢ -

1= ) ' ! 1 : o -

E ...... B v Avq}gg N o N % 7

0.8~ 0.8F ’ v -

0.6- l 0.6L I N
300-400 400-430 450-600 600-1200 ' 300-400 400-480 480-600 600-1200

P (jet) [GeV] p.. (jet) [GeV]

Performance measured in data!



Beyond top tagging

Many other classification tasks at LHC are enhanced with deep learning:
® quark/gluon tagging (Komiske, Metodiev & Schwartz | 6, et seq)
® b and c tagging (DeepCSV)
® boosted W/Z tagging (Oliveira et al '|5, et seq)
® strange tagging (Nakai, Thomas & DS to appear)

® u vs d tagging using jet charge (Fraser & Schwartz ’ | 8)

® boosted W+/Z/W- tagging using jet charge (Chen, Chiang, Cottin & DS 1908.08256)



See talks by Michael Kagan and DS

Beyond classification — decorrelation

Raw tagger performance not the only consideration.

For robust background estimation, generally need to ensure
tagger does not sculpt the background mass distribution.

background mass distribution

10°
. (>0

e =110
. L >1100
. | >11000

10°

10*

10°

10°

This would greatly
0 200 400 600 800 1000 underestimate the
o background in the SR

10!

Two approaches with deep learning;

* adversarial decorrelation (Louppe et al 1611.01046, Shimmin et al 1703.03507)
* DisCo decorrelation (Kasieczka & DS 2001.05310)



See talks by Michael Kagan and DS

Beyond classification — decorrelation Could

have real-world
applications, e.g. in

] ] designing fairer
Raw tagger performance not the only consideration. gA|Sgg

For robust background estimation, generally need to ensure
tagger does not sculpt the background mass distribution.

background mass distribution

10°
|l | =0

e =110
. L >1100
. | >11000

10°
10*
10°

102

This would greatly

0 200 400 600 800 1000 underestimate the
o background in the SR

10!

Two approaches with deep learning;

* adversarial decorrelation (Louppe et al 1611.01046, Shimmin et al 1703.03507)
* DisCo decorrelation (Kasieczka & DS 2001.05310)



Beyond classification — pileup regression

PileUp Mitigation with Machine Learning (PUMML)
(Komiske, Metodiev, Nachman & Schwartz 1707.08600)

slide credit; Matthew Schwartz

Total neutral

Can measure

1. Leading vertex charged particles

. . Leading vertex
2. Pileup charged particles j‘> _
3. Total neutral particles neutral particles
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Beyond classification — G...ANs for everything

Can use GANs for event generation, fast detector simulation, unfolding, ...

x10~3 x10~3
7.0 True True
6.01 QAN 5.01 —— GAN
7 90 T 40
% 40 %
o, - D, 3.0
g T 0W—GAN shower 50 GeV
—| b 20' EES U1 T T T T T T -
1.0 1.0 | I
0.0 5 m Il.l.l Ill..
0
0 100 200 300 400 500 600 700 200 300 400 500 600 700
Ej, [GeV] E; [GeV] O
15} l. r:
x10~* x 10~ 201} .
o n
251 Truth = )
—— GAN 251 l
2.01 —— Delphes 1.
= 0

N B B 1
0O 5 10 15 20 25

0 25 50 75 100 125 150 175 200 70.0 725 75.0 77.5 80.0 82.5 85.0 87.5 90.0
prj [GeV] m;j [GeV]



See talks Dy lao Liu, ben Nachman and DS

Way beyond classification: anomaly detection

from Nachman & DS 2001.04990

O \ .
e autoencoders 2 Direct Density
:J-J. Some searches L DA 8_ eStimation, Sideband
E (train signal ANODE g
> versus data) CWola - ABCD
8 SALAD S
E S Control
= S region
N )
5 Most gear_ches MUSIC (CMS), = method
3 (train with General Search %
o simulations) (ATLAS) = Pure MC
S S | prediction
(4]
0 Po!

signal model independence signal model independence

(a) Signal sensitivity (b) Background specificity



See talks by Tao Liu, Ben Nachman and DS

Way beyond classification: anomaly detection

from Nachman & DS 2001.04990

‘ ‘- © . .

% £ autoencoders ™ = Direct Density
% Some searches L DA \ 8_ estimation, Sideband
E (train signal ANODE §
o versus data) ¥ CWola - ABCD
S % SALAD 2
£ g £ Control
= ’ S region
N n
5 Most gear_ches MUSIC (CMS), = method
> (train with General Search =
5, simulations) (ATLAS) S | PureMC
S S | prediction

©
© e

signal model independence signal model independence
(a) Signal sensitivity (b) Background specificity

Many interesting new ideas for model-independent searches being proposed



Summary/Outlook

Deep learning is revolutionizing nearly every aspect of high-energy physics.
® Tagging
e Pileup
® Event generation
® Detector simulation
® Triggering
® Searches for NP

Exciting times are ahead!



Thanks for your attention!



Supplementary material



Disappearing Gradient

| Derivative

¢

| Sigmoid

¢

‘ ! ! ! | | | | | | | | | | | | | L \ ! | ! ! ! | ! ! ! ! ! | | | | | | | [
2 2 i R A T - PR

Chain rule for gradient of network involves multiple tactors of
the derivative multiplied together

Deep networks with Sigmoid activations have exponentially
hard time training early layers

Bryan Ostdiek (University of Oregon) 77



Disappearing Gradient

1.0

Sigmoid

0.8

| | | | | | | | | | | | | | | | | -
_4 _2 i 2 4 R T T S RS B :

Using the Rectified Linear Unit (RelLU) solves this problem.
RelLU(x) = {0 if x <=0, x if x >0}

Still has nonlinearity which allows network to
learn complicated patterns

Nodes can die (derivative always O so cannot update)

Bryan Ostdiek (University of Oregon)

/8



Disappearing Gradient

iol —__ ——
Sigmoid * —— Rell
0.8 3_ ~— ReLU
i | ~===~ Leaky RelLU

| | | | | | | | | | | | | | | | |
_4 _2 I 2 4 [ T S A A A |

Leaky Rectified Linear Unit (LeakyRelLU) solves this problem.

LeakyRelLU(x) = {alpha*x if x <=0, x if x >0}

| have never had to use this in practice

Bryan Ostdiek (University of Oregon) 79



Convolutional neural network (CNN)

Dealing with multiple channels is straightforward — just enlarge filter
to include channel dimension (3d filter) and perform element-wise
multiplication along channel dimension as well.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 | 156 | 155 | 156 | 158 | 158 | .. 0o | 167 | 166 | 167 | 169 | 169 163 | 165 | 165
0 153 | 154 | 157 | 159 | 159 0 164 | 165 | 168 | 170 | 170 164 | 166 | 166
0 |149 | 151 | 155 | 158 | 159 | .. o | 160 | 162 | 166 | 169 | 170 | .. o | 156 | 158 | 162 | 165 | 166
0 146 | 146 | 149 | 153 | 158 0 156 | 156 | 159 | 163 | 168 0 155 | 155 | 158 | 162 | 167
0 145 | 143 | 143 | 148 | 158 0 155 | 153 | 153 | 158 | 168 0 154 | 152 | 152 | 157 | 167
Input Channel #1 (Red) Input Channel #2 (Green) Input Channel #3 (Blue)
11111 1 |0 |0
R IR [ 1(-1]-1
0080 e 1 B | 1T | B | =X
Kernel Channel #1 Kernel Channel #2 Kernel Channel #3
Output
ﬂ ﬂ ﬂ -25
308 ;5 —498 & 164 +1=-25

|

Bias=1




Convolutional neural network (CNN)

Dealing with multiple channels is straightforward — just enlarge filter
to include channel dimension (3d filter) and perform element-wise
multiplication along channel dimension as well.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 | 156 | 155 | 156 | 158 | 158 | .. 0o | 167 | 166 | 167 | 169 | 169 163 | 165 | 165
0 153 | 154 | 157 | 159 | 159 0 164 | 165 | 168 | 170 | 170 164 | 166 | 166
0 |149 | 151 | 155 | 158 | 159 | .. o | 160 | 162 | 166 | 169 | 170 | .. o | 156 | 158 | 162 | 165 | 166
0 146 | 146 | 149 | 153 | 158 0 156 | 156 | 159 | 163 | 168 0 155 | 155 | 158 | 162 | 167
0 145 | 143 | 143 | 148 | 158 0 155 | 153 | 153 | 158 | 168 0 154 | 152 | 152 | 157 | 167
Input Channel #1 (Red) Input Channel #2 (Green) Input Channel #3 (Blue)
11111 1 |0 |0
R IR [ 1(-1]-1
0080 e 1 B | 1T | B | =X
Kernel Channel #1 Kernel Channel #2 Kernel Channel #3
Output
ﬂ ﬂ ﬂ -25
308 ;5 —498 & 164 +1=-25

|

Bias=1




“Max pooling”

Convolutional neural network (CNN)

2 X 2 Max-Pool

B ——

20

30

12 120 | 30 | O

8 |12 | 2 | O
34 | 70 | 37 | 4
1121100 | 25 | 12

112

37

Reduces image size, reducing parameters and mitigating overfitting

Allows NN to find spatially larger, often higher-level features




Recurrent Neural Networks (RNNs)

Popular architecture for natural language processing (sentence
completion, autocorrect, translation, speech recognition...)

Starting point: sequence of numbers xj, X2, X3, ...

Suppose we want to predict the next number in the sequence!?

ldea of RNN:

* feed data sequentially to NN

e after each time step update hidden state. Hidden state encodes
“memory” of sequence.

* Use hidden state to make predictions.



Recurrent Neural Networks (RNNs)

Basic RNN architecture
predictions, e.g. 0; = SOftIII‘d-X(VSt)

0

O Or-1 % t+1

0
% VT VT
W s s s

OC) Unfold > LOH_}OtT’OL’

44 44
U SR
X t X

X X,

2 N

-1 t+1

st = f(Uzxy +Wsi_1) hidden state after time step t



Recurrent Neural Networks (RNNs)

Different modes/uses of RNNs [ |
Final and Only Output

|

Hidden

RNN
.

{ I I

State

Hidden . RNN
State ‘

Hidden RNN
State ».‘ ...»‘

| Input1 | | Input 2 | | Final Input |

sequence classification, regression



Recurrent Neural Networks (RNNs)

Different modes/uses of RNNs

[ Output 1 } [ Output 2 ] [ Output x J

RNN » @& » RNN Hidden RNN Hidden
Cell State Cell ‘ State » o9 00O » Cell ‘ State

| [ |

[lnputl] [unputz] [ Input x J

real-time prediction



Recurrent Neural Networks (RNNs)

Different modes/uses of RNNs

"Comment" "allez-vous"

Hidden RNN Hidden RNN Hidden ’ Hidden Hidden
State Cell State Ce“ State State ‘ State

sequence-to-sequence



Recurrent Neural Networks (RNNs)

Simple RNNs applied to long sequences have a very serious exploding/
vanishing gradient problem.

Prevents them from “remembering” relevant information from earlier in
the sequence.

RNN LSTM GRU
*

@ I\
-1 __»’
I

“Long-short term memory” and “Gated recurrent units” are two methods
commonly used to solve the gradient problem and improve performance.




Normalizing flows
Rezende & Mohamed 1505.05770

Recently a lot of excitement and progress in the problem of density

estimation with neural networks.

|dea: map original distribution to normal distribution through series of

invertible transformations.

. fl ZO) @ ‘fz Z;_ 1) @fz+1 zz

AL JL/g,

-~ -’ — —

zo ~ Po(zo) Zg ~ pi(zi)

Examples: RealNVP, NICE, Glow, ...

@-
M

\

N\
\

\—-’

Zg ~ PK( K)




Autoregressive flows  p(z) = | | p(zi [ 211)

Special type of normalizing flows. Learn probability density of each
coordinate conditioned on previous coordinates.

Transformation upper triangular — automatically invertible. Allows for
more expressive transformations.

xi:ui-exp(ai)—k Vi=1...D

transformed

distribution X, X, || X, X || X
‘ %)

base

distribution U1 uz UH ui UD

Examples: MADE, MAF IAF, NAF, PixeRNN, Wavenet, ...



Top Tagging with CNNs

Macaluso & DS 1803.00107

Individual images very sparse

CM5 QCD Tops

13 TeV
pr € (800,900) GeV, |n| < 1
Jet sample PyTHIA 8 and DELPHES
particle-flow
match: AR(t,7) < 0.6
merge: AR(t,q) < 0.6

1.2M + 1.2M
37 x 37
Image
An=A¢ =32
Colors (p%eutral7 pgl“ack’ Ntrack:a Nmuon)

Building on previous “DeepTop” tagger of Kasieczka et al 1701.08784



Top Tagging with CNNs

Macaluso & DS 1803.00107

Average images clearly different

CMS QCD Tops

13 TeV
pr € (800,900) GeV, |n| < 1
Jet sample PyTHIA 8 and DELPHES
particle-flow
match: AR(t,7) < 0.6
merge: AR(t,q) < 0.6
1.2M + 1.2M

37 x 37
An=A¢p =32

Image

neutral track

Colors (¥ , D7, Niracks Nmauon)

Building on previous “DeepTop” tagger of Kasieczka et al 1701.08784



Top Tagging with CNNs

Macaluso & DS 1803.00107

Feature Feature Feature Feature Feature Feature Hidden Hidden Hidden
Inputs maps maps maps maps maps maps units units units Outputs
4@37x37 128@37x37 64@36x36 64@18x18 64@17x17 64@16x16 64@8x8 256 256 2

AN N
NN N

Conv Conv Max-pool Conv Conv Max-pool Flatten Fully Fully Fully
4x4 4x4 2x2 4x4 4x4 2x2 connected connected connected
kernel kernel kernel kernel kernel kernel

AdaDelta

n = 0.3 with annealing schedule
minibatch size=128

cross entropy loss



Top Tagging with CNNs

Macaluso & DS 1803.00107

CMS jets
QCD rejection rate DeepTop minimal
1 05 Our final tagger 0-50;?—; i
HTTV2+75, BDT 9, QCD  Tops |
————— HTTV2+13, cut-based o |
104 ﬂjﬁﬁﬂ |
\Loua 1000
100
10| 95% accuracy
1 AUC=0.989

00 02 04 06 08 10 Top tagging efficiency
€s
Can achieve factor of ~3 improvement over cut-based approaches and BDTs!



Top Tagging with CNNs

Macaluso & DS 1803.00107

CMIS jets
QCD rejection rate DeepTop minimal
105 Our final tagger o0 [}
HTTV2+13, BDT e QCD Tops
————— HTTV2+13, cut-based sorol b
104 Wiy
\chn 1000
100
10| 95% accuracy
1 AUC=0.989

00 02 04 06 08 10 Top tagging efficiency
€s
Can achieve factor of ~3 improvement over cut-based approaches and BDTs!



Lists of four vectors
Pearkes et al 1704.02124

pr? \\\\/ ' M '
A I /

g

p

input layer*
5 hidden layers
300,150,50,10,5

nodes / hidden layer

Jet pr =600 - 2500 GeV

1000 |

Background Rejection

10 |

100

|||||||||||||||||||

—— Likelihood ratio: Jet mass and 73, 1

732

Outperforms |
high-level taggers -

|||||||||||||||||||

0 0.2 0.4 0.6 0.8 1.0
Too Taaaina Efficiencv

Jet pt = 600 - 2500 GeV

1000

100 |

Background Rejection

10 |

...............
—— Trimming, subjet ordering
- = = [rimming, pt ordering
—— No trimming, subjet ordering -
No trimming, pt ordering 1

0.0

I I 1 L I I 1 I L L
0.2 0.4 0.6 0.8 1.0
Top Tagging Efficiency

robust against different orderings



Sequences
Egan et al 1711.09059

View anti-k; sequence as a binary tree

Order using depth-first traversal prioritizing jets
with ‘parents’ whose d;; is smaller

/\ N~ Q Original particle
o
b dss das
if d;; < d,s: Input list ordering 1-2-3-4-5
dy, if d;¢ > d,5: Input list ordering 4-5-1-2-3

Turn jet into a sequence, e.g. using
jet clustering history.

Feed sequence to RNN/LSTM, etc.

®

Use a Recurrent Neural Network:
® [ ong Short-Term Memory Network @

Time step
@ ® &)
L—4 L
s [lEEA & [] A ]
® é @'9 credit: colah

- 600 <jet pr <2500 GeV
| | | |
—— LSTM+ Dense [128,64] No trim (jet structure sorting)

- -+ DNN

A =l
Lo

|
-

\
10 2

Lol

1rrrt
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T
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102 ; >

Background Rejection

(R AT
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! ~ |
-~
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~

10!

Lol

—
<
o
o T rrrmm

0.2 0.4 0.6 0.8 1.0
Top Tagging Efficiency



Trees
Louppe et al 1702.00748, Cheng 1711.02633

102 |

10! |-

1 / Background efficiency
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Signal efficiency

jet tree structure

Use jet clustering history to build binary tree

Train recursive neural net on jet tree to learn “embedding” for classifier.



simulated top quark jet
. anti-kt, R = 0.8, pr = 600 GeV
Graphs / Point clouds
Hu & Gouskos 1902.08570
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particles are intrinsically unordered
primary information:
2D coordinates in the n-g space
but also additional “features”: -
—— 1D P-CNN (area = 0.9804)
energy/momenta : Dot (arca = 000
charge/particle type 1071
track quality/impact parameters/etc. >
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