

石川 明正 (KEK)

将来計画委員会第三回勉強会 『BファクトリーとBの物理の現状、展望、ビヨンド。ぷらすミューオンコライダー』

Belle II の物理 ≠ Bの物理

- コライダー実験は物理のスペクトラムが広い
- Belle II の物理
 - B、charm、τ での新物理探索(フレーバー物理)
 - EW/QCD
 - Α_{FB}, σ
 - Radiative return e⁺e⁻→π⁺π⁻γ (ハドロン真空偏極) → muon g-2, Higgs mass
 - Antideuteron production ightarrow cosmic dark matter annihilation
 - 軽い(<10GeV)新粒子直接探索
 - Dark sector particles
 - Axion Like Particle
 - Light CP odd Higgs
 - Hadron 物理
 - Etc.
- 広い物理の中でもBの物理は Belle II の重要な柱である

Belle II Physics Book

- 興味ある方は読んで下さい
 - <u>https://arxiv.org/abs/1808.10567</u>
 - <u>https://doi.org/10.1093/ptep/ptz106</u>

Prog. Theor. Exp. Phys. 2019, 123C01 (654 pages) DOI: 10.1093/ptep/ptz106

The Belle II Physics Book

E. Kou^{75,*,§,†}, P. Urquijo^{145,‡,†}, W. Altmannshofer^{135,§}, F. Beaujean^{79,§}, G. Bell^{122,§}, M. Beneke^{114,§}, I. I. Bigi^{148,§}, F. Bishara^{150,16,§}, M. Blanke^{49,51,§}, C. Bobeth^{113,114,§}, M. Bona^{152,§}, N. Brambilla^{114,§}, V. M. Braun^{50,§}, J. Brod^{112,135,§}, A. J. Buras^{115,§}, H. Y. Cheng^{43,§}, C. W. Chiang^{92,§}, M. Ciuchini^{59,§}, G. Colangelo^{128,§}, A. Crivellin^{102,§}, H. Czyz^{156,29,§}, A. Datta^{146,§}, F. De Fazio^{53,§}, T. Deppisch^{51,§}, M. J. Dolan^{145,§}, J. Evans^{135,§}, S. Fajfer^{109,141,§}, T. Feldmann^{122,§}, S. Godfrey^{7,§}, M. Gronau^{62,§}, Y. Grossman^{15,§}, F. K. Guo^{45,134,§}, U. Haisch^{150,11,§}, C. Hanhart^{21,§}, S. Hashimoto^{30,26,§}, S. Hirose^{89,§}, J. Hisano^{89,90,§}, L. Hofer^{127,§}, M. Hoferichter^{168,§}, W. S. Hou^{92,§}, T. Huber^{122,§}, T. Hurth

Joint effort of theorists and experimentalists

Introduction

B中間子を使って何をしたい?

• ☑小林益川模型(標準模型)の検証

- Belle/Babar によるB中間子でのCKM行列の決定 により、すでに確立 → Nobel prize to KM (2008)

- →新物理の発見、消えた反物質の解明
 –新物理による標準模型からのズレ
 - 新しいCPVのソース
 - CKMの精度を上げる事は超重要
 - -新現象

B中間子は新物理に敏感?

重い

- 第3世代粒子は特別?
 - SU(2) partner の top の質量は EW scale → EWSB に関係する新物理
 - 新物理の Top partner/bottom partner と結合しやすい(と思われる)
 同世代
 - SUSY だと第3世代は軽い
 - 新物理のヒッグス粒子と結合しやすい(特に b,τ は2HDM type-IIで)
- 現象論(QCD)の理論計算が比較的精密
 - •標準模型で許される過程では理論との比較が重要(理論誤差)
 - $M_B >> \Lambda_{QCD}$

- (ただ Lattice QCD屋さんにとっては大変)

B中間子は新物理に敏感?

実験的には新物理の影響が小さいと思われる tree もO(²)でsuppress されているので、新物理の影響があると思われる loop に access しやすい

 $\lambda = 0.22$

7

- 歴史
 - Kaon $(2 \rightarrow 1)$
 - 寿命が長い変な粒子がいる。Strange → tree : V_{us}=O(λ)
 - B (3→2)
 - Bの寿命が思ってたより長い。Strange² → tree : V_{cb}がO(λ)じゃなくて O(λ²) だった!
- CKMが変なヒエラルキーを持っていること自体が素粒子屋にはおかしな事だった(が今では当たり前のように思われいる?)。

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \quad 3 \rightarrow 1 \text{ If } O(\lambda^3) \text{ CEEIC phase } \hbar^{\delta} \lambda \delta$$
$$= \begin{pmatrix} 1 - \lambda^2/2 & \lambda \\ -\lambda & 1 - \lambda^2/2 & A\lambda^3(\rho - i\eta) \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

加速器·検出器

SuperKEKB 加速器

- KEKB加速器の40倍のルミノシティー
 - Nano-beam scheme x20, beam current x2
- 非対称エネルギー 7GeV x 4GeV ← Y(4S) resonance 上
 - 時間依存 CPV を測定するために、B中間子を Z 方向に boost
 - boost factor は KEKB より小さくなった

Belle II 検出器

- 20倍のバックグラウンドでも Belle 検出器以上の性能を維持
 - Barrel/Forward Endcap Kaon ID の大幅な向上
 - $B \rightarrow K^* \gamma VS B \rightarrow \rho \gamma$
 - 崩壊点検出器の内層はIPに近く、外層は大きく
 - Vertex resolution の向上、long lived Ks を使った vertexing efficiency の向上
 - LHCbで苦手な π⁰, K⁰ も再構成可能、電子のIDも可能
- (ほぼ)すべてのB中間子崩壊を記録する
 - 逆側のBを再構成する事により、B⁰→ nothing でさえも探索可能
 - Effective flavor tagging efficiency >30% (LHCb ~3%)

Luminosity Projection

- 2031年に50ab⁻¹を収集
 - B中間子の数 1x10¹¹

現在 <u>https://confluence.desy.de/display/BI/Belle+II+Luminosity</u>

L_projection_2019-2020(6.5mo)-2031_30d_PXD2022_QCS-RF2026_2020_21_b

B中間子での新物理探索

B中間子の崩壊

- 多様な崩壊があり、色々な測定が可能
- 新物理に敏感なモード、SM reference となるべきモード(Kの物 理にも重要ε_κ)
 - − Tree : b \rightarrow c, b \rightarrow u
 - Annihilation $B \rightarrow \tau v$, μv
 - − Loop : $b \rightarrow s$, $b \rightarrow d$
 - Radiative decay $b \rightarrow s\gamma$, $d\gamma$

B中間子の崩壊分岐比とBの数

- 興味ある崩壊の分岐比が小さい → ルミノシティーが必要
 - B(B→Kl+l-)=O(10⁻⁷): Belle 1 で発見された b→sl+l- process
 - B(B $\rightarrow \rho \gamma$)=O(10⁻⁷): Belle 1 で発見された b $\rightarrow d\gamma$ process
 - Belle 1 のBB の数 : N_{BB}=7.7x10⁸
 - Belle 2 のBB の数 : N_{BB}=5.0x10¹⁰
- まだ、ほとんどの興味あるモードで十分な精度で測定出来ていない
 - BFの精密測定の為にはO(1000)イベントぐらい、CPVの精密測定の為にはO(30000)イベントぐらいは欲しい。
 - Differential を見るならさらに多くのイベントが欲しい
 - ・ 逆側のBを tag する必要がある崩壊は tag efficiency O(0.1)% により統 計精度が良くなく、多くのBが必要

新物理を見るにはどのモード?

- 実験・理論の精度が良く、新物理が入ってくるモード
- ・ ループ
 - Mixing : $|\Delta B|=2$
 - Penguin decay : $|\Delta B|$ =1
- ツリー
 - Leptonic decay
- 現在アノマリーがあるモード(LFU Violation)
 - $B \rightarrow D^{(*)} \tau v$
 - b→sl+l-

時間が無いので限られた物しか説明しません(できません)。 他にも重要なモードがありますが、選択には私のバイアスが入っています。 ご容赦下さい。

Mixingでの新物理

- Mixing の中の新物理の振幅と位相を決めたい
- →Unitarity Triangle

Unitarity Triangle

- Quarkのweak decayではCKM elementがかかる
 - Phase があるのは 3→1の transition Vub, Vtd

$$V = \begin{pmatrix} V_{ud} \\ V_{cd} \\ V_{td} \end{pmatrix} \begin{pmatrix} V_{us} \\ V_{cs} \\ V_{ts} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

by Wolfenstein parameterization

B_d=(bd) Irreducible complex phase cause CP Violation!

- $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ $(\bar{\rho}, \bar{\eta})$
- Comprehensive test; measure all the angles and sides.
- B system : very good place, all the angle are O(0.1)!

Mixingの中の新物理の探索

- ユニタリティー三角形を Tree 崩壊と Loop プロセスで比較
 - 新物理は Loop にのみ寄与すると思われている
- Belle II 実験のみが三角形の辺と角の6つの測定量を精度良く測定できる
 - 角:CP Violation の測定
 - 辺:崩壊分岐比の測定もしくは mixing の周波数の測定
- もし、ユニタリティー三角形が Tree と Loop で異なればクリアな新物理の証拠

Belle IIが始まる前と後でのユニタリティー三角形

- 誤差が大きくまだ決定的なことは言えな いが、少しだけズレている
- 2013年の中心値を用いて誤差を外挿す るとズレがはっきり見える
 - 全ての角を~1度の誤差で測定
 - 全ての辺を1~2%の誤差で測定
 - V_{ch} は現象論 dominant
 - V_{ub}, V_{td} は Lattice QCD dominant

Observables	Belle		Belle II	
	(2017)	$5 \ {\rm ab}^{-1}$	50 ab^-	1
$\sin 2\phi_1(B \to J/\psi K^0)$	$0.667 \pm 0.023 \pm 0.012$	0.012	0.005	
$S(B\to\phi K^0)$	$0.90\substack{+0.09\\-0.19}$	0.048	0.020	
$S(B \to \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	0.032	0.015	
$S(B\to J/\psi\pi^0)$	$-0.65 \pm 0.21 \pm 0.05$	0.079	0.025	
ϕ_2 [°]	85 ± 4 (Belle+BaBar)	2	0.6	
$\phi_3 \ GGSZ$	68 ± 13	4.7	1.5	
Observables	Belle		Bel	lle II
	(2017)		5 ab^{-1}	$50 { m ~ab^{-1}}$
$ V_{cb} $ incl.	$42.2 \cdot 10^{-3} \cdot (1 \pm$	1.8%)	1.2%	_
$ V_{cb} $ excl.	$39.0 \cdot 10^{-3} \cdot (1 \pm$	1.8%	1.4%	
$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} \cdot (1 \pm$	3.4%	3.0%	
$ V_{ub} $ excl. (WA)	$3.65 \cdot 10^{-3} \cdot (1 \pm$	2.4%	1.2%	

Before Belle II (2018)

12

M. Blanke and A. J. Buras, Eur. Phys. J. C 79 (2019) 159

Current Situation

- ズレてる?
- Hint for NP in mixing?

EFTで新物理のスケールに変換 arXiv:1309.2293

200TeV の新物理スケールに到達可能 $\frac{C_{ij}^2}{\Lambda 2} (\bar{q}_{i,L} \gamma^\mu q_{j,L})^2$ SM h=0

- SUSYだと10 TeVの新物理スケール
 - $\phi_1 \ge \Delta m$ にSUSYの影響が現れる

Tanimoto and Yamamoto Phys.Lett. B735 (2014) 426-437

Couplings	NP loop	Scales (in TeV) probed by		
Couplings	order	B_d mixing	B_s mixing	
$ C_{ij} = V_{ti}V_{tj}^* $	tree level	17	19	
(CKM-like)	one loop	1.4	1.5	
$ C_{ij} = 1$	tree level	2×10^{3}	$5 imes 10^2$	
(no hierarchy)	one loop	2×10^2	40	

21

Penguin での新物理

 $BF(B \rightarrow X_{\varsigma} \gamma)$

- 実験と理論は良い一致
 - Exp ~5%
 - Thoery ~5%
- 実験はすでに系統誤差 dominant だが大量
 の統計で誤差を 3% にする事が可能
 - WAは2.6%ぐらい
- 理論の誤差も将来的に 3.5% (2025年) ぐら いに押さえられる
 Private communication with M.Misiak
- 新物理スケール
 - 荷電ヒッグス M_H >900GeV
 - 中間 tanβ 領域(~5) は LHC より厳しい制限

Ishikawa private estimate

Observables	Belle 0.71 ab^{-1}	Belle II 5 ab^{-1}	Belle II 50 ab^{-1}
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{lep-tag}}$	5.3%	3.9%	3.2%
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{had-tag}}$	13%	7.0%	4.2%
$\operatorname{Br}(B \to X_s \gamma)_{\text{sum-of-ex}}$	10.5%	7.3%	5.7%
$\Delta_{0+}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.4%	0.94%	0.69%
$\Delta_{0+}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	9.0%	2.6%	0.85%

Belle II Physics book 1808.10567

$\Delta A_{CP}(B \rightarrow X_{s}\gamma)$

 A_{CP}(B→X_sγ) は新物理のCPVに敏感だがすでに理論誤差が 主要

$$A_{CP} = \frac{\Gamma(\bar{B} \to \bar{X}_s \gamma) - \Gamma(B \to X_s \gamma)}{\Gamma(\bar{B} \to \bar{X}_s \gamma) + \Gamma(B \to X_s \gamma)}$$

新たな変数 ΔA_{CP} はSMで0なので新物理に敏感

$$\Delta A_{CP} = A_{CP}(B^+ \to X_s^+ \gamma) - A_{CP}(B^0 \to X_s^0 \gamma)$$

$$= 4\pi^2 \alpha_s \frac{\Lambda_{78}}{m_b} \operatorname{Im}\left(\frac{C_8}{C_7}\right),$$

 $\approx 0.12 \left(\frac{\tilde{\Lambda}_{78}}{100 \text{ MeV}} \right) \text{Im} \left(\frac{C_8}{C_7} \right)$, M. Benzke, S. J. Lee, M. Neubert, G. Paz, JHEP 08 (2010) 099

- Ex. SUSY with flavor violating trilinear couplings

M. Endo, T. Goto, T. Kitahara, S. Mishima, D. Ueda and K. Yamamoto, JHEP 04 (2018) 019.

- Belle で初の測定 2018
 - 主要な系統誤差は減らせる → Belle II でさらに改善出来る

 $\Delta A_{CP} = [+3.69 \pm 2.65 (\text{stat.}) \pm 0.76 (\text{syst.})]\% \text{ Watanuki, Ishikawa et al, PRD 99, 032012 (2019)}$ $Observables \qquad Belle \ 0.71 \text{ ab}^{-1} \quad Belle \ \text{II} \ 5 \text{ ab}^{-1} \quad Belle \ \text{II} \ 50 \text{ ab}^{-1}$ $\Delta A_{CP} (B \to X_s \gamma)_{\text{sum-of-ex}} \quad 2.7\% \qquad 0.98\% \qquad 0.30\%$

$\Delta A_{CP}(B \rightarrow X_{s}\gamma)$ による SUSY への制限

- Set a limit on parameter space in SUSY
 - Squark 4.5TeV以下のparameter space に制限

M. Endo, T. Goto, T. Kitahara, S. Mishima, D. Ueda and K. Yamamoto, JHEP 04 (2018) 019.

Gluino mediated EWP which explains ε'/ε from CPV trilinear couplings

Modak and Senaha Phys. Rev. D 99, 115022 (2019), 1811.08088

ΔA_{CP}(B→Xsγ)と電弱バリオジェネシス

 Genaral 2HDM (no Z₂ symmetry)では additional な湯川結合 ρ aが導入

$$y_{hij}^{f} = \frac{\lambda_{i}^{f}}{\sqrt{2}} \delta_{ij} s_{\beta-\alpha} + \frac{\rho_{ij}^{f}}{\sqrt{2}} c_{\beta-\alpha},$$
$$y_{Hij}^{f} = \frac{\lambda_{i}^{f}}{\sqrt{2}} \delta_{ij} c_{\beta-\alpha} - \frac{\rho_{ij}^{f}}{\sqrt{2}} s_{\beta-\alpha},$$
$$y_{Aij}^{f} = \mp \frac{i\rho_{ij}^{f}}{\sqrt{2}},$$

- もし p が複素数であれば CPV と EW Baryogensis が可能
- ΔA_{CP}はρの位相に敏感
- HL-LHC/ILC での H→bb による湯川結合の測定
 により ρ に制限を与える

– もし ρ の位相を見つけたら ILC500 での自己結合測定

ツリー: Leptonic Decay

B Decays with Multiple $\boldsymbol{\nu}$

- 複数のニュートリノを放出する過程では 逆側のBを再構成する必要がある
- 複数のニュートリノを放出する解析は LHCb では難しい
 - $B \rightarrow D\tau v, B \rightarrow \tau v, b \rightarrow svv, b \rightarrow s\tau\tau$
- Three tagging methods
 - Inclusive tag - Semileptonic B tag - Hadronic B tag π^+ $K^ D^+$ T(4S) B^+_{sig} T(4S) B^+_{sig} V

B→τν荷電ヒッグス探索

- BF(B $\rightarrow \tau \nu$) in 2HDM type-II $r_H = (1 \frac{m_B^2}{m_H^2} \tan^2 \beta)^2$
 - Higgs coupling $\propto m_{\tau}$
 - $\mathcal{B}(B \to \tau \nu) = \mathcal{B}(B \to \tau \nu)_{\mathsf{SM}} \times r_H$
 - BFは r_H にしかよらない(tanβ/m_Hの関数)
 - r_{μ} はレプトンフレーバーによらない (B \rightarrow μ v)
 - よるようであれば LFU Violationの発見
- BFを精密測定することにより荷電ヒッグス探索

	Integrated Luminosity (ab^{-1})	1	5	50
	statistical uncertainty (%)	29	13	4
hadronic tag	systematic uncertainty $(\%)$	13	7	5
	total uncertainty (%)	32	15	6
	statistical uncertainty (%)	19	8	3
semileptonic tag	systematic uncertainty $(\%)$	18	9	5
	total uncertainty (%)	26	12	5

Limit on Charged Higgs

- R_b at LEP
 - tan β >~2.5
- $BF(B \rightarrow Xs \gamma)$

 - M_H > 800GeV (2020)
 - →>~900GeV in 2031 Ishikawa's private estimation
- BF(B $\rightarrow \tau \nu$) in 2027
 - $\tan\beta/M_{H} < 0.008/GeV$ (4% on BF)
 - If tan β =60 \rightarrow M_H>7.5TeV
- Allowed region in 2031

ILC で Higgs couplings を測定するまでは, B physics observables が charged Higgs in 2HDM type-II で最も強い制限を与える

現在アノマリーのあるモード

- 二つの Lepton Flavor Universality Violation アノマリーがある
 - Anomaly in b $\rightarrow c\tau v$ by LHCb and Babar.
 - Belle が最も精密だがSMとも LHCb+Babar とも 2s程度でconsistent
 - Anomaly in $b \rightarrow sl^+l^-$ by LHCb
- 標準模型ではLFUVは無い
 - 最近 LHC で W→τν,µv のアノマリーが消えた

Tree BF~O(10⁻²)

Loop BF~O(10⁻⁶)

$B \rightarrow D^{(*)} \tau v$

- 標準模型では W を介して崩壊
 - 崩壊分岐比は O(1)%と大きい
- 第三世代クォークから第三世代レプトンへの崩壊
 - 重い粒子に結合しやすい新物理
 - charged Higgs
 - 第三世代を特別に扱う新物理
 - Leptoquark, flavored Z'
- $b \rightarrow c\tau v$ first observed by Belle

Matyja et al. PRL 99, 191807 (2007), arXiv:0706.4429

終状態に二つ以上のニュートリノがあるため、逆側のB
 中間子を再構成 (tag) しなくてはならない

	5 ab^{-1}	$50 { m ab}^{-1}$
R_D	$(\pm 6.0 \pm 3.9)\%$	$(\pm 2.0 \pm 2.5)\%$
R_{D^*}	$(\pm 3.0 \pm 2.5)\%$	$(\pm 1.0 \pm 2.0)\%$
$P_{\tau}(D^*)$	$\pm 0.18 \pm 0.08$	$\pm 0.06 \pm 0.04$

• B→D^(*)τν で3.9σのアノマリーが見えている $R(D^{(*)}) = \frac{BF(B \to D^{(*)} \tau v_{\tau})}{BF(B \to D^{(*)} l v_{l})}$ 15%のズレ

 $B \rightarrow D^{(*)} \tau \nu$

- Leptoquark や flavorfull W' などの新物理

 WAの中心値が変わらなければ、2024年までの データでアノマリーを発見できる。

アノマリーが発見された後には D* と τ の 偏極
 も含めた新物理模型の選別 Tanaka and Watanabe 1212.1878

$b \rightarrow s l^+ l^-$

- SMでは loop diagram で崩壊
 - 崩壊分岐比は O(10⁻⁶)と小さい
 - Loop と CKM matrix element $V_{ts} \sim A\lambda^2$ で suppress
- $B \rightarrow K^{(*)}I^+I^-$ first observed by Belle

K. Abe et al, PRL 88, 021801 (2002), <u>hep-ex:0109026</u> A. Ishikawa et al, PRL 91, 261601 (2003), <u>hep-ex/0308044</u>

- Color singlet の Lepton が終状態にあるので理論
 的・実験的にクリーンと思われている
 - しかし precision era になると、その理論的なクリーンさの定量的理解が重要
 - LFUはQED correction を考えてもクリーン 1% ほどの誤差
- 新物理
 - 新粒子が loop を回る
 - SUSY, charged Higgs
 - Tree level FCNC
 - Leptoquark
 - Flavored Z'

b→sl⁺l⁻ でのLepton Flavor Universality

- LHCb で B→K^(*)I⁺I⁻ の LFU でアノマリー
 - Naïve な平均を取ると4g 程度

$$R_H = \frac{\mathcal{B}(B \to H\mu^+\mu^-)}{B(B \to He^+e^-)} \quad H = K, K^*, X_s, \dots$$

- Belle II
 - LHCb ではできない high q² や Inclusive B→Xs I⁺での測定が可能
 - 現在の中心値が変わらなければ 2025年に新物理の発見
 - その後は角分布における LFU 測定による模型選別

現在と将来の困難と解決法

- 背景事象
- 理論計算(QCD)

• COVID-19

- Occupancy for layer3
- ECL
 - 大量の Low energy の photon が backward endcap 領域に当た るため、low energy photon を使った解析が困難
- KLM
 - Glass RPC 沈黙

解決法:背景事象が多い

- 加速器·MDI で出来る事
 - KEKBからビームパイプを交換したため真空の焼き出しがまだ済んでいない
 - 真空の焼き出しは数年かかる
 - 時間が解決(大電流で長時間 Ahが重要)
 - コリメータの追加
 - Touschek (bunch内の粒子間の相互作用)
 - 予定されていた全てインストールされていない
 - Bellows周りはシールドが無い
 - シールドを設置 and/or Bellows を変更して入れ替える
 - PXD に対するback scattered SR background
 - ビームパイプ超前方にも Au コーティング

解決法:背景事象が多い

空間・時間的に細かく分割

- 検出器入れ替えで解決
 - PXD
 - DEPFET→高速な SOI, DMAPS
 - SVD
 - Strip pitch を Belle 1 程度に狭くする
 - CDC 領域もカバーする?
 - CDC
 - ガスを変えたりcellを小さくしても難しい??
 - Full silicon tracker が良い? 物質量, dE/dx による PID
 - TOP/ARICH
 - PMT → MPPC
 - ECL
 - CsI(TI) → 高速な pure CsI or 他のクリスタル(LYSOは高いが rad. length 長く嬉しい)
 - KLM
 - Glass RPC → シンチ+MPPC

New Pixel Detector Concept DuTiP for Belle II Upgrade and the ILC with an SOI Technology

Akimasa Ishikawa^{a,b,*}, Yasuo Arai^{a,b}, Jérôme Baudot^c, Junji Haba^{a,b}, Maciej Kachel^c, Ikuo Kurachi^a, Taohan Li^d, Shun Ono^a, Takehiro Takayanagi^a, Ayaki Takeda^e, Toru Tsuboyama^{a,b}, Miho Yamada^f

困難:理論計算(QCD)

- B中間子崩壊の現象論の計算は比較的精度 が良く信頼出来る。
- しかし、Belle II レベルの測定になるとすでに 理論誤差がリミットするところが出てくる。

- 場合によっては Belle の精度でもすでに理論誤差 がリミットしている

- 解決法
 - 実験的に決められる量は実験で決める
 - 理論の仮定が必要でモデルによる物もある
 - Lattice QCD で計算できるものはそれで決める
 - 可能であれば現象論と組み合わせる
 - Bは重いので高速なスパコンが必要
 - (現象論屋さんが頑張る)
- 例として
 - − B(B→Xsγ)
 - $-\phi_1$ $-|V_{ub}|$

- Belle 1 で 解決出来た例: B(B→Xsγ)
 - 理論誤差 7% in 2018 (m_{H+}>580GeV)
 - 理論誤差は b→sg の gluon が spectator に吸収されて photon を放出し b→sγに見 える事象(resolved photon)が大きかった(5%)。
 - EM なので spectator の charge に依存 → isospin asymmetry を測定するとその大きさが分かる

S. J. Lee, M. Neubert, G. Paz, PRD **75**, 114005 (2007).
M. Misiak, Acta Phys. Polon. B **40**, 2987 (2009)
M. Benzke, S. J. Lee, M. Neubert, G. Paz, JHEP 08 (2010) 099

- Belle で測定し isospin asymmetry が 0 consistent → resolved photon の影響による誤差は小さい (3%)

Watanuki, Ishikawa et al, PRD 99, 032012 (2019)

- 理論誤差 5% と改善された (m_{H+}>800GeV)

 $\mathcal{B} = (3.40 \pm 0.17) \times 10^{-4}$

M. Misiak et al 2002.01548

- ϕ_1 with $B \rightarrow J/psi Ks$
 - Penguin pollution による理論誤差が1度ぐらいあるかも(実験誤差0.9度)
 - b→s (ccbar) penguin

 $S_{J/\psi K_S^0} \equiv \sin \phi_d + \Delta S_{J/\psi K_S^0} \equiv \sin(\phi_d + \delta \phi_{J/\psi K_S^0})$

- 関連するモード(Isospin symmetry, SU(3) symmetry, U-spin symmetry)のisospin asymmetry, A_{CP}, S_{CP}などの測定を行い、その影響を評価。
 - Penguin pollutionが大きな b→d (ccbar) を測定し、b→s (ccbar) を見積もる(model 依存)

- |V_{ub}|
 - dB(B→πlv)/dq² が best な測定方法だが、Belle 1
 の時点ですでに Lattice QCDによる form factor の 精度で limit
 - スパコンの計算力アップとLattice QCD屋さんの努
 カにより、Lattice QCDの計算精度を上げる
 - High q² での計算なので low q² は現象論の予言と接続する

X_u	Theory	q^2	N^{fit}	N^{MC}	$\Delta \mathcal{B}$	$\Delta \zeta$	$ V_{ub} $	
		${\rm GeV}/c^2$			10^{-4}	ps^{-1}	10^{-3}	
	LCSR [33]	< 12	247.2 ± 18.9	233.1	0.808 ± 0.062	$4.59\substack{+1.00 \\ -0.85}$	$3.40 \pm 0.13 \pm 0.09^{+0.37}_{-0.32}$	-
π^+	LCSR [34]	< 16	324.2 ± 22.6	305.1	1.057 ± 0.074	$5.44^{+1.43}_{-1.43}$	$3.58 \pm 0.12 \pm 0.09^{+0.59}_{-0.39}$	
[°] (HPQCD $[35]$	> 16	141.3 ± 16.0	116.1	0.445 ± 0.050	$2.02^{+0.55}_{-0.55}$	$3.81 \pm 0.22 \pm 0.10^{+0.66}_{-0.43}$	
	FNAL [36]	> 10	141.5 ± 10.0	110.1	0.445 ± 0.050	$2.21\substack{+0.47 \\ -0.42}$	$3.64 \pm 0.21 \pm 0.09^{+0.40}_{-0.33}$	Lattice QCDの誤差
	言い方を変えると Belle 1 の時代に Lattice OCD がBの物理に使えるようになった。							

言い方を変えると Belle 1 の時代に Lattice QCD がBの物理に使えるようになった。 Belle II では Lattice QCD の華々しい活躍を期待しています。 Inclusive b→c,u や|V_{td}| や |V_{tc}| もLattice QCD に期待 (bag param. and decay const.)

https://www2.kek.jp/ipns/ja/post/2020/07/20200715/

まとめ

- 現在のBの物理は TeV スケールにある新物理を探索し、消えた反物質の謎の解明が主な目的
 - $M_{SUSY} > 10 \text{TeV}$ using mixing
 - M_{H+} > 900GeV with tan β ~5
 - M_{H+} > 7.5TeV with tan β =60
 - 電弱バリオジェネシスに必要な phase 探索
- そのためにはもの凄い加速器 SuperKEKB と素晴らしい検出 器だけで無く、現象論や Lattice QCD の進展も重要
- 興味のある方は Belle II への参加をお待ちしております。
 Bの物理だけでは無く他の目的でも。

backup

角の測定

CPV の測定 • ϕ_1 J/W Vcb $\overline{B_{d}^{\theta}}$ K_{S} J/ψ V* V_{tb} td d B $\overline{B^{\theta}}$ d b Vtb V* K_{S} td

48

$B \rightarrow D\tau v @ LHCb$

- B中間子の崩壊点がわからない崩壊は測定が非常に難しい
 - 崩壊点の測定には少なくとも2本の飛跡が必要
 - 崩壊点が PV から離れている事を要求し背景事象を抑制
- B→Dτν, B_s→D_s^(*)τνは難しいのでは無いか?
 - ただ BF が O(1)%なので、出来る可能性もあるか?
- しかしB_c→J/psi τvが出来る
 - FF?? Lattice?

個人の意見です

Full Event Interpretation (FEI)

Detector の改善と

- Multivariate Technique を用いた階層的な tag side の再構成手法
 - Belle1より多くのモードを追加
 - $B \rightarrow D n\pi$, $B \rightarrow D n\pi Iv$, $D \rightarrow K n\pi$ etc
 - Signal side を指定してアルゴリズムを最適化可能
 - Hadronic decayとsemileptonic decayの両方をtag 可能
- Belle 1 の時と比較し約2倍の tagging efficiency

	Algorithm の改善 Background の効果				
Tag	FR^4 @ Belle	FEI @ Belle MC	FEI @ Belle II MC		
Hadronic B^+	0.28~%	0.49~%	0.61~%		
Semileptonic B^+	0.67~%	1.42~%	1.45~%		
Hadronic B^0	0.18~%	0.33%	0.34~%		
Semileptonic B^0	0.63~%	1.33%	1.25~%		

FEI with real data

-2

5.24

5.25

5.26

 m_{bc} (GeV/ c^2)

5.27

5.28

- **Belle II preliminary** FEI successfully reconstructed ۲ $dt = 5.15 \, \text{fb}^{-1}$ Correctly reconstructed 0005 CeV/C²) 6005 C Continuum & mis-reconstructed hadronic B decays Data $N_{B_{tag}^0} = 7425 \pm 152$ Events / (0.0025 0 0002 00025 0 0002 00025 0 P_{tag} > 0.1 2.5 Pull Pull 0.0
- Missing mass distributions 101
 B→Xe⁺v with the tagged B meson
 Can be used for |Vcb| measurement and extraction of HQE parameters

Belle II preliminary

Correctly reconstructed

Data

n 2.5

0.0

5.24

5.25

-2

Continuum & mis-reconstructed

P_{tag} > 0.1

5.26

 m_{bc} (GeV/ c^2)

5.27

 $N_{B_{100}^+} = 8898 \pm 204$

c dt = 5.15 fb⁻¹

5.28

B→D^(*)τνの測定

- Tag side を再構成したら、signal side の D^(*)とてからの娘粒子を再構成する
- Discriminator は missing mass で final plot はカロリー メータでの余分なエネルギー E_{ECL}
- 実際に測定する物理量は BF の比 R_{D(*)} $R_{D^{(*)}} = \frac{\operatorname{Br}(B \to D^{(*)}\tau\nu_{\tau})}{\operatorname{Br}(B \to D^{(*)}\ell\nu_{\ell})} \quad \mathsf{I=e,\mu}$
 - 多くの理論的実験的な系統誤差がキャンセル
 理論予言は clean (と言われている)
 - Form factor
 Bigi, Gambino, Schacht 1707.09509
 - 実験的に B→D^(*)lv で良く測られている (CLN→BGL?)
 - Lepton mass がかかるform factor は Lattice+Pheno で計算 (重いτにのみ重要)
 - LD QED correction (electron modelt?)

Boer, Kitahara, Nisandzic 1803.05881

他にも q² distributionや D* と τ polarizations も 測定可能であり、新物理模型の選別に使える

B→D^(*)τνの背景事象

- Leptonic τ decay : $\mathbf{B} \rightarrow \mathbf{D}^{**} \mathbf{I}_{\mathbf{V}}$, $\mathbf{D}^{**} \rightarrow \mathbf{D}^{(*)} \pi(\pi)$
 - もし D** からの π を再構成出来なかったら背景事象となる
 - B→D^(*)Iv以外は現在完全に理解出来ていない
 - D**自身も現在完全に理解していない
- ► Belle II で測定可能
- Hadronic τ decay : $B \rightarrow D^{(*)}D_sX$, $D^{(*)}DKX$
- もう一つは feed-down D*→D
 - B→D*τv, D*→DX の X を再構成出来ないと B→Dτv の背景事象となる
 - E_{ECL}のSimultaneous fit により分離する

Belle II Cons and Pros (VS LHCb)

- Cons.
 - Statistics of b hadrons!!
 - We will only have 10¹¹ B mesons with 50ab⁻¹ on Y(4S) and 5x10⁸ B_s with 5ab⁻¹ on Y(5S)
 - No large samples of b baryon and B_c
 - Production of these hadrons are not yet established around Y(nS).
 - Proper time resolution is worse and B meson is not so boosted.
 - Background suppression with B vertex is not so easy → fully inclusive b→sll??
 - Bs mixing (Δm_s) can not be measured (while $\Delta \Gamma_s$ can be measured).

Belle II Cons and Pros (VS LHCb)

- Pros.
 - Smaller background cross section : ~3.4nb for ee→qq, ~1nb for ee→Y(4S)→BB
 - − Almost 100% trigger efficiency for $Y(4S) \rightarrow BB$ events.
 - Main trigger : 3-track-trigger || ECL high energy trigger.
 - Absolute BF measurement possible.
 - High hermeticity $4\pi \times 94\%$
 - High reconstruction efficiency of O(1)~O(10)%.
 - Full reconstruction possible (Reconstruction of the other B meson)
 - More than one missing neutrino modes can be also searched for $\rightarrow B \rightarrow K^{(*)}vv$, $B \rightarrow K\tau\tau$, $B \rightarrow vv$
 - Detection of electron
 - Detection efficiency of electron is almost the same as that for muon → test of LFU
 - Detection of neutrals
 - γ , π^0 and Ks can be reconstructed efficiently \rightarrow sum-of-exclusive approach, $B_{(s)} \rightarrow \gamma \gamma$
 - Better energy resolution of hard $\gamma \rightarrow B \rightarrow \rho \gamma$ with good PID devise

The First Collisions observed by Belle II

• 26th Apr 2018

Event Display : e+e- → 🖗 🛱

People excited about the first collision

SuperKEKB control room

Belle II control room

Rediscoveries of B decays

- With 2.6fb⁻¹
 - We observed B→J/psi K(*)
 - was golden mode for $sin2\phi_1$ measurements
 - used for calibration of b→sl+l-
 - We rediscovered the penguin mode $B \rightarrow K^* \gamma$.

