シリコン検出器 全体像 + センサー設計・製造・放射線照射、 モジュール

<u>outline</u>

全体像

IBL

Pixel

Strip

sensor, module

sensor, system test (ABC250),

module (ABC130)

今後の計画

池上陽一 (KEK)

2013/05/23

2013/05/23

Particle fluences in ATLAS

1000

⁻luence (10^14 1-MeV n_eq/cm^2)

- ATLAS detector to design for
 - Instantaneous lum.: 7x10³⁴ cm⁻²s⁻¹
 - Integrated lum.: 6000 fb⁻¹ (including safety factor 2 in dose rate)
 - Pileup: 200 events/crossing
- <u>IBL (LHC)</u>
 - Insertable B-layer pixel
 - r = 3.3 cm
 - Flunece ~3x10¹⁵
 - at Int.L~300 fb⁻¹
- PIXELs (HL-LHC)
 - Inner: r=3.7 cm ~2.2x10¹⁶
 - Medium: r = 7.5 cm, ~6x10¹⁵
 - Med/Out: r=15.5 cm ~2x10¹⁵
 - Outer: $r = 31 \text{ cm}(?) \sim 1 \times 10^{15}$
 - Charged:Neutrons ≥ 1
- STRIPs (HL-LHC)
 - Replacing Strip and TRT
 - r = 30 cm, e.g.
 - Fluence ~1x10¹⁵
 - Neutrons:Charged ≥ 1

occupancy 放射線耐性

- \Rightarrow pixel size :50x400 \rightarrow 50x250 (µm), strip length:120 \rightarrow 24 (mm)
- ⇒ p-bluk sensorの開発

2013/05/23

Why P-bulk sensor ?

放射線耐性をさらに上げるには、 P型バルクセンサー

型反転しない PN接合側の電極は部分空乏化でも分離 →→耐圧を越えたら、電圧を下げて運転(信号量は減る)

2013/05/23

HV protection

Readout hybrid ~0V

Edgeの電圧は、高電圧

> 100 μ & Insulated hybrid Stripの場合は、問題ない

2013/05/23

HV

n+ in n-bulk vs. n+ in p-bulk

Philipp Weigell (MPI für Physik)

PPS-Overview

pixel edge HV protection

• Encapsulation

 \Rightarrow

- 耐電圧性能 (>1kV) (シリコン系樹脂、パリレン樹脂、)
- <u>耐放射線??</u> (シリコン系樹脂、パリレン樹脂、)
- Si基材との親和性(シリコン系樹脂、パリレン樹脂、)

今のところ候補なし(2012.09)

- → パリレン樹脂 に関して5×10¹⁵ (1MeV-n-eq.) 照射後 1kVの耐圧有り:要追試
- プロセス上の工夫でedgeにSiO²をつけられないか?

年内には結果を出せる予定(2012.09)

継続

2013/05/23

2013/05/23

Beam test DAQ

- KEK PSのshut down後、beam test は主に、海外の施設 で共同実験(幹事ではない…)
- 放射化物の移動が大変。
 - ⇒ beam test を主導したい
 - ⇒ DAQのmiddle ware と soft wareの開発: FPGA base (SEBAS)の開発中:花垣氏報告

Major milestones – Sensor specific

• LOI – 2012 (Done)

- Fluence specifications, area, candidate technologies
- Milestones towards TDR and construction
- Candidate sensor designs and performances
 - Sensor Specifications and Layout
 - Sensor Electrical Performance
 - Sensor Irradiation Studies and Results
- 5th pixel layer (?)

• TDR/FDR – 2015-2018

- TDR will be multiple
 - depending on the radii, specially the inner parts of pixels
 - Alternatively, single TDR with options for innermost regions
- Infra-structure implication
 - (decision time scale? Innermost, medium pixels
 - Services up to PPO to be fixed at the time of 1st TDR (?)

Coordination

IBL

2013/05/23

IBLの活動

IBL (Insertable B-Layer)

- •2014年にATLASの最内層に導入する新たなピクセル検出器
- •実機用モジュールとステーブを製造中
- •日本からはKEKと東工大が参加

<u>日本グループの活動内容</u> •センサー・モジュールの試験@ジェノバ大 •ステーブの読み出し試験@ジュネーブ大 •DAQソフトの開発

•IBLとサービス・ケーブル間の接続試験

IBLステーブ

先端加速器LHCが切り拓くテラスケールの素

Pixel

2013/05/23

Inefficiency in Pixel

Inefficiency was observed under Bias and/or Poly-silicon structure from beam tests.

陣内氏の報告

2013/05/23

15

Bias Rail Routing

- Bias rail to offset from midway (Large, Small)
- Bias Type (PolySi (PS), Punch-Thru (PT)
- Number of bias rail (Single, Double, None)

2013/05/23

PolySilicon Bias Resistor Routing

- PolySi encircling "outside" the pixel implant
 - causes inefficiency
 - by reducing the electric field under the polysilicon, very much similar to the effect of the "bias rail"
- Move the routing of the PolySi "inside" the pixel implant

4-chip pixel module

- Board size mates to current beam test setup.
 - PCB size is 10 cm x 10 cm.
 - It was very tight condition for layout work.
 - The minimum function was implemented. If further options are needed, we will add in the future versions.
- Pitch adapters are introduced.
- Modules and pitch adapters are attached to "detachable" cooling plate (Al or Carbon)
 - Board and pitch adaptor have multiple wirebonding pads.
 - Pads on the board are aligned in single row.
 - Pad layout to match for both pseudo- and real- 4chip module
 - Straight wire bonding is possible.
 - Good cooling contact is achievable.
- Single compatible board with FE-I4A and B

Pitch Adaptors

- Prototype samples fabricated
- Several variations
 - Materials: LCP-based, PI-based
 - Plating: Ni+Au, Ni+Pd+Au

2013/05/23

Wire bonding

Pull test > 10g

2013/05/23

Strip

2013/05/23

ATLAS12A & M wafer layout

- Main sensor at the center of the wafer
- 1-24 Baby sensors in the peripheral of the main sensor

2013/05/23

- MD>1000V
- ATLAS12M 45 sensors process finished
- ATLAS12A 120 sensors process finished

ATLAS12M after dicing

2013/05/23

Super-module ABC250

2013/05/23

ENC results

SuperModule top & bottom side enabled

2013/05/23

ENC results (SEABAS)

- Gain ~ 110 mV/fC
- Noise measurements under progress

Module design concept for ABC130

2013/05/23

I/O lines

Figure 7: Block diagram of the Hybrid Controller Chip (HCC) and related I/O lines.

2013/05/23

HCC emulation

Emulation case: w/o HCC (bypass trace on flex + extra I/O pins)

super-module for ABC130

2013/05/23

Service bus

We are planning to make a new Al/Cu bus cable with IBL experience. Bus material considerably decreases in comparison with all Cu case.

2013/05/23

2013/05/23

短期計画

<u>IBL</u> ● 継続

<u>Pixel</u>

- 7/25-26のCYRICの照射試験に、新設計のpixel sensorを投入
- 8月末のDESYのbeam testに、新設計のpixel sensorを投入 (照射済みのpixel sensorの投入は難しい)
- 4-chip moduleのSEABAS読み出しは継続

<u>Strip</u>

- super-module(ABC250) system test(HSIO)の論文化
- super-module(ABC250) system のSEABAS読み出し改良を夏に計画
- ABC130用のhybrid を夏まで製作
- ABC130用のmodule design
- ABC130用のsupermodule

Beam Test

- system統合
- KEKデジタル加速器、J-parc、...

ID upgrade関係の現時点での人員

KEK	海野	センサー設計、モジュール、照射試験, beam test 解析
	池上	(センサー設計)、モジュール、照射試験
	田窪	IBL製造、SEABAS:firmware
	中村	beam test 解析,照射試験
	三井	センサー基礎特性評価、照射試験
阪大	花垣	SEABAS :pixel, telescope, ABCD3T,
	Teoh (D1)	SEABAS :pixel
	石島 (M2)	beam test用telescope
	荒井 (M1)	SEABAS :pixel
京教	高嶋	SEABAS : ABC250, beam test DAQ soft
	西村(M2)	SEABAS : ABC250
	山本(M1)	beam test DAQ soft
東工大	陣内	beam test 解析、IBL製造, SEABAS: ABC130, SM(ABC250)
	本橋 (M2)	beam test 解析、IBL製造,照射試験
	留目(M1)	SEABAS: ABC130, SM(ABC250), 照射試験
	山口(M1)	beam test 解析
筑大	原	beam test 解析, beam test 周辺(DCS)
	萩原(M1)	beam test 解析
	大宮(M1)	beam test 周辺(DCS)
(upgrade	e新規参入)	
九大	東城、	super frame (bus tape)

super frame (bus tape) SEABAS: ABC130

2013/05/23

お茶大

河野、…

中長期計画

TDR/FDR 2015-2018

Pixel

- pixel moduleの放電対策 (EdgelこSi02, パリレンコート)
- inefficiencyの改善
- 日本製のmoduleを採用させる(可能性は高い)

Strip

- ABC130用のmodule prototypeの製造、試験
- ABC130用のsupermodule prototypeの製造、試験
- stave moduleの試作???

Production (2022まで)

Pixel

```
• pixel moduleの製造(HPK)、試験(クリーンルーム)
```

Strip

- hybridの製造(例えば、林栄)、試験(クリーンルーム)
- stave moduleの製造、試験をどう考えるか???

現状は、supermodule押しだが、採用される見込みはまずない 重要な経験は積めるが、採用される見込みのないもに資源を投入し続けるのか? moduleに、state-of-the-art technologyを注ぎ込んで見る? staveのdesignは...

hybridの製造だけを受け持つことが可能なのか

グループ内議論が必要

2013/05/23

Stave module Module and its removal

Module Shipping

- As module only consists of a sensor and 2 hybrids to reduce material, shipping them is slightly more involved
- Came to a solution of a vacuum gelpack
- First trial shipments completely successful
 - Required removal from frame
- Acquired 50 more gels and have designed a custom box which will allow shipment within frame for easier testing before/after shipment

vacuum release gel-tray

9

Backup

2013/05/23

開発能力

<u>Module</u>

Sensor

- ASIC
- module assembly
- DAQ
- •熱計算、構造計算

Irradiation test

Beam test

- ●場所
- DAQ
- Telescope
- trigger、架台等

Module integration

- 構造体設計
- 熱計算、構造計算
- Service bus (AI)

OK 未着手

不有于

OK

開発が進行中

今は、誰もやっていない(経験はある)

CYRIC

より良い場所を探している 開発が進行中 開発が進行中 これから

現状で、実機の設計の担当者はいない (ジュネブ大の結果はある) 新規開発(CERNIC経験はある)

Micro-channel cooling

Strip moduleのbaseboardとして基礎開発を進めるのは?

2013/05/23