

名古屋大学 宮崎由之

まず昨年を思い出してみて

で、結果は?

今年度の結果

- Publication (昨年度トーク済み)
- $\tau \rightarrow IK^0s$, IK^0sK^0s (PLB 692, 4 (2010))
- ・ τ → 3leptons
 (PLB 687, 139 (2010))

 本日のメインの話
- $\tau \rightarrow I$ + pseudo scalar meson
- $\tau \rightarrow$ + vector meson (submitted to PLB)
- 現在進行中
- $\tau \rightarrow I + gamma$
- τ→l + hh'

イントロダクション

イントロダクション

荷電レプトンのレプトンフレーバーの破れ ニュートリノ振動を考慮してもBr(τ→lγ) <O(10⁻⁵⁰) ⇒今の実験では観測不可能

標準模型を超える多くの新しい物理では、 大きなレプトンフレーバーの破れを予言している ⇒もし観測できれば、新しい物理の存在の証明

荷電レプトンの中でτレプトンに注目

- 質量が大きいため、新しい物理の感度が強い
- 様々な崩壊が可能のため、多くのモデルが検証可能

ここでは、終状態に中性メソン(M⁰)を 含む崩壊τ→IM⁰に注目

ELEMENTARY

PARTICLES

S

LFV in New Physics

$\tau \rightarrow IM^{0}$ in SUSY

XがZ⁰(or γ)の時は ⇒終状態にベクターメソン(V⁰) Z⁰/γ→qq→ρ、φ

現在の分岐比の上限値

 τ →IP⁰(η,η',π⁰) ₹−-ド Belle:401fb⁻¹ Br<(6.5-1.6)x10⁻⁸ BaBar:339fb⁻¹ Br<(11-24)x10⁻⁸

 $τ → IV^{0}(ρ, φ, ω, K^{*0}, \overline{K}^{*0}) = -F$ Belle:543fb⁻¹ Br<(6.3-18)x10⁻⁸ BaBar:(384-451)fb⁻¹ Br<(2.6-19)x10⁻⁸

解析にバイアスを与えないよう ⇒ブラインドアナリシス法を採用 信号領域をブライド領域

> サイドバンドのデータや MCを使い、信号領域の 背景事象を見積もり

事象選択後に信号側の粒子を用いて、

$$M_{\ell M 0} = \sqrt{E_{\ell M 0}^2 - p_{\ell M 0}^2}$$

$$\Delta E = E_{\ell M 0}^{CM} - E_{beam}^{CM}$$

を再構成し、2次元分布で評価

信号事象と背景事象

$\tau \longrightarrow IV^0$

まず最初に、、、

以前の解析そのままで、τ→μρモードを543 fb⁻¹から 854 fb⁻¹に感度を単純に予想してみると、、、

Expected UL: < 4.3x10⁻⁸ (前回<6.8x10⁻⁸) BaBar: < 2.6x10⁻⁸@401fb⁻¹より悪い結果、、、

より感度を上げるには、 もっとEffを上げて、BGを下げる必要があり

前回の信号識別で一番Effを落としてるのは、 V-cut (m²_{miss} vs. p_{miss})なので、一度、これを考えてみよう

V-cutについて

このカットでEffを約30%近く減らす いろいろな相関をチェックしてみると

m²missは∆Eと相関あり

今回の事象選択では、 もっと効率のいい 事象選択を探すべき そのためにもっとBGを 理解すべき!¹⁶

前回の解析と比較!

$\tau \rightarrow \mathsf{IP}^0$

τ→	Eff.	N _{BG} ^{exp}	UL(10 ⁻⁸)	τ→	Eff.	N _{BG} ^{exp}	UL(10 ⁻⁸)
μη(→γγ)	8.2%	0.63 ± 0.37	3.6	μη'(→ππη)	8.1%	0.00+0.16	10
$\mu\eta(\rightarrow\pi\pi\pi^0)$	6.9%	0.23 ± 0.23	8.6	μη' (→ρ⁰γ)	6.2%	0.59 ± 0.41	6.6
μη(comb .)			2.3	μη' (comb.)			3.8
eη(→γγ)	7.0%	0.66 ± 0.38	8.2	e η' (→ππη)	7.3%	0.63 ± 0.45	9.4
e η(→πππ ⁰)	6.3%	0.69 ± 0.40	8.1	eη'(→ρ⁰γ)	7.5%	0.29 ± 0.29	6.8
e η(comb.)			4.4	e η' (comb.)			3.6
μπ ⁰ (→γγ)	4.2%	0.64 ± 0.32	2.7	e π⁰(→γγ)	4.7%	0.89 ± 0.40	2.2

新しい物理に関する制限

昨年度までの状況

現在の状況

lγ, lhh'モードの更新も、まもなく

今年度のまとめ

Belle実験で得られた最終データを使用し、終状態に 中性メソンを含む τ LFV崩壊事象 $\tau \rightarrow IM^0$ の探索を行った。

バックアップだよ

TABLE VI: Summary of upper limits on \mathcal{B} at 90%CL.

Mode	${\cal P}^0$ subdecay mode	Upper limit of ${\mathcal B}$ at 90% CL $(\times 10^{-8})$
$\tau^- \to e^- \pi^0$	$\pi^0 \to \gamma \gamma$	2.2
$\tau^- ightarrow \mu^- \pi^0$	$\pi^0 \to \gamma \gamma$	2.7
$\tau^- \rightarrow e^- \eta$	$\eta \to \gamma \gamma$	8.2
	$\eta \to \pi^+ \pi^- \pi^0$	8.1
	Combined	4.4
$\tau^- \rightarrow \mu^- \eta$	$\eta \to \gamma \gamma$	3.6
	$\eta ightarrow \pi^+ \pi^- \pi^0$	8.6
	Combined	2.3
$\tau^- \rightarrow e^- \eta'$	$\eta' ightarrow ho^0 \gamma$	6.8
	$\eta' ightarrow \eta \pi^+ \pi^-$	9.4
	Combined	3.6
$\tau^- \to \mu^- \eta'$	$\eta' ightarrow ho^0 \gamma$	6.6
	$\eta' ightarrow \eta \pi^+ \pi^-$	10
	Combined	3.8

Introduction

AE(GeV

0.05

-0.15

Belle

0 0 0 0 0 0 0 0 0 0 0

0.05

0

-0.05

-0.1

We update analysis of $\tau \rightarrow 1V0$ (V0 = ρ , K*⁰, K*⁰, ϕ , ω) using full luminosity (854fb-1) till exp69 for summer conference.

Current upper limit

- Belle Br<(5.9~18)x10⁻⁸ @ 543fb-1_.
- BaBar Br< $(2.6 \sim 19)$ x10⁻⁸ @ 451fb-1 ...

Previous analysis

- Expected BG $(0.0 \sim 1.0)$ events
- observed $(0 \sim 1)$ events

$\Rightarrow not negligible BG (not free BG)$ if 2 x luminosity for some modes

Belle[™]^K

Baseline selection

- 3-1 selection
- μ ID > 0.95 with p>1.0 GeV/c
 e ID > 0.9 with p>0.6 GeV/c
- V0 selection (±(2.5-3.0) σ region
 - $L(K/\pi) > 0.6$ (<0.6) for K (π) for
 - no $\pi\,$ ID selection and p_{\pi 0}>0.4 GeV for ω mode
 - eid < 0.1 and μ ID <0.1 for hadron
- P^T_{miss} >0.5 GeV (0.7) for mV (eV)
- # of $g \leq 1$ for signal side
- #of g≦ 2 (1) for hadonic (leptonic) in tag side

Check BG distribution

Check components in uds MC

continuum BG reduction for $\mu V^{0}(1)$

continuum BG reduction for $\mu V^{0}(2)$

for a mode only

eK*, eK*, ep modes

Previous results

 $e^- \rho^0$

0

< 0.17

3.94

5.1

2.46

 6.3×10^{-8}

1.76

1.78

0.1

BaBar results

Mode	ε[%]	N_{bgd}	$N_{\rm obs}$	$N_{ m UL}^{90}$	\mathcal{B}^{90}_{exp}	$\mathcal{B}^{90}_{\mathrm{UL}}$
eφ	6.43 ± 0.16	0.68 ± 0.12	0	1.8	5.0	3.1
$\mu\phi$	5.18 ± 0.27	2.76 ± 0.16	6	8.7	8.2	19
eρ	7.31 ± 0.18	1.32 ± 0.17	1	3.1	4.9	4.6
μρ	4.52 ± 0.41	2.04 ± 0.19	0	1.1	8.9	2.6
eK^*	8.00 ± 0.19	1.65 ± 0.23	2	4.3	4.8	5.9
μK^*	4.57 ± 0.36	1.79 ± 0.21	4	7.1	8.5	17
eK	7.76 ± 0.18	2.76 ± 0.28	2	3.2	5.4	4.6
μK^*	4.11 ± 0.32	1.72 ± 0.17	1	2.7	9.3	7.3