$Br(B \to D^*3\pi)$ (a) BABARThe $B \to D^{**} \ell \nu$ bgd(a) Belle IICPV in $B \to D^{**} \tau \nu$ (a) Belle II/LHCb

Abi Soffer Tel Aviv University

Mini-workshop on $B \rightarrow D^{(*)}\tau\nu$ and related topics Nagoya University, 27-28 March 2017

 $B^0 \rightarrow D^{*-}\pi^+\pi^+\pi^-$

PRD(RC) 94, 091101 (2016)

Connection to $B^0 \rightarrow D^{*-} \tau^+ \nu$

From Benedetto's talk:

$$- Br(B^0 \to D^{*-}\pi^+\pi^+\pi^-):$$

- PDG: $(7.0 \pm 0.8) \times 10^{-3}$
- LHCb: $(7.27 \pm 0.11 \pm 0.36 \pm 0.34) \times 10^{-3}$

Phys. Rev. D 87, 092001 (2013)

```
Br(B^0 \rightarrow D^{*-}\pi^+) normalization
```

• BABAR knows the # of *B* mesons produced, can measure $Br(B^0 \rightarrow D^{*-}\pi^+\pi^+\pi^-)$ more precisely

$B^0 \to D^{*-} \pi^+ \pi^- \pi^+$ reconstruction

- Use only $D^{*-} \to \overline{D}{}^0 \pi^ \overline{D}{}^0 \to K^+ \pi^-$
- Continuum suppression NN:
 - 69% background rejection
 - 80% signal retention
- $|\Delta E| < 90 \text{ MeV}$ - $\sim 4\sigma$

- the cosine of the angle between the B^0 candidate's thrust axis [12] and the beam axis;
- the sphericity [13] of the B^0 candidate;
- the thrust of the ROE;
- the sum over the ROE of p, where p is the magnitude of a particle's momentum;
- the sum over the ROE of $\frac{1}{2}(3\cos^2\theta 1)p$, where θ is the polar angle of a particle's momentum;
- the cosine of the angle between the thrust axis of the B^0 candidate and the thrust axis of the ROE;
- the cosine of the angle between the sphericity axis of the B^0 candidate and the thrust axis of the ROE;
- the ratio of the second-order to zeroth-order Fox-Wolfram moment using all reconstructed particles [14];
- the cosine of the angle between the thrust axis calculated using all reconstructed particles and the beam axis.

Backgrounds

- In events with at least one signal candidate, there are
 - 1.57 candidates/event in signal
 - 1.34 candidates/event in background
- Peaking background:
 - Misreconstructed signal
 - $B \rightarrow D^{*-}(+\pi' s, other than \pi^+\pi^-\pi^+)$
- Combinatorial background:
 - Other $B\overline{B}$
 - Continuum

Signal extraction

Mass difference between signal MC and data leads to a negligible systematic uncertainty

What is the 3π ?

Systematic uncertainties and result

Source	Uncertainty (%)	
Fit algorithm and peaking backgrounds	2.4	• Vary fixed fit parameters
Track-finding	2.0	vary ince in parameters
$\pi^+\pi^-\pi^+$ invariant-mass modeling	1.7	Reweight MC $m(3\pi)$
D^{*-} and \overline{D}^0 decay branching fractions	1.3	to match data
$\Upsilon(4S) \to B^0 \overline{B}{}^0$ decay branching fraction	1.2	
K^+ identification	1.1	
Signal efficiency MC statistics	0.9	Different $m(3\pi)$ distribution
Sideband subtraction	0.7	of had in SR and sideband
$B\overline{B}$ counting	0.6	of ogu. In SK and Sheband
Total	4.3	

Obtain:

 $Br(B^0 \to D^{*-}\pi^+\pi^-\pi^+) = (7.26 \pm 0.11 \pm 0.31) \times 10^{-3}$

Compare to LHCb result: $(7.27 \pm 0.11 \pm 0.36 \pm 0.34) \times 10^{-3}$

New PDG average will be useful for the LHCb $R(D^*)$ measurement

8

Addressing the $\overline{B} \to D^{**} \ell \overline{\nu}$ bgd.

Impact of $\overline{B} \to D^{**} \ell \overline{\nu}$

E.g., in the BABAR analysis: Simultaneous fit:

Impact of $\overline{B} \to D^{**} \ell \overline{\nu}$

E.g., in the BABAR analysis: Simultaneous fit:

error

~ 2% estimated for most Belle analyses See Phill's and Shigeki's talks

What we know about D^{**} states

State	~Width (MeV)	J^P	Seen/allowed decays
$D_0^*(2400)$	270	0+	$D\pi$, $D\eta$
$D_1(2420)$	27	1+	$D^*\pi$, $D\pi\pi$, $D^*\pi\pi$
$D_1'(2430)$	380	1+	$D^*\pi$, $D^*\eta$, $D^{(*)}\pi\pi$
$D_2^*(2460)$	50	2+	$D^{(*)}\pi, D^{(*)}\pi\pi, D^{(*)}\eta$
D(2550)	130	0-	$D^*\pi$
D(2600)	90	??	$D^{(*)}\pi$
D*(2640)	< 15	??	$D^{*}\pi\pi$
D(2750)	65	??	$D^{(*)}\pi$

- $\bar{B} \rightarrow D^{**} \ell \bar{\nu}$ decays observed only for the lightest states
- Theory is only a weak guide here...

Need a model-independent handle on $\overline{B} \to D^{**} \ell \overline{\nu}$ background in $\overline{B} \to D^{(*)} \tau \overline{\nu}$

12

Vertexing the τ at Belle II

- Average τ flies 50 μ m $\sim < @$ LHCb
- But the spatial resolution > @ BABAR/Belle

• Tiny beamspot:

 $-\sigma_x = 6 \,\mu\text{m}, \ \sigma_y = 0.06 \,\mu\text{m}, \ \sigma_z = 150 \,\mu\text{m}$

Vertexing the τ at Belle II

 $\bar{B} \to D^{**} \ell \bar{\nu}$

For 3π , just use vertex

Vertexing the τ at Belle II

Measuring d_{Bd}

CP asymmetry in $\overline{B} \to D^{**} \tau \overline{\nu}$

What's needed for CPV

- At least 2 interfering amplitudes with
 - different CPV and CPC phases ("weak" and "strong" phases in SM),
 - hopefully comparable magnitudes
- In the SM $b \rightarrow c\tau \bar{\nu}$ has one amplitude
- If the excess is real and due to NP,
 that's the 2nd amplitude!
- Maybe it has a CPV phase
- Now need:
 - Interference
 - CPC phase difference

Ideas for CPV (TV) in $\overline{B} \to D^{(*)}\tau\overline{\nu}$

1302.7031 (Duraisamya & Datta)

Triple product in $\overline{B} \to D^* \tau \overline{\nu}$

 $\ \, \mapsto \pi \nu_{\tau}$ $\ \, \to D\pi$

1403.5892 (Hagiwara, Nojiri, Sakaki)

Require hadronic τ decays:

- Lose the leptonic decays
- Complicated angular analysis

Learn from $\overline{B} \to D^{**} \ell \overline{\nu}$

BABAR 0808.0528 hadronic tag

Interference and CPC

- *D*^{**} resonances overlap significantly
- Breit-Wigner amplitudes give CPC phases that are
 - Known
 - Vary with $m(D^*\pi)$ in a known way
 - Large: vary in $\sim [-\pi, \pi)$
 - Determined from $\overline{B} \to D^{**} \ell \nu$ sample

(resonance interference has previously been exploited to obtain CPC phases)

BABAR 0808.0528 hadronic tag

One more condition (*)

• For simplicity, consider just two BW resonances $B_1(m)$, $B_2(m)$:

 $A(m) = \left(A_1^{SM} + A_1^{NP}\right)B_1(m) + \left(A_2^{SM} + A_2^{NP}\right)B_2(m)$

- Rely on interference $b/w B_1(m)$ and $B_2(m)$
- For this to also be interference $b/w A^{SM}$ and A^{NP} , they must contribute differently to the two resonances: $A_1^{SM}/A_2^{SM} \neq A_1^{NP}/A_2^{NP}$

What the measurement involves

• In principle, just

$$A_{CP}(m) = \frac{\Gamma(\overline{B} \to D^* \pi \tau \overline{\nu})(m) - \Gamma(B \to \overline{D}^* \pi \tau^+ \nu)(m)}{+}$$

- But then interference is only b/w the two vector resonances
 - Interf. b/w different-spin resonances integrates over angles to 0
 - Condition * relies only on the different form factors of the two vectors

- For D^{**} → D^{*}π(π), need to include also D^{*} decay angle (I'm pretty sure...)
- These angles are easy to measure (unlike τ -related angles of triple products), but still complicate the analysis

Backup slides

BABAR: energy and dataset

The BABAR Detector

