

$$
B^{0} \rightarrow D^{*-} \pi^{+} \pi^{+} \pi^{-}
$$

PRD(RC) 94, 091101 (2016)

Connection to $B^{0} \rightarrow D^{*-} \tau^{+} v$

From Benedetto's talk:

$-\operatorname{Br}\left(B^{0} \rightarrow D^{*-} \pi^{+} \pi^{+} \pi^{-}\right)$:

- PDG: $(7.0 \pm 0.8) \times 10^{-3}$
- LHCb: $(7.27 \pm 0.11 \pm 0.36 \pm 0.34) \times 10^{-3}$

Phys. Rev. D 87, 092001 (2013)

$$
\operatorname{Br}\left(B^{0} \rightarrow D^{*-} \pi^{+}\right) \text {normalization }
$$

- BABAR knows the \# of B mesons produced, can measure $\operatorname{Br}\left(B^{0} \rightarrow D^{*-} \pi^{+} \pi^{+} \pi^{-}\right)$more precisely

$B^{0} \rightarrow D^{*-} \pi^{+} \pi^{-} \pi^{+}$ reconstruction

- Use only

$$
\begin{aligned}
D^{*-} \rightarrow & \bar{D}^{0} \pi^{-} \\
& \bar{D}^{0} \rightarrow K^{+} \pi^{-}
\end{aligned}
$$

- Continuum suppression NN:
- 69\% background rejection
- 80% signal retention
- $|\Delta E|<90 \mathrm{MeV}$
$-\sim 4 \sigma$
- the cosine of the angle between the B^{0} candidate's thrust axis [12] and the beam axis;
- the sphericity [13] of the B^{0} candidate;
- the thrust of the ROE;
- the sum over the ROE of p, where p is the magnitude of a particle's momentum;
- the sum over the ROE of $\frac{1}{2}\left(3 \cos ^{2} \theta-1\right) p$, where θ is the polar angle of a particle's momentum;
- the cosine of the angle between the thrust axis of the B^{0} candidate and the thrust axis of the ROE;
- the cosine of the angle between the sphericity axis of the B^{0} candidate and the thrust axis of the ROE;
- the ratio of the second-order to zeroth-order FoxWolfram moment using all reconstructed particles [14];
- the cosine of the angle between the thrust axis calculated using all reconstructed particles and the beam axis.

Backgrounds

- In events with at least one signal candidate, there are
- 1.57 candidates/event in signal
- 1.34 candidates/event in background
- Peaking background:
- Misreconstructed signal
$-B \rightarrow D^{*-}\left(+\pi^{\prime} \mathrm{s}\right.$, other than $\left.\pi^{+} \pi^{-} \pi^{+}\right)$
- Combinatorial background:
- Other $B \bar{B}$
- Continuum

Signal extraction

Mass difference between signal MC and data leads to a negligible systematic uncertainty

What is the 3π ?

- \quad Sideband-subtracted $m_{3 \pi}$ spectrum dominated by a_{1}^{+}, some D_{S}^{+}(subtracted)

Systematic uncertainties and result

Source	Uncertainty $(\%)$	
Fit algorithm and peaking backgrounds	2.4	Vary fixed fit parameters
Track-finding	2.0	
$\pi^{+} \pi^{-} \pi^{+}$invariant-mass modeling	1.7	
D^{*-} and \bar{D}^{0} decay branching fractions	1.3	
$Y(4 S) \rightarrow B^{0} \bar{B}^{0}$ decay branching fraction	1.2	to match data $m(3 \pi)$
K^{+}identification	1.1	
Signal efficiency MC statistics	0.9	
Sideband subtraction	0.7	Different $\mathrm{m}(3 \pi)$ distribution
$B \bar{B}$ counting	0.6	of bgd. in SR and sideband
Total	4.3	

Obtain:

$$
\operatorname{Br}\left(B^{0} \rightarrow D^{*-} \pi^{+} \pi^{-} \pi^{+}\right)=(7.26 \pm 0.11 \pm 0.31) \times 10^{-3}
$$

Compare to LHCb result: $(7.27 \pm 0.11 \pm 0.36 \pm 0.34) \times 10^{-3}$
New PDG average will be useful for the $\mathrm{LHCb} R\left(D^{*}\right)$ measurement

Addressing the $\bar{B} \rightarrow D^{* *} \ell \bar{v}$ bgd.

Impact of $\bar{B} \rightarrow D^{* *} \ell \bar{v}$

E.g., in the BABAR analysis: Simultaneous fit:

Impact of $\bar{B} \rightarrow D^{* *} \ell \bar{v}$

E.g., in the BABAR analysis: Simultaneous fit:

$\rightarrow \mathrm{D}^{* *}$ systematic uncert. (\%) $\quad R(D) \quad R\left(D^{*}\right)$

- Relative efficiencies $5.0 \quad 2.0$
- $\operatorname{Br}\left(D^{* *} \rightarrow D^{(*)} \pi^{0} / \pi^{ \pm}\right) \quad 0.7 \quad 0.5$
- $\operatorname{Br}\left(D^{* *} \rightarrow D^{(*)} \pi \pi\right) \quad 2.1 \quad 2.6$
- $\operatorname{Br}\left(\bar{B} \rightarrow D^{* *} \ell \bar{v}\right) \quad 0.8 \quad 0.3$
- $\operatorname{Br}\left(\bar{B} \rightarrow D^{* *} \tau \bar{\nu}\right) \quad 1.8 \quad 1.7$
$\sim 2 \%$ estimated for most Belle analyses See Phill's and Shigeki's talks
- Additional resonances?
- Non-resonant component?
- Is $\bar{B} \rightarrow D^{* *} \ell \bar{v}$ the reason for the excess?
- At Belle II, 2\% will be a large error

What we know about $D^{* *}$ states

State	\sim Width (MeV)	J^{P}	Seen/allowed decays
$D_{0}^{*}(2400)$	270	0^{+}	$D \pi, D \eta$
$D_{1}(2420)$	27	1^{+}	$D^{*} \pi, D \pi \pi, D^{*} \pi \pi$
$D_{1}^{\prime}(2430)$	380	1^{+}	$D^{*} \pi, D^{*} \eta, D^{(*)} \pi \pi$
$D_{2}^{*}(2460)$	50	2^{+}	$D^{(*)} \pi, D^{(*)} \pi \pi, D^{(*)} \eta$
$D(2550)$	130	0^{-}	$D^{*} \pi$
$D(2600)$	90	$? ?$	$D^{(*)} \pi$
$D^{*}(2640)$	<15	$?^{?}$	$D^{*} \pi \pi$
$D(2750)$	65	$? ?$	$D^{(*)} \pi$

- $\bar{B} \rightarrow D^{* *} \ell \bar{v}$ decays observed only for the lightest states
- Theory is only a weak guide here...

Need a model-independent handle on $\bar{B} \rightarrow D^{* *} \ell \bar{v}$ background in $\bar{B} \rightarrow D^{(*)} \tau \bar{v}$

Vertexing the τ at Belle II

- Average τ flies $50 \mu \mathrm{~m} \quad \ll$ @ LHCb
- But the spatial resolution > @ BABAR/Belle

Guglielmo's talk
Belle II

Belle

Phill's talk

- Tiny beamspot:
$-\sigma_{x}=6 \mu \mathrm{~m}, \sigma_{y}=0.06 \mu \mathrm{~m}, \sigma_{z}=150 \mu \mathrm{~m}$

Vertexing the τ at Belle II

Signal
$\bar{B} \rightarrow D^{* *} \ell \bar{v}$

For 3π, just use vertex

Vertexing the τ at Belle II

Signal

Shigeki's talk

$d_{B d}$: new info, background-model independent, resolution from $\bar{B} \rightarrow D^{(*)} \ell \bar{v}$

Measuring $d_{B d}$

Signal

Looks promising, currently simulating

CP asymmetry in $\bar{B} \rightarrow D^{* *} \tau \bar{v}$

What's needed for CPV

- At least 2 interfering amplitudes with
- different CPV and CPC phases ("weak" and "strong" phases in SM),
- hopefully comparable magnitudes
- In the $\mathrm{SM} b \rightarrow c \tau \bar{\nu}$ has one amplitude
- If the excess is real and due to NP, that's the $2^{\text {nd }}$ amplitude!
- Maybe it has a CPV phase
- Now need:
- Interference
- CPC phase difference

Ideas for $\mathrm{CPV}(\mathrm{TV})$ in $\bar{B} \rightarrow D^{(*)} \tau \bar{v}$

1302.7031 (Duraisamya \& Datta)

Triple product in $\bar{B} \rightarrow D^{*} \tau \bar{v}$

$$
\longleftrightarrow D \pi
$$

1403.5892 (Hagiwara, Nojiri, Sakaki)

$$
\begin{aligned}
& \bar{B} \rightarrow D \tau \bar{v} \\
& \quad \mapsto \rho / a_{1} v_{\tau} \\
& \\
& \quad \mapsto \pi^{\prime} \mathrm{s}
\end{aligned}
$$

Require hadronic τ decays:

- Lose the leptonic decays
- Complicated angular analysis

Learn from $\bar{B} \rightarrow D^{* *} \ell \bar{v}$

BABAR
0808.0528
hadronic tag

LHCb
Greg's talk

- $\mathrm{R}\left(D^{* *}\right) \sim 0.06$
(1606.09300, Bernlochner, Ligeti)

So this is like the $B^{-} \rightarrow D^{* *} \tau \bar{v}$ signal statistics @ ~8 ab^{-1}

Interference and CPC

BABAR 0808.0528 hadronic tag

- $D^{* *}$ resonances overlap significantly
- Breit-Wigner amplitudes give CPC phases that are
- Known
- Vary with $m\left(D^{*} \pi\right)$ in a known way
- Large: vary in $\sim[-\pi, \pi)$
- Determined from $\bar{B} \rightarrow D^{* *} \ell v$ sample
(resonance interference has previously been exploited to obtain CPC phases)

One more condition (*)

- For simplicity, consider just two BW resonances $B_{1}(m), B_{2}(m)$:

$$
A(m)=\left(A_{1}^{S M}+A_{1}^{N P}\right) B_{1}(m)+\left(A_{2}^{S M}+A_{2}^{N P}\right) B_{2}(m)
$$

- Rely on interference $\mathrm{b} / \mathrm{w} B_{1}(m)$ and $B_{2}(m)$
- For this to also be interference $\mathrm{b} / \mathrm{w} A^{S M}$ and $A^{N P}$, they must contribute differently to the two resonances: $A_{1}^{S M} / A_{2}^{S M} \neq A_{1}^{N P} / A_{2}^{N P}$

What the measurement involves

- In principle, just

$$
A_{C P}(m)=\frac{\Gamma\left(\bar{B} \rightarrow D^{*} \pi \tau \bar{v}\right)(m)-\Gamma\left(B \rightarrow \bar{D}^{*} \pi \tau^{+} v\right)(m)}{+}
$$

- But then interference is only b / w the two vector resonances
- Interf. b/w different-spin resonances integrates over angles to 0
- Condition * relies only on the different form factors of the two vectors
- To exploit e.g., the narrow D_{2}^{*}, must
 also analyze $D^{* *}$ decay angle
- For $D^{* *} \rightarrow D^{*} \pi(\pi)$, need to include also D^{*} decay angle (I'm pretty sure...)
- These angles are easy to measure (unlike τ-related angles of triple products), but still complicate the analysis

Backup slides

BABAR:

energy and dataset

The BABAR Detector

