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Physics story: Nothing is ever new

LHC visionaries

— 1991: NN-based quark-gluon tagger [visionary: Lénnblad, Peterson, Régnvaldsson]
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A neural network method for identifying the ancestor of a hadron jet is presented. The idea
is to find an efficient mapping between certain observed hadronic kinematical variables and the
quark-gluon identity. This is done with a neuronic expansion in terms of a network of sigmoidal
functions using a gradient descent procedure, where the errors are back-propagated through the
network. With this method we are able to separate gluon from quark jets originating from Monte
Carlo generated e*e” events with ~85% approach. The result is independent of the MC
model used. This approach for isolating the gluon jet is then used to siudy the so-called string
effect.

In addition, heavy quarks (b and c) in e*e~ reactions can be identified on the 50% level by
just observing the hadrons. In particular we are able to separate b-quarks with an efficiency and
purity, which is comparable with what is expected from vertex detectors. We also speculate on
how the neural network method can be used to disentangle different hadronization schemes by
compressing the dimensionality of the state space of hadrons.
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Abstract. We discuss the reconstruction of the hadronic
decays of heavy particles using jet algorithms. The ability
to reconstruct the mass of the decaying particle is com-
pared between a traditional cone-type algorithm and a re-
cently proposed cluster-type algorithm. The specific
examples considered are the _semileptonic decays of
a heavy Higgs boson at_/s=16TeV, and of top
quark-antiquark pairs at \/s= 1.8 TeV. We find that the
cluster algorithm offers considerable advantages in the
former case, and a slight advantage in the latter. We
briefly discuss the effects of calorimeter energy resolution,
and show that a typical resolution dilutes these advant-
ages, but does not remove them entirely.

except that the invariant mass of a pair is replaced by the
transverse momentum of the softer particle relative to the
other.

More recently, this algorithm was extended to colli-
sions with incoming hadrons [5], and a longitudinally-
invariant k,-clustering_algorithm for hadron-hadron
collisions was proposed [6]. This algorithm has been
compared with the more commonly used cone algorithm
from the viewpoints of a parton-shower Monte Carlo
program [6, 7], and a fixed-order matrix-clement calcu-
lation [8], and advantages of the cluster algorithm were
reported in both cases. This paper is concerned with
a comparison between the algorithms for the task of
reconstructing the hadronic decays of heavy particles,
which was also studiced in a preliminary way in [9].

The only as-yet unobserved particles of the minimal
Standard Model are the top quark and Higgs boson. The
scarch for, and study of, these particles are among the
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Fat jet taggers

Look what makes jets [Pre-LHC, jets were just annoying]

— top jets from t — bqq’ vs QCD jets

— top decays well-defined in theory

— labelled sample: semileptonic tf events
= Fat jets as LHC physics playground

Simple top tagging  (ask Michi
1- fat jet with pr > 200 GeV
2— filtering defining 3-5 decay jets
3- top mass window myo3 = [150,200] GeV
4— mass plane cuts extracting m; ~ my

= Not rocket science, but crucial to build trust
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Multi-variate taggers

Developing the benchmark

multivariate analysis generally old news
multivariate tagger to keep up with shower deconstruction (soper, Spannowsky]
optimal fat jet size Ropt [large to decay jets, small to avoid combinatorics, compute from kinematics]

|myo3— 125nax | <o. 2m ax) oy Ropt

— add N'SUbjettineSS [Thaler, van Tilburg]

I (filt
= {m123, fw, Ropt — Rc(,ﬁc), T T iy i
= Theory all but precision ‘1_"105; Vs=14Tev
Fat jet and top kinematics [
10"

— jet radiation major problem for Z’ search
— tag and reconstruction in each other’s way
= {.,mu,pr s, m f"t),P(mt } 10

= Best we can do?

ED[PRDS89]

HTT[JHEP1010]

-~ filtered fat jets (2.3)

- variable masses (2.4)
optimalR (3.2)

—— N-subjettiness (3.4)

—— Qjets (3.7,0.1x0.1 cells)
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Jet image machines

Natural next step  [Cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/15)]
— why intermediate high-level variables?
— as much data as possible
— calorimeter output as image

= Deep learning = modern networks on low-level observables
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Jet image machines

Natural next step  [Cogan etal, Oliveira, Nachman etal, Baldi, Whiteson etal (2014/15)]
— why intermediate high-level variables?
— as much data as possible
— calorimeter output as image
= Deep learning = modern networks on low-level observables

Convolutional network  [Kasieczka, TP, Russell, Schell; Macaluso, Shih]

image recognition standard ML task

rapidity vs azimuthal angle, colored by energy deposition
top tagging on 2D jet images

40 x 40 bins through calorimeter resolution
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Why LHC? Why jets?

Data from ATLAS & CMS
— most LHC interactions qq, gg — qQq, g9
— quarks/gluon visible as jets o, X £ &~ 108fb x 80/fb ~ 10" events
= It's big data
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Data from ATLAS & CMS

— most LHC interactions qq, gg — qq, gg
— quarks/gluon visible as jets oy, x £ &~ 108fb x 80/fb ~ 100 events
= It's big data

Physics in jets

— re-summed perturbative QFT prediction from QCD
— jets as decay products
67% W —jj 70%Z—j 60%H-—j 67%t—jj 60%71—j..
— new physics in ‘dark showers’
= It's fundamentally interesting




Why LHC? Why jets?

Data from ATLAS & CMS

— most LHC interactions qq, gg — qq, gg
— quarks/gluon visible as jets oy, x £ &~ 108fb x 80/fb ~ 100 events
= It's big data

Physics in jets

— re-summed perturbative QFT prediction from QCD
— jets as decay products
67% W —jj 70%Z—j 60%H-—j 67%t—jj 60%71—j..
— new physics in ‘dark showers’
= It's fundamentally interesting

Monte Carlo data
— QCD simulation: Sherpa, Pythia, Herwig madgraph]
— fast detector simulation: Delphes
— data-to-data comparison: MC vs LHC
= We can simulate it




Inside DeepTop
Particle physicists as ‘users’  [Kasieczka, TP, Russell, Schell; Macaluso & Shin]

— 2+2 convolutional layers
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Inside DeepTop

Particle physicists as ‘users’  [Kasieczka, TP, Russell, Schell; Macaluso & Shin]

— 2+2 convolutional layers
— 3 fully connected layers
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Inside DeepTop

Particle physicists as ‘Users’  [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

— 2+2 convolutional layers
— 3 fully connected layers
— Pearson input-output correlation  [pixel x vs label y1

Y (X)) (- 0
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Inside DeepTop

Particle physicists as ‘Users’  [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

2+2 convolutional layers
3 fully connected layers
Pearson input-output correlation  [pixel x vs label y1
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Inside DeepTop

Particle physicists as ‘Users’  [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

2+2 convolutional layers
3 fully connected layers

Pearson input-output correlation  [pixel x vs label y1

e Y by —R) - 9) ST —
images — DeepTop minimal
. 10° —— Training
— comparison to MotherOfTaggers BDT — Architecture
. — Preprocessing
= Understandable performance gain 10* IR
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Inside DeepTop

Particle physicists as ‘Users’  [Kasieczka, TP, Russell, Schell; Macaluso & Shih]

2+2 convolutional layers
3 fully connected layers
Pearson input-output correlation  [pixel x vs label y1

rijz Z (X,'/'—)-(ij)(y_?)

images

= Understandable performance gain

Typical reaction: ‘F*** you, you f***ing machine’

— full control for supervised learning
easy checks for correctly identified signal/background

— MC truth vs MotherOfTaggers vs DeepTop

. 0.02 Signal 0.02 Background
fat Jet mass : "MoTHEROFTAGGERS : " " " T T
N-subjettiness 0.016 { o016 1
DeepPToOP
transverse momenta 0012 1 N 1 002y 1
= The box is not black 0.008 | truth | N 1 0ms 1
0.004 | 4 0004 | J \

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Mt [GeV] Mt [GeV)




Theory inspiration

4-vector input — graph CNN [Butter, Kasieczka, TP, Russell; much better versions by now]

— physics objects from calorimeter and tracker
— distance measure known from e&m Jatternatively: Erdmann, Rath, Rieger]

Inspired by QFT

— input 4-vectors (K, ;)
— jet algorithm — combination layer
Cola 7

Kui = kuj =Ky Cj 10° - low pr calo
— observables —; Lorentz layer — lowpr PF
~ ° ---= high pr calo
m? (k) 5 | — high p; PF
ko k= | Prk) 2107
: 3
o
) . . 3
= Learn Minkowski metric © 101
g =diag(0.99+0.02, -
—1.01+£0.01, —1.01+0.02, —0.99+0.02)
10°
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Jet classification done
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When reality hits

ML-Life is not always nice to US [Kasieczka, Kiefer, TR, Thompson]

— quark-gluon tagging a problem since 1991

— quark jets typical for resonance searches
gluon jets typical as dark matter recoil

— BDT/NN on high-level variables established
= deep-learning advantage gone after detector simulation, REALLY???

—— Lola, Delphes
---- Lola, particle
—— BDT, Delphes
---- BDT, particle
---- BDT, reduced
BDT, Delphes, reduced

102
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1@40x40  10@40x40  10@20x20 5@20x20 400100 100 400 5@20x20 5@40x40 10@40x40 1@40x40

Learning background only

FU”y supervised classification boring [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih; David's talk]

— anomaly searches, only training on ‘background’
— established ML concept: autoencoder

— reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical’

— outliers hard to describe, (hopefully) non-QCD less compressible
= Making an okay tagger
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Learning background only

FU”y supervised classification boring [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih; David's talk]
— anomaly searches, only training on ‘background’
— established ML concept: autoencoder

— reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical’

— outliers hard to describe, (hopefully) non-QCD less compressible
= Making an okay tagger

De-correlate background shaping, define side bands

— established concept: adversary [shimmin,..]




1@40x40  10@40x40  10@20x20 5@20x20 400100 100 400 5820x20 5@40x40 10@40x40 1@40X40

Learning background only

FuIIy SUperVised classification boring [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih; David’s talk]

— anomaly searches, only training on ‘background’
— established ML concept: autoencoder

— reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical’

— outliers hard to describe, (hopefully) non-QCD less compressible
= Making an okay tagger

De-correlate background shaping, define side bands

— established concept: adversary [shimmin,..]

— atypical QCD jets typially with large jet mass
remove jet mass from network training
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Learning background only

FuIIy SUperVised classification boring [Heimel, Kasieczka, TP, Thompson; Farina, Macari, Shih; David’s talk]

— anomaly searches, only training on ‘background’
— established ML concept: autoencoder

reconstruct typical QCD jet image from many QCD jets
reduce weights in central layer, compress information to ‘typical’

outliers hard to describe, (hopefully) non-QCD less compressible
= Making an okay tagger

The whole thlng on anomalous LHC events [Cerri, Nguyen, Pierini, Spiropulu, Vlimant]

— same thing on full events

10°
— ftraining data a problem | 1 T
— variational autoencoder more powerful ~ *°” P
= Proof of concept... 102
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Classification with error bars

Propagating uncertainties
— (60477)% top, uncertainty from training
— probability for test event p(c*|C) (classitier output C, network w]
P(e’10) = [ dup(e’w, ©) pw]C) = [ o ple”[w. ©) a(w)
— for instance minimize Kullbeck-Leibler divergence [gayes’ theorem]
q(w)
p(w|C)
q(w)p(C)
p(Clw)p(w)
= KL[q(w), p(w)] +109p(C) [ dw qw) ~ [ d a(w)log p(Clw)

L2-regularization

KLg(). P@IC)] = [ dw a(w) log

~ [ dw a(w) og

normalization of g, irrelevant likelihood, maximized

— minimum condition [Gaussian w = {1, o'}
2 /dw q(w)logp(Clw) =0
Ow

— sample in w to extract (f1pred, Tpred) j€t DY jet...
...and check prior dependence  (Gaussian, 5 orders in width]




Classification with error bars

Propagating uncertainties

— (60+7?7)% top, uncertainty from training
- probability for test event p(C* | C) [classifier output C, network w]

p(e’1C) = [ dw plc” 0, C) p(w]C) = [ dw p(c’ |, C) q(e)

— sample in w to extract (f1pred, Tpred) j€t DY jet...

0=0.5
Complication with classification 06
. . X o Ui\:g;unsm
— sigmoid to map on closed interval [0, 1] %04 "
go.
. . a g o=1.0,
Sigmoid(x) = -
1+e 0.2 o=15 puncornstn
— predictive mean 0=30
co 0‘0—8 -6 -4 -2 0 2 4 6
Npred — / dw SlngId(w) Gu,g(w) 5 Network output
— o0
1 X X
= dx —— G log—— ) €[0,1
/o x(1 —x) u,6(91_x> [,]33
— predictive standard deviation EZ
=
it
Opred & ppred (1 — Hpred) 0,(,[;:50"5 " i
= Additional complication... .
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Statistics & systematics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson; Ben'’s talk]
— Bayesian version of DeepTop and LoLa 105
P e —— B-CNN
— similar performance as deterministic network —aw
training time somewhat increased 10° ~—— B-lola
—— lolLa
o 103
g
: 102
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Statistics & systematics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson; Ben'’s talk]

training time somewhat increased

Bayesian version of DeepTop and LolLa
similar performance as deterministic network

correlation between pipreq and opreq  ftoy network, 10k jets]
increasing training statistics [parabola from closed interval output]
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Statistics & systematics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson; Ben's talk]

Bayesian version of DeepTop and LoLa

similar performance as deterministic network
training time somewhat increased

correlation between pipreq aNd opred  ftoy network, 10k jets]
increasing training statistics [parabola from closed interval output]

Noise/pile-up

— increasing pile-up, stable [LoLa, ordered constituents]
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Statistics & systematics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson; Ben'’s talk]

— Bayesian version of DeepTop and LoLa

similar performance as deterministic network
training time somewhat increased

correlation between pipreq and opreq  ftoy network, 10k jets]
increasing training statistics [parabola from closed interval output]

Noise/pile-up

- increasing piIe—up, stable [LoLa, ordered constituents]
- increasing pile-up, unstable [DeepTop, jet image]

predictive stddev

—F— shift=0

— shift=60
002 —- shift=100 \

—— shift=160 \
—F- shift=200

o 6
predictive mean




Statistics & systematics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson; Ben'’s talk]

— Bayesian version of DeepTop and LoLa

similar performance as deterministic network
training time somewhat increased

correlation between pipreq and opreq  ftoy network, 10k jets]
increasing training statistics [parabola from closed interval output]

Jet energy scale

— systematics effect in test sample
1- shift of hardest constituent

— adversarial example: hierarchical subjets = top i

probability
o o
[t=] [}
S w

o
©
w
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Statistics & systematics

Training statistics [Bollweg, Haussmann, Kasieczka, Luchmann, TP, Thompson; Ben'’s talk]

— Bayesian version of DeepTop and LoLa

similar performance as deterministic network
training time somewhat increased

correlation between pipreq and opreq  ftoy network, 10k jets]
increasing training statistics [parabola from closed interval output]

Jet energy scale

— systematics effect in test sample
1— shift of hardest constituent
— adversarial example: hierarchical subjets = top

2— uncorrelated shift of all constituents Top jets Oes=0.2
25 mean = 0.0110(6)
— tiny degradation for signal gm=04
= More studies needed 3
T 15 j
E
5
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Capsules VS CNN 1@180x180  32@86x90 32@39x45 32@18x23 ss@mxzs::asxs 2x8
=

Full events instead of fat jet

Conv9x9  conv9x9 conv5x5 conv3x3  primary output
str=2 str=2  str=2  str=1 capsules capsules

— sparse events with sparse objects

— training an open problem

— multi-label for different backgrounds
= Need to go beyond CNN

Capsule Networks  [piefenbacher, Frost, Kasieczka, TP, Thompson]

vector output instead of scalar classification
agreement by parallel vectors in feature space
— new squashing prescription

V2 |V| o

v — — v
1412 7 14+ |V|2

— pooling vs stride convolutions?
= properties and geometry in vector entries [eyes, nose, mouth]




Capsules vs CNN

Full events instead of fat jet

— sparse events with sparse objects
— training an open problem

— multi-label for different backgrounds
= Need to go beyond CNN

Z' — {t resonance

— subjet-level: jj background (conv setup]
— event-level: ff continuum
— still not perfect in {f continuum rejection
— next step ttH...
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Organizing information

2D toy network for Z/ — tt

signal capsule/events

classification through radius

azimuthal angle to organize information
jet rapidity the key

signal capsule dimension 0
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Organizing information

2D toy network for Z/ — tt

signal capsule/events

classification through radius

azimuthal angle to organize information
jet rapidity the key

background capsule/events
back-to-back topology

background capsule dimension 0

signal capsule dimension 0
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The future

Machine learning is an amazing tool box...

...LHC physics really is big data

...imagine recognition is a starting point

...deep learning is not just classification

...jets are not the only interesting objects at LHC
...Bayesian networks are extremely likable
...capsule networks useful for full events

Let’s find some really cool applications!
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