

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Flavor physics in the BSMs ~SO(10) GUT~

Yuji Omura (KMI, Nagoya Univ.)

Based on PLB744 (2015) 395 (arXiv: 1503.06156), JHEP1611(2016)018 (arXiv: 1607.05437); arXiv: 1612.01643

Collaborators: J. Hisano, Y. Muramatsu, Y. Shigekami, M. Yamanaka; T. Abe, J. Kawamura, S. Okawa.

Very exciting era!

Physics Beyond the SM

DARK ENERGY Cosmology, Astrophysics

ordinary

particle physics, string theory

The BSMs I'm working on

Contents

- 1. Introduction
- Setup
 SO(10) GUT in high-scale SUSY scenario
 Predictions for Z' interaction
- 3. Flavor physics

4. Summary and Discussion (DM models)

Introduction

There are many "evidences" of new physics:

anomaly-free conditions miraculously satisfied in the Standard Model (SM)

(Origin of SM gauge groups)

Big hierarchy between Planck scale and EW scale (Origin of EW scale)

Dark matter

SUSY GUT can explain those mysteries:

Origin of SM gauge groups

(Gauge coupling unification)

Origin of EW scale

Dark matter

Typical scenario of SUSY GUT

Typical scenario of SUSY GUT

Relevant LHC results

Direct search at LHC

model-dependent but...

 $m_{gluino} \gtrsim 1.5 \,\mathrm{TeV}, \ m_{squark} \gtrsim 1.3 \,\mathrm{TeV}$ $m_{stop} \gtrsim 700 \,\mathrm{GeV}$

Model	e, μ, τ, γ	/ Jets	E_{T}^{miss}	∫£ dt[ft	-']	Mass limit		Reference
MSUGRA/CMSSM	0	2-6 iets	Yes	20.3	ð, 8		1.7 TeV m(2)-m(2)	1405 7875
$\bar{a}\bar{a} = \bar{a} \tilde{\chi}_{1}^{0}$	0	2-6 jets	Yes	20.3	4	850 GeV	$m(\tilde{k}_1^0)=0$ GeV $m(1^{st} \text{ seg } \bar{a})=m(2^{sd} \text{ seg } \bar{a})$	1405.7875
$\tilde{a}\tilde{a}\gamma, \tilde{a} \rightarrow a\tilde{\chi}_{1}^{0}$ (compressed)	1 7	0-1 iet	Yes	20.3	a 250	GeV	$m(\tilde{c}) \cdot m(\tilde{c}_{1}^{0}) = m(c)$	1411.1559
ēē ē→aāχ	ó	2-6 jets	Yes	20.3	ž	1.3	33 TeV m(3) =0 GeV	1405.7875
$\tilde{v}\tilde{v}$ $\tilde{v} \rightarrow aa\tilde{\chi}^{\pm}_{1} \rightarrow aaW^{\pm}\tilde{\chi}^{0}_{1}$	1 e, µ	3-6 jets	Yes	20	ž	1.21	TeV $m(\tilde{\epsilon}_{1}^{0}) < 300 \text{ GeV}, m(\tilde{\epsilon}^{+}) = 0.5(m(\tilde{\epsilon}_{1}^{0}) + m(\tilde{\epsilon}^{-}))$)) 1501.03555
$\tilde{e}\tilde{e} = \tilde{e} \rightarrow aa(\ell\ell/(y/yy)\tilde{k}_{1}^{0})$	2 e. µ	0-3 jets	-	20	ž	1.3	32 TeV m(\tilde{x}_{1}^{0})=0 GeV	1501.03555
GMSB (ČNLSP)	1-2 T + 0-1	ℓ 0-2 jets	Yes	20.3	ž		1.6 TeV tan8 > 20	1407.0603
GGM (bino NLSP)	2γ	-	Yes	20.3	ž	1.28	8 TeV m(R ⁰ ₁)>50 GeV	ATLAS-CONF-2014
GGM (wino NLSP)	$1 e_{\tau} \mu + \gamma$	-	Yes	4.8	Ř	619 GeV	m(R ⁰ ₁)>50 GeV	ATLAS-CONF-2012
GGM (higgsino-bino NLSP)	γ.	1 b	Yes	4.8	Ř	900 GeV	m(R ⁰)>220 GeV	1211.1167
GGM (higgsino NLSP)	2 e, µ (Z)	0-3 jets	Yes	5.8	<i>k</i>	690 GeV	m(NLSP)>200 GeV	ATLAS-CONF-2012
Gravitino LSP	0	mono-jet	Yes	20.3	F ^{1/2} scale	865 GeV	$m(\tilde{G})>1.8 \times 10^{-4} \text{ eV}, m(\tilde{g})=m(\tilde{q})=1.5 \text{ Te}$	V 1502.01518
$\bar{x} \rightarrow b\bar{b}\bar{\chi}_{1}^{0}$	0	3 <i>b</i>	Yes	20.1	ğ	1.25	TeV m(ξ ⁰ ₁)<400 GeV	1407.0600
$\bar{g} \rightarrow t \bar{\chi}_1^0$	0	7-10 jets	Yes	20.3	ğ	1.1 TeV	m(\tilde{t}_{1}^{0}) <350 GeV	1308.1841
$E_{\bar{x} \rightarrow t\bar{t}\bar{\chi}_{1}^{0}}$	0-1 e, µ	3 b	Yes	20.1	ž	1.1	34 TeV m(R ⁰ ₁)<400 GeV	1407.0600
$\tilde{g} \rightarrow b \tilde{\chi}_{1}^{+}$	0-1 e,µ	3 <i>b</i>	Yes	20.1	ğ	12	3 TeV m(t ⁰ ₁)<300 GeV	1407.0600
$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\ell}_1^0$	0	2 b	Yes	20.1	Ъ́1	100-620 GeV	m({\vec{k}_{1}^{0}})<90 GeV	1308.2631
$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$	2 e, µ (SS)	0-3 b	Yes	20.3	<i>b</i> ₁	275-440 GeV	$m(\tilde{t}_{1}^{*})=2 m(\tilde{t}_{1}^{0})$	1404.2500
$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^+$	1-2 e, µ	1-2 b	Yes	4.7	71 110-167 GeV	230-460 GeV	$m(\tilde{t}_{1}^{*}) = 2m(\tilde{t}_{1}^{0}), m(\tilde{t}_{1}^{0})=55 \text{ GeV}$	1209.2102, 1407.0
$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$	2 e, µ	0-2 jets	Yes	20.3	ĩ ₁ 90-191 GeV	215-530 GeV	m(2)=1 GeV	1403.4853, 1412.4
$\tilde{\mathbf{a}}_{\mathbf{i}} \tilde{\mathbf{i}}_{1} \tilde{\mathbf{i}}_{1}, \tilde{\mathbf{i}}_{1} \rightarrow t \tilde{\mathbf{x}}_{1}^{0}$	0-1 e, µ	1-2 b	Yes	20	Ĩ,	210-640 GeV	m(2)=1 GeV	1407.0583,1406.1
$\vec{t}_1 \vec{t}_1, \vec{t}_1 \rightarrow c \vec{\chi}_1^0$	0	mono-jet/c-ta	ag Yes	20.3	i 90-24	GeV	m(r ₁)-m(\tilde{x}_1^0)<85 GeV	1407.0608
f ₁ t (natural GMSB)	2 e, µ (Z)	1 <i>b</i>	Yes	20.3	Ĩ1	150-580 GeV	m(2)>150 GeV	1403.5222
$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e, μ (Ζ)	1 <i>b</i>	Yes	20.3	Ĩ2	290-600 GeV	m(tt1)<200 GeV	1403.5222
$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e, µ	0	Yes	20.3	2	90-325 GeV	m({\vec{t}_{1}^{0}})=0 GeV	1403.5294
$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu})$	2 e, µ	0	Yes	20.3	$\hat{\chi}_{1}^{\pm}$	140-465 GeV	$m(\tilde{\ell}_1^0)=0$ GeV, $m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\ell}_1^+)+m(\tilde{\ell}_1^0)$	1403.5294
$\tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{\dagger} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu})$	2 r	-	Yes	20.3	$\tilde{\chi}_{1}^{*}$	100-350 GeV	$m(\tilde{\ell}_1^0)=0$ GeV, $m(\tilde{r}, \tilde{r})=0.5(m(\tilde{\ell}_1^n)+m(\tilde{\ell}_1^0))$) 1407.0350
$\hat{\xi}_{1}^{*} \hat{\chi}_{2}^{0} \rightarrow \hat{\ell}_{L} \nu \hat{\ell}_{L} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \hat{\ell}_{L} \ell(\tilde{\nu}\nu)$	3 e, µ	0	Yes	20.3	$\hat{X}_{1}^{\pm}, \hat{X}_{2}^{\pm}$	700 GeV	$m(\tilde{\ell}_{1}^{*})=m(\tilde{\ell}_{2}^{0}), m(\tilde{\ell}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\ell}_{1}^{*})+m(\tilde{\ell}_{1}^{0}))$) 1402.7029
$\tilde{\chi}_1^* \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0$	2-3 e, µ	0-2 jets	Yes	20.3	$\hat{\chi}_{1}^{\pm}, \hat{\chi}_{2}^{\pm}$	420 GeV	$m(\tilde{\chi}_1^n)=m(\tilde{\chi}_2^n), m(\tilde{\chi}_1^n)=0$, sleptons decou	pled 1403.5294, 1402.7
$\tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \tilde{b} / W W / \tau$	$r/\gamma\gamma e, \mu, \gamma$	0-2 b	Yes	20.3	$\hat{\chi}_{1}^{*}, \hat{\chi}_{2}^{*}$ 250	GeV	$m(\tilde{\xi}_1^n)=m(\tilde{\xi}_2^n), m(\tilde{\xi}_1^n)=0$, sleptons decou	pled 1501.07110
$\tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R}\ell$	4 e, µ	0	Yes	20.3	X23	620 GeV	$m(\tilde{\xi}_{2}^{0})=m(\tilde{\xi}_{3}^{0}), m(\tilde{\xi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\xi}_{2}^{0})+m(\tilde{\xi}_{1}^{0}))$	1405.5086
Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^+$	Disapp. trk 1	t 1 jet	Yes	20.3	$\hat{\chi}_{1}^{*}$ 2	'0 GeV	$m(\tilde{t}_1^+)-m(\tilde{t}_1^0)=160$ MeV, $r(\tilde{t}_1^+)=0.2$ ns	1310.3675
Stable, stopped g R-hadron	0	1-5 jets	Yes	27.9	ŝ	832 GeV	m(2)=100 GeV, 10 µs <r(g)<1000 s<="" td=""><td>1310.6584</td></r(g)<1000>	1310.6584
Stable g R-hadron	trk	-	-	19.1	8	1.27	7 TeV	1411.6795
GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau$	(e, μ) 1-2 μ	-	-	19.1	$\hat{\chi}_{1}^{0}$	537 GeV	10 <tanβ<50< td=""><td>1411.6795</td></tanβ<50<>	1411.6795
GMSB, $\tilde{\chi}_{1}^{\prime} \rightarrow \gamma G$, long-lived $\tilde{\chi}_{1}^{\prime}$	2γ	-	Yes	20.3	\hat{X}_{1}^{ν}	435 GeV	2 <r(2)<3 model<="" ns,="" sps8="" td=""><td>1409.5542</td></r(2)<3>	1409.5542
$\tilde{q}\tilde{q}, \tilde{\chi}_1 \rightarrow qq\mu$ (RPV)	1 μ, displ. vt	tx -	-	20.3	4	1.0 TeV	1.5 <cr<156 br(μ)="1," m(k<sup="" mm,="">0₁)=108</cr<156>	GeV ATLAS-CONF-2013
LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu$	2 e, µ	-	-	4.6	Ŷ.,		1.61 TeV λ' ₃₁₁ =0.10, λ ₁₃₂ =0.05	1212.1272
$\Box \vdash \forall pp \rightarrow v_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau$	1 e, µ + T			4.6	¥7	1.1 TeV	A ₃₁₁ =0.10, A ₁₍₂₎₃₃ =0.05	1212.1272
Bilinear RPV CMSSM	2 e, µ (SS)	0-3 b	Yes	20.3	9.8	1.	35 IEV m(g), ct _{LSP} <1 mm	1404.2500
$\chi_1 \chi_1, \chi_1 \rightarrow W \chi_1^{\prime}, \chi_1^{\prime} \rightarrow eev_{\mu}, e\mu i$, 4 <i>ε</i> ,μ	-	Yes	20.3	X1	750 GeV	$m(\xi_1'')>0.2\times m(\xi_1^*), \lambda_{121}\neq 0$	1405.5086
$\chi_1 \chi_1, \chi_1 \rightarrow W \chi_1^o, \chi_1^o \rightarrow rr \tilde{v}_e, eri$	3 e,µ + T		Yes	20.3	x ₁	450 GeV	$m(\tilde{\ell}_1) > 0.2 \times m(\tilde{\ell}_1), \lambda_{133} \neq 0$	1405.5086
$g \rightarrow q\bar{q}q$ $\bar{q} \rightarrow \bar{t}_1 t \ \bar{t}_1 \rightarrow bs$	0 2 c u (SS)	6-7 jets	Vac	20.3	8	916 GeV	BH(t)=BH(b)=BH(c)=0%	ATLAS-CONF-2013 1404 250
Carlanabaran T. 20	=,µ (00)	2-	Vec	20.2		400 CoV	-rc ⁰) -200 C-V	1601.01005
er scalar charm, $c \rightarrow c \chi_1$	U	20	TES	20.3	c .	490 Gev	m(t1)<200 Gev	1501.01325

Higgs mass is around 125 GeV

MSSM prediction $m_h^2 \le M_Z^2 \cos^2 2\beta + \Delta m_h^2 (m_{stop}^2, A_t - \mu/\tan\beta)$ **loop correction**

Relevant LHC results

Direct search at LHC

model-dependent but...

 $m_{gluino} \gtrsim 1.5 \,\mathrm{TeV}, \, m_{squark} \gtrsim 1.3 \,\mathrm{TeV}$

ATL	AS SUSY Sea	arches	* - 9	5% (CL L	wer Limits	ATLA	S Preliminary
Statu	s: Feb 2015 Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫ <i>L dt</i> [fb	Mass limit		$\sqrt{s} = 7, 8$ leV Reference
108 108	ISUGRA/CMSSM $\bar{q}, \bar{q} \rightarrow q \bar{\chi}_{1}^{0}$ $\bar{q}, \bar{q} \rightarrow q \bar{\chi}_{1}^{0}$ (compressed)	0 0 1 y	2-6 jets 2-6 jets 0-1 jet	Yes Yes Yes	20.3 20.3 20.3	1.7 TeV 850 GeV 250 GeV	$m(\hat{q})=m(\hat{g})$ $m(\hat{\xi}_{1}^{0})=0$ GeV, $m(1^{st}$ gen. $\hat{q})=m(2^{nd}$ gen. $\hat{q})$ $m(\hat{q})\cdotm(\hat{\xi}_{1}^{0})=m(c)$ $e^{i\hat{Q}_{1}}$, $ao(2)$	1405.7875 1405.7875 1411.1559
$\begin{array}{c} \underline{ss}, \underline{s} \rightarrow \underline{qq}x_1 \\ \underline{ss}, \overline{s} \rightarrow \underline{qq}X_1^{-1} \rightarrow \underline{qq}W^{+}\overline{X}_1^{0} \\ \underline{ss}, \overline{s} \rightarrow \underline{qq}(\ell \ell / \ell v) v \gamma \overline{Y}_1^{0} \\ \underline{sg}, \overline{s} \rightarrow \underline{qq}(\ell \ell / \ell v) v \gamma \overline{Y}_1^{0} \\ \underline{sg}, \overline{s} \rightarrow \underline{qq}(\ell \ell / v) v \gamma \overline{Y}_1^{0} \\ \underline{sg}, \overline{s} \rightarrow \underline{qq}(\ell \ell / v) v \gamma \overline{Y}_1^{0} \\ \underline{sg}, \overline{sg}, \overline{sg} \rightarrow \underline{qq}(\ell \ell / v) v \gamma \overline{Y}_1^{0} \\ \underline{sg}, \overline{sg}, \overline{sg} \rightarrow \underline{qq}(\ell \ell / v) v \gamma \overline{Y}_1^{0} \\ \underline{sg}, \overline{sg}, \overline{sg} \rightarrow \underline{sg}, \overline{sg} \rightarrow \underline{sg} \rightarrow \underline{sg}, \overline{sg} \rightarrow \underline{sg} \rightarrow \underline{sg}, \overline{sg} \rightarrow \underline{sg} \rightarrow \underline{sg} \rightarrow \underline{sg}, \overline{sg} \rightarrow \underline{sg} \rightarrow $	$g, g \rightarrow qq\bar{q}\bar{\chi}_{1}^{0} \rightarrow qq\bar{\chi}_{1}^{0} + \bar{\chi}_{1}^{0}$ $\bar{g}, \bar{g} \rightarrow qq\bar{\ell}\ell^{2}/\ell^{\nu}/\nu\gamma\bar{\chi}_{1}^{0}$ MSB ($\bar{\ell}$ NLSP) GM (bino NLSP)	0 1 ε,μ 2 ε,μ 1-2 τ + 0-1 ℓ 2 γ	3-6 jets 0-3 jets 0-2 jets	Yes Yes Yes	20.3 20 20.3 20.3	1.3 TeV 1.2 TeV 1.32 TeV 1.32 TeV 1.5 TeV 1.5 TeV	$m(\xi_1^0) \sim 300 \text{ GeV}$ $m(\xi_1^0) = 0.5(m(\xi_1^0) + m(g))$ $m(\xi_1^0) = 0 \text{ GeV}$ $m(\xi_1^0) = 0 \text{ GeV}$ $m(\xi_1^0) \sim 50 \text{ GeV}$	1501.03555 1501.03555 1407.0603 ATLAS-CONF-2014-001
G G G	GM (wino NLSP) GM (higgsino-bino NLSP) GM (higgsino NLSP) ravitino LSP	$1 e, \mu + \gamma$ γ $2 e, \mu (Z)$ 0	- 1 <i>b</i> 0-3 jets mono-jet	Yes Yes Yes	4.8 4.8 5.8 20.3	619 GeV 900 GeV 690 GeV 690 GeV 855 GeV	m(ξ ⁰ ₁)>50 GeV m(ξ ⁰ ₁)>220 GeV m(NLSP)>200 GeV m(\tilde{G})>1.8 × 10 ⁻⁴ eV, m(\tilde{g})=m(\tilde{g})=1.5 TeV	ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 1502.01518
g med.	$\rightarrow b\bar{b}\tilde{\chi}_1^0$ $\rightarrow t\bar{t}\tilde{\chi}_1^0$ $\rightarrow t\bar{t}\tilde{\chi}_1^0$ $\rightarrow b\bar{t}\tilde{\chi}_1^+$	0 0 0-1 <i>e</i> ,µ 0-1 <i>e</i> ,µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes	20.1 20.3 20.1 20.1	1.25 TeV 1.1 TeV 1.34 TeV 1.34 TeV 1.3 TeV	$\begin{array}{l} m(\tilde{\xi}_{1}^{0}){<}400 \mbox{ GeV} \\ m(\tilde{\xi}_{1}^{0}){<}350 \mbox{ GeV} \\ m(\tilde{\xi}_{1}^{0}){<}400 \mbox{ GeV} \\ m(\tilde{\xi}_{1}^{0}){<}300 \mbox{ GeV} \end{array}$	1407.0600 1308.1841 1407.0600 1407.0600
direct production	$ \begin{split} \bar{b}_1, \bar{b}_1 \rightarrow \bar{b} \bar{\chi}_1^0 \\ \bar{b}_1, \bar{b}_1 \rightarrow \bar{d} \bar{\chi}_1^a \\ \bar{i}_1, \bar{i}_1 \rightarrow \bar{b} \bar{\chi}_1^a \\ \bar{i}_1, \bar{i}_1 \rightarrow \bar{b} \bar{\chi}_1^a \\ \bar{i}_1, \bar{i}_1 \rightarrow \bar{c} \bar{\chi}_1^0 \\ \bar{i}_1, \bar{i}_1 \rightarrow \bar{i}_1 \\ \bar{i}_1, \bar{i}_1 \rightarrow \bar{i}_1, \bar{i}_1 \end{pmatrix} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (SS) \\ 1 \cdot 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \cdot 1 \ e, \mu \\ 0 \cdot 1 \ e, \mu \\ 2 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 1-2 b 1-2 b 1-2 b 1 b 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.3 4.7 20.3 20 20.3 20.3 20.3 20.3		$\begin{split} m(\xi_1^0) &= 30 \text{GeV} \\ m(\xi_1^0) &= m(\xi_1^0) \\ m(\xi_1^0) &= m(\xi_1^0), m(\xi_1^0) &= 55 \text{GeV} \\ m(\xi_1^0) &= 1 \text{GeV} \\ m(\xi_1^0) &= 1 \text{GeV} \\ m(\xi_1^0) &= 150 \text{GeV} \\ m(\xi_1^0) &= 150 \text{GeV} \end{split}$	1308.2631 1404.2500 1209.2102, 1407.0583 1403.4853, 1412.4742 1407.0583,1406.1122 1407.0608 1403.5222 1403.5222
diract X X X X X	$\begin{array}{l} &_{\mathcal{R}}\tilde{t}_{L\mathcal{R}_{i}}\tilde{t}\rightarrow t\tilde{\chi}_{1}^{0} \\ &_{\mathcal{X}_{1}}^{*},\tilde{\chi}_{1}^{*}\rightarrow \tilde{t}\gamma(t\tilde{r}) \\ &_{\mathcal{X}_{1}}^{*},\tilde{\chi}_{1}^{*}\rightarrow \tilde{t}\gamma(t\tilde{r}) \\ &_{\mathcal{X}_{2}}^{*}\rightarrow \tilde{t}_{L}\gamma\tilde{t}_{L}(\tilde{r}), f\tilde{r}\tilde{t}_{L}\ell(\tilde{r}) \\ &_{\mathcal{X}_{2}}^{*}\rightarrow \tilde{t}\tilde{t}\tilde{t}^{*}_{L}\gamma\tilde{t}_{L}(\tilde{r}), f\tilde{r}\tilde{t}_{L}\ell(\tilde{r}) \\ &_{\mathcal{X}_{2}}^{*}\rightarrow \tilde{t}\tilde{t}\tilde{t}\tilde{t}^{*}_{L}, h\rightarrow b\tilde{b}/WW/\tau\tau/\gamma \\ &_{\mathcal{X}_{2}}^{*}\tilde{t}\tilde{t}^{*}_{L}\tilde{\chi}_{2}^{*}\rightarrow \tilde{t}\ell\ell \end{array}$	2 e, μ 2 e, μ 2 τ 3 e, μ 2 · 3 e, μ γ e, μ, γ 4 e, μ	0 0 0-2 jets 0-2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3	* 99335 GeV * 1694855 GeV ↓ 100-350 GeV ↓ 100-350 GeV 700 GeV ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2 ↓ 2	$\begin{split} m(\xi_1^0) &= O GeV \\ m(\xi_1^0) &= O GeV , m(\xi, \gamma) &= 0.5 (m(\xi_1^0) + sm(\xi_1^0)) \\ m(\xi_1^0) &= O GeV , m(\chi, \gamma) &= 0.5 (m(\xi_1^0) + sm(\xi_1^0)) \\ m(\xi_2^0) , m(\xi_1^0) &= 0.5 (m(\xi_1^0) + sm(\xi_1^0)) \\ m(\xi_1^0) &= m(\xi_2^0) , m(\xi_1^0) &= 0.5 (sptoms decoupled \\ m(\xi_1^0) , m(\xi_1^0) &= 0.7 (\xi_1^0) &= 0.5 (m(\xi_1^0) + sm(\xi_1^0)) \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086
particles	irect $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ table, stopped \bar{g} R-hadron table \bar{g} R-hadron MSB, stable $\bar{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tau (\bar{c}, \bar{\mu}) \star \tau (c, _{1})$ MSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \bar{c}$, long-lived $\tilde{\chi}_{1}^{0}$ $\bar{g}, \tilde{\chi}_{1}^{0} \rightarrow q gr$ (RPV)	Disapp. trk 0 trk μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 27.9 19.1 19.1 20.3 20.3	270 GeV 832 GeV 527 GeV 537 GeV 435 GeV 1.0 TeV	$\begin{split} &m(\tilde{t}_1^*) \cdot m(\tilde{t}_1^0) = 160 \ \text{MeV}, \ \tau(\tilde{t}_1^*) = 0.2 \ \text{ns} \\ &m(\tilde{t}_1^0) = 100 \ \text{GeV}, \ 10 \ \mu \text{s} < \tau(\tilde{g}) < 1000 \ \text{s} \\ &10 \cdot \tan\beta < 50 \\ &2 < \tau(\tilde{t}_1^0) \cdot 3 \ \text{ns}, \ \text{SPS8} \ \text{model} \\ &1.5 \ < \tau < \tau < 156 \ \text{mm}, \ \text{BR}(\mu) = 1, \ m(\tilde{t}_1^0) = 108 \ \text{GeV} \end{split}$	1310.3675 1310.6584 1411.6795 1411.6795 1409.5542 ATLAS-CONF-2013-092
	$ \begin{array}{l} FV pp \rightarrow \tilde{r}_r + X_r \tilde{r}_r \rightarrow e + \mu \\ FV pp \rightarrow \tilde{r}_r + X_r \tilde{r}_r \rightarrow e(\mu) + \tau \\ linear RPV CMSSM \\ \tilde{r}_1 \tilde{r}_1 \tilde{r}_1 \rightarrow W \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow e \tilde{r}_{\mu}, e \mu \tilde{r}_{\nu} \\ \tilde{r}_1 \tilde{r}_1 \tilde{\tau}_1 \rightarrow W \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \tau \tilde{r}_{\nu}, e \tau \tilde{r}_{\tau} \\ \rightarrow q q \end{array} $	$2 e, \mu$ $1 e, \mu + \tau$ $2 e, \mu$ (SS) $4 e, \mu$ $3 e, \mu + \tau$ 0	0-3 b	- Yes Yes Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3	. 1.61 TeV . 1.1 TeV . 1.35 TeV . 1.35 TeV . 1.35 TeV . 1.35 TeV . 1.35 TeV . 1.35 TeV . 1.55	$\begin{split} & \mathcal{X}_{511} = 0.10, \mathcal{X}_{122} = 0.05 \\ & \mathcal{X}_{311} = 0.10, \mathcal{X}_{12333} = 0.05 \\ & \mathbf{m}(\hat{g}) = \mathbf{m}(\hat{g}), \mathbf{c}_{7557} < 1 \mathrm{mm} \\ & \mathbf{m}(\hat{f}_1^{(7)}) > 0.2 \times \mathbf{m}(\hat{\xi}_1^{(7)}, \mathcal{X}_{121} \neq 0 \\ & \mathbf{m}(\hat{\xi}_1^{(7)}) > 0.2 \times \mathbf{m}(\hat{\xi}_1^{(7)}, \mathcal{X}_{133} \neq 0 \\ & \mathbf{B}(r_1) = \mathbf{B}(r_1)$	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091

Many scenarios excluded!! Especially, it is getting very difficult to realize the EW scale in SUSY!

$$m_h^2 \le M_Z^2 \cos^2 2\beta + \Delta m_h^2(m_{stop}^2, A_t - \mu/\tan\beta)$$

loop correction

<u>One possible spectrum is</u>

Specific SUSY spectrum can realize 125 GeV Higgs mass and EW scale.

No hierarchy between Higgsino and EW scale.

 \rightarrow No fine-tuning in Higgs potential.

"Naturally EW scale is realized!"

We can prove this kind of scenarios by direct stop/gluino searches at the LHC.

Another possible spectrum is

(Arkani-Hamed, Dimopoulos, 04';Giudice, Romanino 04'; Cabrera, Casas, Delgado, 11'; Guidice, Strumia, 11'; Hall, Nomura, 11'; Arkani-Hamed, Gupta, et.al, 12'; Ibe, Matsumoto, Yanagida, 12'; Hisano, Kuwahara, Nagata, 13'; Hisano, Muramatsu, Shigekami, YO, Yamanaka, 14', 16'; etc..)

Simply very large SUSY scale can realize 125 GeV Higgs mass.

Big hierarchy between Higgsino and EW scale.

→ Require fine-tuning in Higgs potential

"The EW scale is given by the very fine-tuning!"

Another possible spectrum is

(Arkani-Hamed, Dimopoulos, 04';Giudice, Romanino 04'; Cabrera, Casas, Delgado, 11'; Guidice, Strumia, 11'; Hall, Nomura, 11'; Arkani-Hamed, Gupta, et.al, 12'; Ibe, Matsumoto, Yanagida, 12'; Hisano, Kuwahara, Nagata, 13'; Hisano, Muramatsu, Shigekami, YO, Yamanaka, 14', 16'; etc..)

Simply very large SUSY scale can realize 125 GeV Higgs mass.

Big hierarchy between Higgsino and EW scale.

→ Require fine-tuning in Higgs potential

"The EW scale is given by the very fine-tuning!"

How can we prove this kind of scenario?

Another possible spectrum is

(Arkani-Hamed, Dimopoulos, 04'; Giudice, Romanino 04';

Cabrera, Casas, Delgado, 11'; Guidice, Strumia, 11'; Hall, Nomura, 11';

Arkani-Hamed, Gupta, et. al, 12'; Ibe, Matsumoto, Yanagida, 12';

Hisano, Kuwahara, Nagata, 13';

Hisano, Muramatsu, Shigekami, YO, Yamanaka, 14', 16'; etc..)

Simply very large SUSY scale can realize 125 GeV Higgs mass.

Big hierarchy between Higgsino and EW scale.

→ Require fine-tuning in Higgs potential

"The EW scale is given by the very fine-tuning!"

How can we prove this kind of scenario?

→We propose *flavor physics* in this talk!

There are several hints in high-scale SUSY GUT:

Yukawa unification.

SO(10) and E6 GUTs predict extra gauge symmetry.

- We discuss the SO(10) GUT which realize the realistic Yukawa couplings.
- Z' interaction from SO(10) relates to the hierarchy, and GUT could be tested by flavor physics!

(YO, J. Hisano, Y. Muramatsu, Y. Shigekami, M. Yamanaka)

Setup

Standard Model (SU(3)c×SU(2)L×U(1)Y)

SO(10) Embedding: $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X \rightarrow SO(10)$ extra

slightly extended SM

SO(10) Embedding: $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X \rightarrow SO(10)$ extra

slightly extended SM

This looks elegant and we expect the GUT exists at the high scale.

But we can easily notice that

it is not simple to realize the realistic Yukawa couplings in the GUT.

Couplings for Mass matrices are

$$y_{ij} \mathbf{16}^{i} \mathbf{16}^{j} \mathbf{10}_{H} \quad \triangleright \quad y_{ij}^{u} Q_{L}^{i} U_{R}^{c\,j} H_{u} + y_{ij}^{d} Q_{L}^{i} D_{R}^{c\,j} H_{d} + y_{ij}^{l} L^{i} E_{R}^{c\,j} H_{d}$$

can be diagonalized

same structures of Yukawa (Mass matrices)

$$y_{ij}^{u} = \frac{m_i^{u}}{v \sin \beta} \delta_{ij} \approx y_{ij}^{d} \approx y_{ij}^{l}$$

(YO, J. Hisano, Y. Muramatsu, Y. Shigekami, M. Yamanaka) This is because d_i and carry different U(1)x charges **d**í extra from 10 rep. from 16 rep. U(1)x-charge states d, **C**_i Z' Z' Qx=-3Qx=+2 d_i d'i

Our Predictions

The detail shown in Shigekami's poster

Left-handed leptons and right-handed down-type quarks have FCNCs corresponding to the fermion mass hierarchy.

For instance, (b,s) element is relatively large

Flavor Physics

Relevant processes

(See Shigekami's poster)

Relevant processes

(See Shigekami's poster)

The deviation of B_{s} - \overline{B}_{s} mixing

εκ is most sensitive.

is also relatively large.

<u>Deviations in B(s)-B(s)</u> compared to the SM predictions

Actually, there are free parameters to fit all experimental data.

The deviation of Bs- \overline{Bs} mixing reaches 10 % if Z' mass O(10) TeV.

Relevant processes

(See Shigekami's poster)

εκ is most sensitive.

The deviation of B_s - \overline{B}_s mixing is also relatively large.

How about other processes?

Deviations in rare K decay

 $K \sqcup \rightarrow \pi \circ \nu \nu$ will be measured by the KOTO experiment.

BR $(K^+ \to \pi^+ \nu \overline{\nu}) = 1.73^{+1.15}_{-1.05} \times 10^{-10}$ (E949, 0903.0030) BR $(K_L \to \pi^0 \nu \overline{\nu}) < 2.6 \times 10^{-8}$ (E391a, 0911.4789)

Deviations in rare K decay

 $K \sqcup \rightarrow \pi \circ \nu \nu$ will be measured by the KOTO experiment.

deviations of $KL \rightarrow \mu \mu, \mu e, K \rightarrow \pi 0 \nu \nu$ are at most O(1)%.

Relevant processes

(See Shigekami's poster)

εκ is most sensitive.

The deviation of B_s - \overline{B}_s mixing is also relatively large.

How about other processes?

very small because of the constraint from **ε**κ.

Relevant processes

(See Shigekami's poster)

εκ is most sensitive.

The deviation of B_s - \overline{B}_s mixing is also relatively large.

How about other processes?

very small because of the constraint from **ε**κ.

Lepton Flavor violation

 $\mu \rightarrow 3e$, μ -e conversion are the most important.

→3e <u>μ</u>-

 $M_{Z'} \approx 100 \text{TeV}$

Future experiment (Mu3e) could reach our region!

 $\mu N \rightarrow e N$

μ

е

Z

COMET experiment could reach our region!

Summary and Discussion

The BSMs I'm working on

SUSY GUT (SO(10))

(J. Hisano, Y. Muramatsu, YO, Y. Shigekami, M. Yamanaka)

dark matter models

(T. Abe, J. Kawamura, S. Okawa, YO)

2HDM

K. Tobe's talk

(YO, E. Senaha, K. Tobe)

The BSMs	I'm working on
I introduced this work	

dark matter models

(T. Abe, J. Kawamura, S. Okawa, YO)

2HDM

K. Tobe's talk

(YO, E. Senaha, K. Tobe)

• In SUSY SO(10) GUT,

• This setup can be tested via K and μ physics.

 ϵK , $\mu \rightarrow 3e$ and μ -e conversion are relevant. (Mu3e and COMET experiments may discover.)

deviations of $K_L \rightarrow \mu \mu, \mu e, K \rightarrow \pi_0 \vee \nu$ are at most O(1)%.

If Z' has lower mass, B and τ become important.
 deviations of ΔMBs can reach 10% if Z'~30 GeV, but ΔMBd less than 10%.
 deviation of B(s)→µµ is a few percent.

(J. Hisano, Y. Muramatsu, YO, Y. Shigekami, M. Yamanaka)

The setup predicts flavor violating processes. K and µ physics are the most important.

dark matter models

(T. Abe, J. Kawamura, S. Okawa, YO)

K. Tobe's talk

(YO, E. Senaha, K. Tobe)

(J. Hisano, Y. Muramatsu, YO, Y. Shigekami, M. Yamanaka)

The setup predicts flavor violating processes. K and μ physics are the most important.

(J. Hisano, Y. Muramatsu, YO, Y. Shigekami, M. Yamanaka)

The setup predicts flavor violating processes. K and μ physics are the most important.

dark matter models (T. Abe, J. Kawamura, S. Okawa, YO) 2HDM K. Tobe's talk (YO, E. Senaha, K. Tobe) <u>Bottom-up approach:</u> Many free parameters. Based on the experimental results, we are studying how to prove the models.

DM models in bottom-up approach

We build some simple BSMs with WIMP DMs, and find some correlations among direct search at the LHC, DM and flavor physics. (T. Abe, J. Kawamura, S. Okawa, YO)

DM models in bottom-up approach

DM models in bottom-up approach

The same diagram contributes to DM and Flavor physics.

contribute to

contribute to

annihilation and direct section of DMs.

 $\Delta F=2$ processes: K-K and B(s)-B(s) mixing.

Correlations among the LHC, DM, flavor physics

 $B_d - \overline{B_d}$ mixing

 $B_s - \overline{B_s}$ mixing

O(I)-O(I0)% Deviations of the $\Delta F=2$ processes are predicted!

(J. Hisano, Y. Muramatsu, YO, Y. Shigekami, M. Yamanaka)

The setup predicts flavor violating processes. K and µ physics are the most important.

dark matter models

(T. Abe, J. Kawamura, S. Okawa, YO)

There are correlations among LHC, DM, and flavor physics.

2HDM

K. Tobe's talk

(YO, E. Senaha, K. Tobe) *Bottom-up approach: Many free parameters. Based on the experimental results, we are studying how to prove the models.*

<u>Thank</u>you

Backup

Detail

In extended SO(10) symmetric superpotential,

$$h^{ij} \mathbf{16}_i \mathbf{16}_j \mathbf{10}_H + g^{ij} \mathbf{10}_i \mathbf{16}_j \mathbf{16}_H + \mu_{10}^{ij} \mathbf{10}_i \mathbf{10}_j$$

In effective superpotential (SM×U(1)x symmetric superpotential),

quark sector

break extra U(1)x from 16H

$$h^{ij}Q_{L\,i}U^{c}_{R\,j}H_{u} + h^{ij}Q_{L\,i}\hat{D}^{c}_{R\,j}H_{d} + g^{ij}\overline{D'^{c}_{R\,i}}\hat{D}^{c}_{R\,j}(\mathbf{1}_{H}) + \mu^{ij}_{10}\overline{D'^{c}_{R\,i}}D'^{c}_{R\,j}(\mathbf{1}_{H})$$

MSSM down-type

$$\hat{D}_{R\,i}^{c} = (\hat{U}_{D})_{ij} \overline{D_{R\,j}^{c}} + (\hat{U}_{D}')_{ij} D_{R\,j}''^{c}$$

$$h^{ij}Q_{L\,i}U^c_{R\,j}H_u + (h\hat{U}_D)_{ij}Q_{L\,i}D^c_{R\,j}H_d + \mu^{ij}\overline{D'^c_{R\,i}}D''^c_{R\,j}$$

Hierarchy is given by the mixing

Detail

In extended SO(10) symmetric superpotential,

$$h^{ij} \mathbf{16}_i \mathbf{16}_j \mathbf{10}_H + g^{ij} \mathbf{10}_i \mathbf{16}_j \mathbf{16}_H + \mu_{10}^{ij} \mathbf{10}_i \mathbf{10}_j$$

In effective superpotential (SM×U(1)x symmetric superpotential),

lepton sector

break extra U(1)x from 16H

$$h^{ij}\hat{L}_iN^c_{Rj}H_u + h^{ij}\hat{L}_iE^c_{Rj}H_d + g^{ij}\overline{L'_i}\hat{L}_j(\mathbf{1}_H) + \mu^{ij}_{10}\overline{L'_i}L'_j$$

MSSM lepton

$$\hat{L}_i = (\hat{U}_D)_i \underbrace{L_j} + (\hat{U}'_D)_{ij} L''_j$$

$$h^{ij}L_i N^c_{Rj} H_u + (\hat{U}^T_D h)_{ij} L_i E^c_{Rj} H_d + \mu^{ij} \overline{L'_i} L''_j$$

Hierarchy is given by the mixing