High momentum particle identification with a pressurized Cherenkov radiator

Michael Weber (University of Houston) for the VHMPID collaboration

Outline:

- The VHMPID Collaboration
- Why we need high p_T PID in heavy ion collisions
- R&D overview
- Photon detector studies
- Radiator studies
- Alternative photon detectors

The VHMPID collaboration

Very High Momentum Particle Identification Detector

Participating Institutions:

Austin (USA), Bari (Italy), Budapest (Hungary), Campinas (Brazil), Chicago (USA), Gangneung (South Korea), Houston (USA), Kolkata (India), Mexico City (Mexico), Pusan (South Korea), Salerno (Italy) 12 institutions (~60 scientists)

+ major R&D contributions from CERN and Yale (USA)

Letter Of Intent: http://arxiv.org/abs/1309.5880 (submitted to EPJ)

... proposal was not endorsed by the ALICE collaboration...

PID in heavy ion collisions

Michael Weber - RICH 2013 - 02.12.2013

PID in heavy ion collisions

Michael Weber - RICH 2013 - 02.12.2013

What we learned so far

With:

- Track-by-track PID (< 3 GeV/c)
- Above: statistical PID or high purity cuts (π/p only)

we get:

- Baryon-to-meson enhancement
- Elliptic flow: mass ordering

ALICE, Phys.Lett. B719 (2013) 18-28

What we are missing still

With:

- Identified correlation functions (high p_T)
- PID in jets
- Identified fragmentation functions

we answer:

- medium modification and gluon/quark fragmentation
- Hadro-chemistry in jets

What we are missing still

VHMPID in one slide

tracking chamber (3 cm)

- Track-by-track PID in high momentum regime (p_T = 5-25 GeV/c)
- Requires a pressurized gaseous RICH detector.
- Thin layout (~70 cm) enables integration in front of calorimeter.
- Detector resolution (~1.5 mrad) allows for 3σ p/K separation up to 25 GeV/c, π/K separation from 5 GeV/c on.

R&D I: Pressurized radiator gas

• Refractive index:

р	Refr. ind.@	Momentum	N _{ph} cm ⁻¹ eV ⁻¹		
[bar]	175 nm	π	К	р	at saturation
1	1.00153	2.5	9	17	1.1
1.5	1.002295	2.1	7.3	13.5	1.7
2	1.00306	1.8	6.4	12	2.2
2.5	1.00383	1.6	5.6	10.7	2.9
3	1.0046	1.5	5.1	9.8	3.4
3.5	1.00535	1.3	4.8	9.1	3.9

- Optimization:
 - @ 3.5 bar and L= 50 cm
 - excellent photon yield and ring radius
 (~5 cm) suitable for pattern recognition
 - C_4F_8O needs heating at ~ 40 °C to prevent condensation

R&D II: Photon detector

- Large acceptance (up to 60 m²) and large photosensitive area (up to 8 m²) and working in magnetic field (B=0.5 T):
 - CsI-MWPC with reduced pad size (w.r.t. ALICE-HMPID) and anodecathode gap: improved spatial resolution + smaller induction spread, detector gas: CH₄
 - CsI-based TGEM photon detectors (thick GEM)
 - Micro-channel plate detectors (Photonis Planacon XP85012Q with bialkali PC to work in the visible)
- Other topics:
 - Radiator vessel and mirror system engineering studies
 - Radiator gas cleaning and UV transparency measurement systems
 - Tracking detector based on CCC (Close-Cathode Chamber) to improve track-ring matching

Detector figure of merit N₀

 $N_0 = 370 \int \varepsilon \cdot QE \cdot T \cdot R \, dE$ $N_{pe} = N_0 L \sin^2 \vartheta_c$

	UV	Visible
N ₀ [cm ⁻¹]	60	130
N _{pe}	24	45

MC simulation: 15 GeV/c π , C₄F₈O @ 3.5 bar:

Particle separation

Resolution from theoretical estimation $C_4F_8O @ 3.5 bar$

	UV	Visible
$\sigma_{q}^{\ chromatic}$	2.0 mrad	1.2 mrad
$\sigma_{q}^{opt.aberr.}$	0.9 mrad	0.8 mrad
$\sigma_{q}^{\ granularity}$	2.3 mrad	2.3 mrad
$\sigma_{q}^{\ tracking}$	1.6 mrad	1.6 mrad
$\sigma_{q}^{\ total}$	3.6 mrad	3.2 mrad
N _{rp}	~ 13	~ 30
$\sigma_{q}^{\text{ track}}$	~ 1 mrad	~ 0.6 mrad

	Signal	Absence of signal
	(GeV/c)	(GeV/c)
р	2-16	
К	5-16	
р	10-25	5-10

PID ranges

- Lower limit: cut N_{rp} >2
- Upper limit: 3 σ separation
- $\frac{\sigma_{\theta}}{\sqrt{N_{rp}}} = \frac{m_2^2 m_1^2}{2n_{\sigma}p^2 \tan \vartheta_c}$

PID performance (Simulation)

Details:

- Embedding π, K and p in background PbPb HIJING events at LHC energies.
- Pattern recognition procedure from HMPID
 → Cherenkov angle for photons
- Hough Transform to filter out the background and improve the signal of identified particles.
 - ightarrow Cherenkov angle for particle species

Efficiency/Purity (protons)

Testbeams at CERN PS/T10

- Radiator:
 - liquid C_6F_{14} radiator (in proximity focusing, HMPID-like)
 - C_4F_{10} or C_4F_8O at atmospheric pressure with mirror focusing
 - Heated and pressurized C₄F₈O radiator
- Photon detector:
 - MWPC prototype with adjustable anode-cathode gap (0.8-2 mm)
 - MWPC prototype with fixed gap
 - CsI-TGEM
 - CsI-TCPD
 - Planacon MCP

Anode-Cathode gap studies

- Refurbished old prototype (F. Piuz, RD26), anode-pad cathode gap adjustable in 0.8-2 mm (100 μm steps), anode-wire cathode 2 mm, 20 μm anode wires, pitch 4 mm
- Basic performance studies using liquid C₆F₁₄ radiator, 3 mm thick: HV scan, gap scan
- proximity focusing with expansion gap such that to reproduce the same ring radius as with C_4F_8O with mirror focusing
- Negative pion beam, 6 GeV/c

Anode-Cathode gap studies

Event display subevent: 11

Offline analysis:

- Select good events (MIP)
- Ring radius
- Gain in ring fiducial
- Number of clusters
- Cluster size
- Cluster and ring resolution

Gain and photon yield

Size and cluster yield

Cherenkov angle resolution

Pressurized C₄F₈O radiator

Full VHMPID setup:

- MIP detectors
- Pressurized radiator (3.5 atm)
- Photon detector (var. gap MWPC, CH₄)
- Online radiator gas transparency meter
- Automatized radiator gas control

Test program:

- Photon detection performance
- Cherenkov angle resolution
- Particle separation

Pressurization, heating

- Radiator equipped with heating wire and P, T probes
- Safety pressure test (@ 5 bar for 5 h)
- Heating studies with Fluent 6.0 to optimize insulation and ensure radiator temperature uniformity
- P, T control and monitoring

1.20e+01 1.00e+01

Michael Weber - RICH 2013 - 02.12.2013

Pressurized C₄F₈O radiator

Michael Weber - RICH 2013 - 02.12.2013

Pressurized C₄F₈O radiator

Results:

- Excellent chamber performance (gain, number of photons)
- Excellent Cherenkov angle resolution (~ 1.5 mrad)
- Agreement to simulations
- \rightarrow Particle separation possible!

 C_4F_8O refractive index in UV ~ C_4F_{10} (theoretical: correction factor [0.99974]* C_4F_{10} at 175 nm)

Contamination of kaons, electrons \rightarrow Identified and compared to simulation

Photon detection alternatives: CsI-TGEM

V. Peskov et al., NIM A 695 (2012), 154-158

Photon detection alternatives: CsI-TGEM

V. Peskov et al., NIM A 695 (2012), 154-158

- Observed detection efficiency ~ 60% of HMPID, Gassiplex not optimized for TGEM
- First tests performed with APV25

Photon detection alternatives: TCPD

G. Hamar, 2013 JINST 8, MPGD 2013 proceedings

TGEM + CCC Photon Detector:

- Hybrid
- Close Cathode Chamber
- Thick GEM
- Detector gas: CH₄
- Reverse bias cathode: Reduce MIP signal and keep photon detection efficiency

Michael Weber - RICH 2013 - 02.12.2013

Photon detection alternatives: Photonis Planacon XP85012

Description

UV-Glass, Schott 8337B or equivalent
Bialkali
MCP chevron (2), 25 µm pore, 40:1 L:D ratio
8×8 array, 5.9 / 6.5 mm (size / pitch)
53×53 mm
80%

- Due to delay on electronics production, it could not be tested before the end of testbeam at CERN/PS in 2012
- Ongoing lab tests with LED source

Pro's	Con's
Larger photon yield (larger bandwidth in visible), intrinsically faster	Cost (~ 8.8 K\$ /piece) and timescale for full production
No issues from radiator gas transparency (purity, O ₂ and H ₂ O contamination), less demanding systems	Chromatic error due to larger bandwidth, (compensated by photon yield, final performance similar to UV)
Can be mounted inside radiator vessel, sapphire windows not needed	Detection efficiency losses due to 80% packing factor
Commercial device, savings on work for photon detector, no CH ₄ gas system	

Typical spectral response

Summary

track-by-track PID in high momentum regime

Backup slides

Main physics goals

Unique proton-proton physics

- Determination of **baryon fragmentation functions** via proton in jets
- Determination of charmonium production process via PID characteristics in sub-leading heavy quark jet.
- Determination of **quark vs gluon fragmentation** by measuring hadrochemistry in tagged jets.

Unique heavy ion physics

- Determination of cause of **baryon puzzle** at intermediate to high pT through measurement of hadro-chemistry in tagged jets
- Determination of gluon splitting process (energy loss in medium) through measurement of hadro-chemistry in jets.
- Determination of medium modification and gluon/quark fragmentation
- Determination of **baryon/anti-baryon imbalance** through pT dependent proton/anti-proton measurement in medium
- Determination of hadronic resonance modification in medium at high pT

Mirror studies (ZEMAX)

Cherenkov angle resolution

