Mixing-induced CP Violation in B_d decays

Kenkichi Miyabayashi (Nara Women's University, Japan) FPCP conference, Nagoya 2015 May. 25th

Angle measurements and mixing

Decay via $b \rightarrow c$ (tree) to set SM reference. Decay via about $b \rightarrow s$ (penguin) to hunt New CPV phase.

A lot of playground, $b \rightarrow c$ decays

In charmless decays

Time-dependent CPV at $\Upsilon(4S)$ $^{\mu}CP side$ $(B to f_{CP})$ In order to see CPV Υ(4S)→B meson pair by interference produced from e⁺e⁻ collision between decay and e⁺ mixing. (3.5GeV) (8GeV) **B**0 $\Delta z = \beta \gamma c \Delta t$, Tag side $\beta\gamma = 0.425$ (KEKB), 0.56(PEP-II) $\Delta z \sim 200 \,\mu$ m (the other B) $A_{CP}(\Delta t) = \frac{\Gamma(\overline{B^{0}(\Delta t)} \rightarrow f_{CP}) - \Gamma(\overline{B^{0}(\Delta t)} \rightarrow f_{CP})}{\Gamma(\overline{B^{0}(\Delta t)} \rightarrow f_{CP}) + \Gamma(\overline{B^{0}(\Delta t)} \rightarrow f_{CP})} = S_{f_{CP}} \sin(\Delta m \Delta t) + A_{f_{CP}} \cos(\Delta m \Delta t)$ $S_{f_{CP}} = \frac{2 Im(\lambda)}{|\lambda|^2 + 1} \quad A_{f_{CP}} = \frac{|\lambda|^2 - 1}{|\lambda|^2 + 1} \quad \lambda = \frac{q}{p} \frac{\overline{A}(f_{CP})}{A(f_{CP})}$ 5 $-C_{f_{CP}} = A_{f_{CP}}$ $|\lambda| = 1$ if no DCPV

Time-dependent CPV at LHCb

Comparison

	Number of usable B _d	Flavor tagging	∆t or t resolution	Oscillation	comments
Ƴ(4S), i.e. BaBar, Belle/Belle II	1 million/fb ⁻¹	ε(1-2w) ² =30%	500~600 fs (~1/3×τ _B)	Coherent oscillation	
LHCb	1000~2000 million/fb ⁻¹	ε(1-2w) ² =3%	50~60 fs	Incoherent oscillation	No tag side interference

LHCb compensates lower flavor tagging effective efficiency with much larger b-hadron production rate, while better t resolution due to larger boost. Careful treatment of Δt resolution at $\Upsilon(4S)$ is essential.

$sin2\phi_1$ in $(c\overline{c})$ K⁰ at Belle

8

$sin 2\beta = sin 2\phi_1$ in $(c\overline{c}) K^0$ at BaBar

$sin 2\beta = sin 2\phi_1$ in $J/\psi K_s$ at LHC_b

LHC_b's capability has been proven.

Now it is a firm SM reference

sin(2β) ≡ 9	sin(2	$(2\phi_1)$	FAG riond 2015 ELIMINARY	
BaBar PRD 79 (2009) 072009			0.69 ± 0	.03 ± 0.01	
BaBar χ _{c0} K _S PRD 80 (2009) 112001	,	· · · · ·	0.69 ± 0.52 ± 0	.04 ± 0.07	
BaBar J/ψ (hadronic) K _S PRD 69 (2004) 052001		H	± 1,56 ± 0	.42 ± 0.21	Measurements by
Belle PRL 108 (2012) 171802	•		0.67 ± 0	.02 ± 0.01	B-factories
ALEPH PLB 492, 259 (2000)		*	0.84 ±	$\frac{0.82}{1.04} \pm 0.16$	Mogeuromonte
OPAL EPJ C5, 379 (1998)		μ	3.20 ±	$\frac{1.80}{2.00} \pm 0.50$	before B-factories
CDF PRD 61, 072005 (2000)	<u>ب</u>	<u>★</u>		0.79 +0.41 -0.44	
LHCb arXiv:1503.07089		-1	0.73 ± 0	.04 ± 0.02	LHC _b recent result
Belle5S PRL 108 (2012) 171801	*		0.57 ± 0	.58 ± 0.06	
Average HFAG			0	.69 ± 0.02	
-2 -1	0	1	2	3	11

How firm is it?

Leading : Tree No complex phase in decay amplitude

Sub-Leading : Penguin In principle, New Physics contribution might not be zero, how it can be constrained? 12

One interesting approach, $b \rightarrow c\overline{u}d$

 $B \xrightarrow{v = \pi^{0}, \eta, \omega} \frac{u}{W} \xrightarrow{u} \overline{D}^{(*)0} \frac{\overline{c}}{d}_{\pi,0}^{(*)\eta, \omega}$

Leading : Tree No complex phase in decay amplitude Sub-Leading : also Tree V_{ub} has complex phase, but it is within the SM, to be under control.

When neutral D meson decays to CP eigenstates, suitable to get ϕ_1 , branching fraction is limiting factor.

Thus, BaBar+Belle joint analysis

As for detail, see Markus Roehrken's talk!

Role of $b \rightarrow c\overline{c}d$ transition

Leading : Tree No complex phase in decay amplitude

Sub-Leading : Penguin Even in SM, because of the complex phase in V_{td} , more sensitive to penguin contribution.

Employing plausible assumption based on flavor SU(3) symmetry, penguin in the golden mode is to be constrained.¹⁵

Resultant constraint

65% of the B⁰ \rightarrow J/ $\psi \pi^{+}\pi^{-}$ signal is J/ $\psi \rho^{0}$.

Longitudinal polarization has largest fraction, mostly CP-even, CP-odd component is 20%.

 $2\beta_{eff}=2\phi_1^{eff}=41.7\pm9.6+2.8/-6.3^\circ \rightarrow \text{Penguin effect} <1^\circ \text{ in } J/\psi \text{ K}^0!$ B⁰ $\rightarrow J/\psi \pi^0$ mode also gives such a constraint.

Lesson from this

- Thanks to large b-hadron production rate, LHCb is good at determination of intermediate states' information in multibody B decays.
- Using it as external information, it may be worth to analyze an e⁺e⁻ B-factory data to get CP violation parameters featuring much higher effective tagging efficiency.

New physics search in loop; penguin decays

 $\overline{B}^{0} \xrightarrow{t} \underbrace{\overline{S}}^{s} \overline{d} \xrightarrow{K^{0}} \overline{d}$

SM penguin; No complex phase in decay. New Physics in the loop; may have a different weak phase. CPV deviation from $J/\psi K^0$ is a signature of New Physics.

Several contributions are overlapping

- $B^0 \rightarrow K^+K^-K_S$ final state has several different paths.
- Resolve them by fitting the Dalitz distribution. Same approach is required for $B^0 \rightarrow \pi^+\pi^-K_S$.
- LHCb better to determine intermediate states composition? (though production rate gain lower in the modes with a K_S)

Summary

- sin2β=sin2φ₁ determination by b→ccs is further investigated by b→cud and b→ccd mediated B_d decays, B⁰→D⁰h⁰ (BaBar+Belle) and B⁰→J/ψπ⁺π⁻ (LHCb), respectively.
- Interplay between hadron end lepton machines are interesting for multi-body B decay modes?
 - Large production at LHCb \rightarrow determination of intermediate states information
 - Higher effective flavor tagging efficiency at BaBar, Belle/Belle II \rightarrow CPV improved by external information?
- We should be innovative to realize "state-of-art" approaches to maximize sensitivity to NP.