## MIXING-INDUCED CP VIOLATION IN B<sub>S</sub> DECAYS



## **FPCP 2015**

**Flavor Physics & CP Violation** 

University of Nagoya, Japan 25-29 May 2015

### **Simon Akar**

on behalf of the LHCb collaboration, including results from other collaborations





## OUTLINE



**Simon Akar** 

## OUTLINE

![](_page_2_Figure_1.jpeg)

**Simon Akar** 

## **PHYSICS MOTIVATION**

![](_page_3_Figure_1.jpeg)

![](_page_3_Figure_2.jpeg)

#### Simon Akar

## **PHYSICS MOTIVATION**

CPV in interference between mixing and decay:

![](_page_4_Figure_2.jpeg)

#### Simon Akar

## **PHYSICS MOTIVATION**

CPV in interference between mixing and decay:

![](_page_5_Figure_2.jpeg)

#### Simon Akar

## **Physics motivation**

CPV in interference between mixing and decay:

![](_page_6_Figure_2.jpeg)

•  $\phi_s$  determination via global fit to experimental results ignores contributions from penguin diagrams:

$$\phi_s^{\text{SM no Peng}} = -2\beta_s = -0.0365^{+0.0013}_{-0.0012}$$
[CKMFitter]

#### Simon Akar

## **Physics motivation**

![](_page_7_Figure_1.jpeg)

#### **Simon Akar**

## OUTLINE

![](_page_8_Figure_1.jpeg)

**Simon Akar** 

## **MEASUREMENT INGREDIENTS**

Time-dependent CP asymmetry:

$$\mathcal{A}_{CP}(t) = \frac{(\overline{B}_s^0(t) \to f) - (B_s^0(t) \to f)}{(\overline{B}_s^0(t) \to f) + (B_s^0(t) \to f)} = \frac{\mathcal{S}_f \sin(\Delta m t) - \mathcal{C}_f \cos(\Delta m t)}{\cosh\left(\frac{\Delta\Gamma t}{2}\right) + \mathcal{A}_{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma t}{2}\right)}$$

• Mixing parameters:

 $\Delta m = m_{\rm H} - m_{\rm L} \qquad \Delta \Gamma = \Gamma_{\rm L} - \Gamma_{\rm H}$ 

• CP observables:

$$\mathcal{S}_f = \frac{2\Im(\lambda_f)}{1+|\lambda_f|^2} , \quad \mathcal{C}_f = \frac{1-|\lambda_f|^2}{1+|\lambda_f|^2} , \quad \mathcal{A}_{\Delta\Gamma} = -\frac{2\Re(\lambda_f)}{1+|\lambda_f|^2}$$

$$\lambda_f = \eta_f \frac{q}{p} \frac{A(\overline{B}^0_s(t) \to f)}{A(B^0_s(t) \to f)} = \eta_f |\lambda_f| e^{i\phi_s}$$

$$S_f = -\eta_f \frac{2|\lambda_f|\sin(\phi_s)}{1+|\lambda_f|^2} , \quad \mathcal{A}_{\Delta\Gamma} = \eta_f \frac{2|\lambda_f|\cos(\phi_s)}{1+|\lambda_f|^2}$$

![](_page_9_Figure_9.jpeg)

#### Simon Akar

## **MEASUREMENT INGREDIENTS**

Tagging, resolution and other nuisance effects:

$$\mathcal{A}_{\text{meas}}(t) = \mathcal{A}_{CP}(t) \times D_{\text{res}} \times D_{\text{tag}} \pm \mathcal{A}_{\text{det/prod}}$$

- Decay time resolution: Same side  $D_{\rm res} = e^{-\frac{\Delta m^2 \sigma_t^2}{2}}$ kaon tagger Tagging dilution: Same side PV Signal  $B^0_s$ proton proton  $D_{\rm tag} = (1 - 2\omega)$ Vertex charge tagger  $t \propto \frac{\ell m}{m}$ Opposite side from inclusive vertexing - Initial B flavor efficiency:  $\epsilon_{ ext{tag}}$  $K^{-}$ – Wrong tag rate:  $\omega$ **Opposite side** kaon tagger  $\stackrel{\text{lepton taggers}}{\text{from $b$-quark}} \stackrel{\textstyle \textstyle \smallsetminus}{(\mu^-,e^-)}$ - Effective reduction in statistical power:  $\sigma^{\rm stat}(\phi_s) \propto \frac{1}{\sqrt{\epsilon_{\rm off}N}}$  $\epsilon_{\rm eff} = \epsilon_{\rm tag} (1 - 2\omega)^2 \sim \mathcal{O}(\%)$ 
  - Also need to account for detection/production asymmetries, acceptance effects on time and angular variables, ...

## OUTLINE

![](_page_11_Figure_1.jpeg)

**Simon Akar** 

![](_page_12_Picture_0.jpeg)

## The LHCb experiment Detector overview

- Forward General-Purpose Detector at the LHC
- ~30 % of heavy quark production cross-section with just 4% of solid angle

![](_page_12_Figure_4.jpeg)

#### Simon Akar

![](_page_13_Figure_0.jpeg)

### Analysis overview:

- Measures  $\phi_s$ ,  $\Gamma_s$ ,  $\Delta\Gamma_s$  and  $|\lambda|$ 
  - Time-dependent tagged angular analysis (using sWeights)
    - 3 P-wave + 1 S-wave components

![](_page_13_Figure_5.jpeg)

- tagging power ~3.7%
- Fit simultaneously:
  - 6 bins of  $m_{KK}$
- Two fit models:
  - polarisation independent (baseline)
  - polarisation dependent (necessary, if CPV does not affect all polarisation states equally)

![](_page_13_Figure_12.jpeg)

#### Simon Akar

![](_page_14_Figure_0.jpeg)

Consistant with SM prediction

#### Simon Akar

![](_page_15_Picture_0.jpeg)

## Measurement of $\phi_s$ in $B_s \rightarrow J/\psi K^+K^-$ (4.9 fb<sup>-1</sup>)

[Phys. Rev. D. 90, 052007 (2014)]

## Analysis overview:

- Performed on 2011 data
- Measures  $\phi_s$ ,  $\Gamma_s$  and  $\Delta \Gamma_s$ 
  - Time-dependent tagged angular analysis (classic fit)
    - including background contribution
    - S-wave compatible with 0
    - tagging power ~1.5%
    - $|\lambda|$  fixed to unity

## Results:

 $\phi_s = 0.12 \pm 0.25 \text{ (stat.)} \pm 0.05 \text{ (syst.) rad}$ 

$$\Delta \Gamma_s = 0.053 \pm 0.021 \text{ (stat.)} \pm 0.010 \text{ (syst.) ps}^{-1}$$

 $\Gamma_s = 0.677 \pm 0.007 \text{ (stat.)} \pm 0.004 \text{ (syst.) ps}^{-1}$ 

- Consistant with SM & world average
- Expect an update with 2012 data soon...

![](_page_15_Figure_17.jpeg)

![](_page_15_Figure_18.jpeg)

#### Simon Akar

![](_page_16_Picture_0.jpeg)

## Measurement of $\phi_s$ in $B_s \rightarrow J/\psi K^+K^-$ (20 fb<sup>-1</sup>)

[CMS-PAS-BPH-13-012]

## Analysis overview:

- Performed on 2012 data
- Measures  $\phi_s$  and  $\Delta \Gamma_s$ 
  - Time-dependent tagged angular analysis (classic fit)
    - including background contribution
    - S-wave compatible with 0
    - tagging power ~1.0%
    - $|\lambda|$  fixed to unity (let free for syst.)

## Preliminary results:

$$\phi_{\rm s} ~=~ -0.03 \pm 0.11 ~({
m stat.}) \pm 0.03 ~({
m syst.}) ~{
m rad}$$
 ,

$$\Delta \Gamma_{\rm s} = 0.096 \pm 0.014 \; ({\rm stat.}) \pm 0.007 \; ({\rm syst.}) \; {\rm ps^{-1}}$$

Consistant with SM & world average

![](_page_16_Picture_15.jpeg)

![](_page_16_Figure_16.jpeg)

#### Simon Akar

![](_page_17_Picture_0.jpeg)

## Measurement of $\phi_s$ in $B_s \rightarrow J/\psi \pi^+\pi^-$ (3 fb<sup>-1</sup>)

[Phys. Lett. B 736 (2014) 186]

## Analysis overview:

- Measures  $\phi_s$ , and  $|\lambda|$ 
  - Time-dependent flavor-tagged amplitude analysis
    - ~27k signal events
    - classic fit (signal + background)
    - study  $\pi\pi$  invariant-mass up to  $m_{\pi\pi} \sim 2.3 \text{ GeV}$
    - tagging power ~3.9%
    - amplitude fit performed only on events within ± 20 MeV from the Bs mass peak
    - includes 5 resonant + 1 nonresonant amplitudes

![](_page_17_Figure_12.jpeg)

#### Measurement of $\phi_s$ in $B_s \rightarrow J/\psi \pi^+\pi^-$ (3 fb<sup>-1</sup>) [Phys. Lett. B 736 (2014) 186] **Results:** Combinations/ (20 MeV 3500 LHCb (a) 3000 2500 $\phi_s = 0.070 \pm 0.068 \pm 0.008$ rad

2000

1500

1000

500

ᡄᡗᠣᡙᠧᡨᡅ᠋᠇

1.5

 $m(\pi^+\pi^-)$  [GeV]

0.5

 $|\lambda| = 0.89 \pm 0.05 \pm 0.01$ 

 $\phi_s = 0.075 \pm 0.067 \pm 0.008$  rad for  $\lambda$  fixed to one (no direct CPV)

![](_page_18_Figure_3.jpeg)

World second most precise single measurement **Consistant with SM prediction & world average** 

#### **Simon Akar**

![](_page_19_Picture_0.jpeg)

## Measurement of $\phi_s$ in $B_s \rightarrow D^+_s D^-_s$ (3 fb<sup>-1</sup>)

[Phys. Rev. Lett. 113 (2014) 211801]

## Analysis overview:

- Measures  $\phi_s$  and  $|\lambda|$ 
  - Time-dependent flavor-tagged analysis (classic fit)
    - purely CP-even mode (no angular fit needed)
    - **D**<sub>s</sub> reconstructed as KK $\pi$ , K $\pi\pi$  or  $\pi\pi\pi$
    - Using  $B^0 \rightarrow D^-D^+s$  as control channel
    - tagging power ~5.3%

## Results:

$$\phi_s = 0.02 \pm 0.17 \,( ext{stat}) \pm 0.02 \,( ext{syst}) \, ext{rad}$$
  
 $\lambda| = 0.91 \,{}^{+0.18}_{-0.15} \,( ext{stat}) \pm 0.02 \,( ext{syst})$ 

Consistant with SM & world average

![](_page_19_Figure_13.jpeg)

#### Simon Akar

![](_page_20_Figure_0.jpeg)

## Measurement of TDCP asymmetries in $B_s \rightarrow J/\psi K^0 S (3 \text{ fb}^{-1})$

Article submitted to JHEP [arXiv:1503.07055]

- Analysis overview:
  - First time-dependent CPV measurements in this channel
  - Flavor-tagged time-dependent analysis:
    - simultaneous fit to a mixed sample of many B<sub>d</sub> and few B<sub>s</sub> events (100/1)
    - use of multivariate selection trained on B<sub>d</sub> proxy
    - split sample in two categories:
      - Downstream Ks (no velo hits)
      - Long  $K_s$  (velo hits  $\rightarrow$  better resolution)
    - tagging power:
      - $B_s \thicksim 3.8\%$  /  $B_d \thicksim 2.6\%$
    - also fits for  $\sin 2\beta$  (as cross-check)
      - see previous talk

| Yield                          | Long $K_{\rm s}^0$ | Downstream $K^0_{\rm s}$ |
|--------------------------------|--------------------|--------------------------|
| $B^0 \rightarrow J/\psi K_s^0$ | $27801\pm168$      | $51351\pm231$            |
| $B^0_s \to J/\psi K^0_s$       | $307 \pm 20$       | $601 \pm 30$             |
| Combinatorial background       | $658\pm37$         | $2852\pm74$              |

![](_page_20_Figure_16.jpeg)

#### Simon Akar

![](_page_21_Picture_0.jpeg)

## Measurement of TDCP asymmetries in $B_s \rightarrow J/\psi K^0 S (3 \text{ fb}^{-1})$

Article submitted to JHEP [arXiv:1503.07055]

### Preliminary results:

$$\begin{aligned} \mathcal{A}_{\Delta\Gamma} \left( B_s^0 \to J/\psi \, K_{\rm s}^0 \right) &= 0.49 \pm {}^{0.77}_{0.65} \, \left( {\rm stat} \right) \pm 0.06 \, \left( {\rm syst} \right) \\ C_{\rm dir} \left( B_s^0 \to J/\psi \, K_{\rm s}^0 \right) &= -0.28 \pm 0.41 \, \left( {\rm stat} \right) \pm 0.08 \, \left( {\rm syst} \right) \\ S_{\rm mix} \left( B_s^0 \to J/\psi \, K_{\rm s}^0 \right) &= -0.08 \pm 0.40 \, \left( {\rm stat} \right) \pm 0.08 \, \left( {\rm syst} \right) \end{aligned}$$

Recent prediction: [arXiv:1412.6834]

| $\mathcal{A}_{\Delta\Gamma}\left(B_s^0 \to J/\psi  K_{ m s}^0\right)$ | = | $0.957 \pm 0.061$                                            |
|-----------------------------------------------------------------------|---|--------------------------------------------------------------|
| $C_{ m dir}\left(B^0_s  ightarrow J\!/\!\psi K^0_{ m s} ight)$        | = | $0.003 \pm 0.021$                                            |
| $S_{ m mix}\left(B_s^0 \rightarrow J/\psi  K_{ m s}^0\right)$         | = | $0.29 \hspace{0.2cm} \pm \hspace{0.2cm} 0.20 \hspace{0.2cm}$ |

- Successful proof of concept waiting for more statistics
- Can be used to estimate the penguin effects in  $\sin 2\beta$  as well as in  $\phi_s$

![](_page_21_Figure_9.jpeg)

#### Simon Akar

## OUTLINE

![](_page_22_Figure_1.jpeg)

**Simon Akar** 

![](_page_23_Figure_0.jpeg)

### Analysis overview:

• Measures  $2\beta^{eff}$  and  $\alpha_{CP}$ 

 $\alpha_{CP} = \frac{1 - |\lambda_f|}{1 + |\lambda_f|}$ 

- Similar to  $B_s \rightarrow J/\psi \pi^+\pi^-$ 
  - Time-dependent flavor-tagged angular analysis (classic fit)
    - ~ 18k signal events

### Results:

 $2\beta^{\text{eff}}(B^0 \to J/\psi\rho^0) = (41.7 \pm 9.6(\text{stat})^{+2.8}_{-6.3}(\text{syst}))^{\circ}$  $\alpha_{CP}(B^0 \to J/\psi\rho^0) = -(32 \pm 28(\text{stat})^{+7}_{-9}(\text{syst})) \times 10^{-3}$ 

Used in penguin contribution estimation (next slide)

$$S_{J/\psi\rho^0} = -0.66^{+0.13}_{-0.12} (\text{stat})^{+0.09}_{-0.03} (\text{syst})$$
$$C_{J/\psi\rho^0} = -0.063 \pm 0.056 (\text{stat})^{+0.019}_{-0.014} (\text{syst})$$

![](_page_23_Figure_11.jpeg)

Most precise CP asymmetry measurement in this mode

#### Simon Akar

# LHCbMeasurement of $\beta$ in $B_d \rightarrow J/\psi \pi^+\pi^-$ (3 fb<sup>-1</sup>)IPhys. Lett. B742 (2015) 38]Limits on penguin effects in $\phi_s$

### Limits on penguin effects:

$$\Delta\phi_s = -\arg\left(\frac{(\lambda'_f e^{2i\gamma} - 1) + \epsilon(\lambda'_f - 1)}{(\lambda'_f e^{2i\gamma} - 1) + \epsilon(\lambda'_f - 1)e^{2i\gamma}}\right) \qquad \lambda'_f \equiv |\lambda_f| e^{-i\Delta 2\beta}$$

• Assuming perfect SU(3) flavor symmetry:  $a = a' \quad \theta = \theta'$ 

![](_page_24_Figure_5.jpeg)

#### Simon Akar

## **IN SUMMARY**

![](_page_25_Figure_1.jpeg)

#### Simon Akar

## **IN SUMMARY**

![](_page_26_Figure_1.jpeg)

#### Simon Akar

## **IN SUMMARY**

![](_page_27_Figure_1.jpeg)

- Entered era of precise CPV measurement in the  $B_s$  system
- First step in controlling penguin contributions
- Precision will further increase with LHC RunII & Upgrades adding statistics and new measurements!

#### Simon Akar

## **SPARE SLIDES**

# ★ Mixing-induced CP violation in penguin dominated transitions: $\phi_s^{s\bar{s}s}$

•  $\mathbf{B}_{s} \rightarrow \boldsymbol{\phi} \boldsymbol{\phi}$  [Phys. Rev. D90, 052011 (2014)]

# ★ Complementary material on $\phi_s^{c\bar{c}s}$ measurements

### • $B_{d(s)} \rightarrow \pi^+ \pi^- (K^+ K^-)$ [Phys. Lett. B 741 (2015) 1]

Analysis not presented here. Making use of CKM angle  $\gamma$  as input in the determination of  $-2\beta_s$ 

![](_page_29_Picture_0.jpeg)

## Measurement of CP violation in $B_s \rightarrow \phi \phi$ (3 fb<sup>-1</sup>)

[Phys. Rev. D90, 052011 (2014)]

### Analysis overview:

- $\phi_s$  in b  $\rightarrow s\bar{s}s$  transitions:
  - Dominated by gluonic penguin loops
  - Good sensitivity to NP
  - ▶ SM prediction  $\phi_s(b \rightarrow s\overline{s}s) \sim 0$
- Time-dependent flavor-tagged angular analysis (using <sub>s</sub>Weights):
  - ~ 4000 signal events

![](_page_29_Figure_10.jpeg)

![](_page_29_Figure_11.jpeg)

Simon Akar

### Measurement of $\phi_s$ Motivations for the Upgrades

| [CERN-LH       | [CERN-LHCC-2012-007] LHCb Upgrade TDR |                                                       |                          |                   | Statistical uncertainties |                      |  |  |
|----------------|---------------------------------------|-------------------------------------------------------|--------------------------|-------------------|---------------------------|----------------------|--|--|
| Type           |                                       | Observable                                            | Current                  | LHCb              | Upgrade                   | Theory               |  |  |
|                |                                       |                                                       | precision                | 2018              | $(50{ m fb}^{-1})$        | uncertainty          |  |  |
| $B_s^0$ mixing |                                       | $2\beta_s \ (B^0_s 	o J/\psi \ \phi)$                 | 0.10 [9]                 | 0.025             | 0.008                     | $\sim 0.003$         |  |  |
|                | $\perp c\bar{c}s$                     | $2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$            | 0.17 [10]                | 0.045             | 0.014                     | $\sim 0.01$          |  |  |
|                | $\phi_s^{\circ\circ\circ}$            | $A_{ m fs}(B^0_s)$                                    | $6.4 	imes 10^{-3}$ [18] | $0.6	imes10^{-3}$ | $0.2	imes10^{-3}$         | $0.03 	imes 10^{-3}$ |  |  |
| Gluonic        |                                       | $2\beta_s^{\rm eff}(B_s^0 	o \phi\phi)$               | -                        | 0.17              | 0.03                      | 0.02                 |  |  |
| penguin        | $\measuredangle s \bar{s} s$          | $2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$ | -                        | 0.13              | 0.02                      | < 0.02               |  |  |
|                | $\varphi_s$                           | $2\beta^{\text{eff}}(B^0 	o \phi K_S^0)$              | 0.17 [18]                | 0.30              | 0.05                      | 0.02                 |  |  |

#### [ATL-PHYS-PUB-2013-010]

|                                               | 2011     | 2012    | 2015-17   |         | 2019-21 | 2023-30+  |
|-----------------------------------------------|----------|---------|-----------|---------|---------|-----------|
| Detector                                      | current  | current | IB        | Ĺ       | IBL     | ITK       |
| Average interactions per BX $<\!\mu>$         | 6-12     | 21      | 60        |         | 60      | 200       |
| Luminosity, $fb^{-1}$                         | 4.9      | 20      | 100       |         | 250     | 3 000     |
| Di- $\mu$ trigger $p_{\rm T}$ thresholds, GeV | 4 - 4(6) | 4 - 6   | 6 - 6     | 11 - 11 | 11 - 11 | 11 - 11   |
| Signal events per fb <sup>-1</sup>            | 4 400    | 4 320   | 3 280     | 460     | 460     | 330       |
| Signal events                                 | 22 000   | 86 400  | 327 900   | 45 500  | 114 000 | 810 000   |
| Total events in analysis                      | 130 000  | 550 000 | 1 874 000 | 284 000 | 758 000 | 6 461 000 |
| MC $\sigma(\phi_s)$ (stat.), rad              | 0.25     | 0.12    | 0.054     | 0.10    | 0.064   | 0.022     |

Will be on the verge of reaching theoretical uncertainties!

#### Simon Akar

## **Heasurement of** $\phi_s$ in $B_s \rightarrow J/\psi K^+K^-$ (3 fb<sup>-1</sup>)

[Phys. Rev. Lett. 114 041801 (2015)]

| $rac{d^4\Gamma}{dm_{KK}^2 d\cos	heta} \ h_k(t) = rac{3}{4\pi}\epsilon$ | $rac{(t)}{\partial_K d\cos	heta_l}$ $e^{-\Gamma t} \left\{ a_k  \mathrm{d}  \mathrm{d} $ | $\overline{d\phi} \stackrel{=}{=} \cos h \stackrel{\neq}{=}$ | $= \sum_{k=1}^{10} N_k h_k(t) f$ $\frac{\Delta \Gamma t}{2} + b_k \sinh \frac{\Delta l}{2}$                                                                    | $f_k(	heta_K,	heta_l,\phi),$<br>$\Gamma t \over 2 + c_k \cos(\Delta m t)$                                                                                        | $\theta_{K}$<br>$K^{+}$<br>$K^{+}$<br>$K^{+}$<br>$K^{+}$<br>$K^{+}$<br>$K^{+}$<br>$K^{+}$<br>$K^{+}$<br>$K^{+}$<br>$K^{+}$<br>$K^{+}$                                  | $ \frac{K^{-}}{B_{s}^{0} \qquad \mu^{+}\mu^{-}} \qquad \mu^{-} $                                                                                                                                    |  |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                          | $f_k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $N_k$                                                        | $a_k$                                                                                                                                                          | $b_k$                                                                                                                                                            | $c_k$                                                                                                                                                                  | $d_k$                                                                                                                                                                                               |  |
| -                                                                        | $c_K^2 s_l^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ A_0 ^2$                                                    | $\frac{1}{2}(1+ \lambda_0 ^2)$                                                                                                                                 | $- \lambda_0 \cos(\phi_0)$                                                                                                                                       | $\frac{1}{2}(1 -  \lambda_0 ^2)$                                                                                                                                       | $ \lambda_0 \sin(\phi_0)$                                                                                                                                                                           |  |
| _                                                                        | $\frac{1}{2}s_{K}^{2}(1-c_{\phi}^{2}s_{l}^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ A_{  } ^2$                                                 | $\frac{1}{2}(1+ \lambda_{  } ^2)$                                                                                                                              | $- \lambda_{  } \cos(\phi_{  })$                                                                                                                                 | $\frac{1}{2}(1 -  \lambda_{  } ^2)$                                                                                                                                    | $ \lambda_{  } \sin(\phi_{  })$                                                                                                                                                                     |  |
| _                                                                        | $\frac{1}{2}s_{K}^{2}(1-s_{\phi}^{2}s_{l}^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ A_{\perp} ^2$                                              | $rac{1}{2}(1+ \lambda_{\perp} ^2)$                                                                                                                            | $ \lambda_{\perp} \cos(\phi_{\perp})$                                                                                                                            | $\frac{1}{2}(1- \lambda_{\perp} ^2)$                                                                                                                                   | $- \lambda_{\perp} \sin(\phi_{\perp})$                                                                                                                                                              |  |
|                                                                          | $s_K^2 s_l^2 s_\phi c_\phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ A_{\perp}A_{  } $                                          | $rac{1}{2} \left[ \sin(\delta_{\perp} - \delta_{  }) -  \lambda_{\perp}\lambda_{  }  \\ \sin(\delta_{\perp} - \delta_{  } - \phi_{\perp} + \phi_{  })  ight]$ | $\frac{1}{2} \left[  \lambda_{\perp}  \sin(\delta_{\perp} - \delta_{  } - \phi_{\perp}) +  \lambda_{  }  \sin(\delta_{  } - \delta_{\perp} - \phi_{  }) \right]$ | $\frac{1}{2} \left[ \sin(\delta_{\perp} - \delta_{  }) +  \lambda_{\perp}\lambda_{  } \right]$ $\sin(\delta_{\perp} - \delta_{  } - \phi_{\perp} + \phi_{  }) \right]$ | $\begin{aligned} &-\frac{1}{2} \bigg[  \lambda_{\perp}  \cos(\delta_{\perp} - \delta_{  } - \phi_{\perp}) \\ &+  \lambda_{  }  \cos(\delta_{  } - \delta_{\perp} - \phi_{  }) \bigg] \end{aligned}$ |  |
|                                                                          | $\sqrt{2}s_Kc_Ks_lc_lc_\phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ A_0A_{  } $                                                | $\frac{1}{2} \left[ \cos(\delta_0 - \delta_{  }) +  \lambda_0 \lambda_{  } \right]$ $\cos(\delta_0 - \delta_{  } - \phi_0 + \phi_{  }) $                       | $-\frac{1}{2}\left[ \lambda_0 \cos(\delta_0 - \delta_{  } - \phi_0) +  \lambda_{  } \cos(\delta_{  } - \delta_0 - \phi_{  })\right]$                             | $\frac{1}{2} \left[ \cos(\delta_0 - \delta_{  }) -  \lambda_0 \lambda_{  }  \\ \cos(\delta_0 - \delta_{  } - \phi_0 + \phi_{  }) \right]$                              | $-\frac{1}{2}\left[ \lambda_0 \sin(\delta_0 - \delta_{  } - \phi_0) +  \lambda_{  } \sin(\delta_{  } - \delta_0 - \phi_{  })\right]$                                                                |  |
| _                                                                        | $-\sqrt{2}s_K c_K s_l c_l s_{\phi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ A_0A_\perp $                                               | $-\frac{1}{2}\left[\sin(\delta_0 - \delta_{\perp}) -  \lambda_0 \lambda_{\perp}  \\ \sin(\delta_0 - \delta_{\perp} - \phi_0 + \phi_{\perp})\right]$            | $\frac{1}{2} \left[  \lambda_0  \sin(\delta_0 - \delta_\perp - \phi_0) +  \lambda_\perp  \sin(\delta_\perp - \delta_0 - \phi_\perp) \right]$                     | $-\frac{1}{2}\left[\sin(\delta_0 - \delta_{\perp}) +  \lambda_0 \lambda_{\perp}  \\ \sin(\delta_0 - \delta_{\perp} - \phi_0 + \phi_{\perp})\right]$                    | $-\frac{1}{2} \left[  \lambda_0  \cos(\delta_0 - \delta_\perp - \phi_0) +  \lambda_\perp  \cos(\delta_\perp - \delta_0 - \phi_\perp) \right]$                                                       |  |
| _                                                                        | $\frac{1}{3}s_{l}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ A_{\rm S} ^2$                                              | $\frac{1}{2}(1+ \lambda_{\mathrm{S}} ^2)$                                                                                                                      | $ \lambda_{ m S} \cos(\phi_{ m S})$                                                                                                                              | $\frac{1}{2}(1 -  \lambda_{\rm S} ^2)$                                                                                                                                 | $- \lambda_{\mathrm{S}} \sin(\phi_{\mathrm{S}})$                                                                                                                                                    |  |
|                                                                          | $\frac{2}{\sqrt{6}}s_Ks_lc_lc_\phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ A_{\rm S}A_{  } $                                          | $\frac{1}{2} \left[ \cos(\delta_S - \delta_{  }) -  \lambda_S \lambda_{  }  \\ \cos(\delta_S - \delta_{  } - \phi_S + \phi_{  }) \right]$                      | $\frac{1}{2} \left[  \lambda_S  \cos(\delta_S - \delta_{  } - \phi_S) -  \lambda_{  } \cos(\delta_{  } - \delta_S - \phi_{  }) \right]$                          | $\frac{1}{2} \left[ \cos(\delta_S - \delta_{  }) +  \lambda_S \lambda_{  } \right]$ $\cos(\delta_S - \delta_{  } - \phi_S + \phi_{  }) $                               | $\frac{1}{2} \left[  \lambda_S  \sin(\delta_S - \delta_{  } - \phi_S) -  \lambda_{  } \sin(\delta_{  } - \delta_S - \phi_{  }) \right]$                                                             |  |
|                                                                          | $-rac{2}{\sqrt{6}}s_Ks_lc_ls_\phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ A_{\rm S}A_{\perp} $                                       | $-\frac{1}{2}\left[\sin(\delta_S - \delta_{\perp}) +  \lambda_S \lambda_{\perp}  \\ \sin(\delta_S - \delta_{\perp} - \phi_S + \phi_{\perp})\right]$            | $-\frac{1}{2}\left[ \lambda_S \sin(\delta_S - \delta_{\perp} - \phi_S) -  \lambda_{\perp} \sin(\delta_{\perp} - \delta_S - \phi_{\perp})\right]$                 | $-\frac{1}{2}\left[\sin(\delta_S - \delta_{\perp}) -  \lambda_S \lambda_{\perp}  \\ \sin(\delta_S - \delta_{\perp} - \phi_S + \phi_{\perp})\right]$                    | $-rac{1}{2}\left[- \lambda_S \cos(\delta_S-\delta_{\perp}-\phi_S) ight.  onumber \ + \lambda_{\perp} \cos(\delta_{\perp}-\delta_S-\phi_{\perp}) ight]$                                             |  |
| _                                                                        | $\frac{2}{\sqrt{3}}c_K s_l^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ A_8A_0 $                                                   | $\frac{1}{2} \left[ \cos(\delta_S - \delta_0) -  \lambda_S \lambda_0  \\ \cos(\delta_S - \delta_0 - \phi_S + \phi_0) \right]$                                  | $\frac{1}{2} \left[  \lambda_S  \cos(\delta_S - \delta_0 - \phi_S) -  \lambda_0  \cos(\delta_0 - \delta_S - \phi_0) \right]$                                     | $\frac{1}{2} \left[ \cos(\delta_S - \delta_0) +  \lambda_S \lambda_0  \\ \cos(\delta_S - \delta_0 - \phi_S + \phi_0) \right]$                                          | $\frac{1}{2} \left[  \lambda_S  \sin(\delta_S - \delta_0 - \phi_S) -  \lambda_0  \sin(\delta_0 - \delta_S - \phi_0) \right]$                                                                        |  |

#### Simon Akar

# Here $F_{s} = \frac{1400}{1000} \text{Measurement of } \phi_{s} \text{ in } B_{s} \rightarrow J/\psi K^{+}K^{-} (3 \text{ fb}^{-1})$

### Results: (polarisation independent)

![](_page_32_Figure_2.jpeg)

**Simon Akar** 

# LHCp

## Measurement of $\phi_s$ in $B_s \rightarrow J/\psi K^+K^-$ (3 fb<sup>-1</sup>)

[Phys. Rev. Lett. 114 041801 (2015)]

### Systematics: (polarisation independent)

| Source                        | $\Gamma_s$  | $\Delta\Gamma_s$ | $ A_{\perp} ^2$ | $ A_{0} ^{2}$ | $\delta_{\parallel}$ | $\delta_{\perp}$   | $\phi_s$ | $ \lambda $ | $\Delta m_s$       |
|-------------------------------|-------------|------------------|-----------------|---------------|----------------------|--------------------|----------|-------------|--------------------|
|                               | $[ps^{-1}]$ | $[ps^{-1}]$      |                 |               | [rad]                | [rad]              | [rad]    |             | $[ps^{-1}]$        |
| Total stat. uncertainty       | 0.0027      | 0.0091           | 0.0049          | 0.0034        | $^{+0.10}_{-0.17}$   | $^{+0.14}_{-0.15}$ | 0.049    | 0.019       | $+0.055 \\ -0.057$ |
| Mass factorisation            | -           | 0.0007           | 0.0031          | 0.0064        | 0.05                 | 0.05               | 0.002    | 0.001       | 0.004              |
| Signal weights (stat.)        | 0.0001      | 0.0001           | _               | 0.0001        | _                    | _                  | -        | _           | _                  |
| b-hadron background           | 0.0001      | 0.0004           | 0.0004          | 0.0002        | 0.02                 | 0.02               | 0.002    | 0.003       | 0.001              |
| $B_c^+$ feed-down             | 0.0005      | _                | _               | _             | _                    | _                  | -        | _           | _                  |
| Angular resolution bias       | _           | _                | 0.0006          | 0.0001        | $^{+0.02}_{-0.03}$   | 0.01               | -        | _           | _                  |
| Ang. efficiency (reweighting) | 0.0001      | _                | 0.0011          | 0.0020        | 0.01                 | _                  | 0.001    | 0.005       | 0.002              |
| Ang. efficiency (stat.)       | 0.0001      | 0.0002           | 0.0011          | 0.0004        | 0.02                 | 0.01               | 0.004    | 0.002       | 0.001              |
| Decay-time resolution         | _           | _                | _               | _             | _                    | 0.01               | 0.002    | 0.001       | 0.005              |
| Trigger efficiency (stat.)    | 0.0011      | 0.0009           | _               | _             | _                    | _                  | -        | —           | _                  |
| Track reconstruction (simul.) | 0.0007      | 0.0029           | 0.0005          | 0.0006        | $^{+0.01}_{-0.02}$   | 0.002              | 0.001    | 0.001       | 0.006              |
| Track reconstruction (stat.)  | 0.0005      | 0.0002           | _               | _             | _                    | _                  | _        | _           | 0.001              |
| Length and momentum scales    | 0.0002      | _                | _               | _             | _                    | _                  | _        | _           | 0.005              |
| S-P coupling factors          | -           | _                | -               | _             | 0.01                 | 0.01               | -        | 0.001       | 0.002              |
| Fit bias                      | _           | _                | 0.0005          | —             | _                    | 0.01               | _        | 0.001       | _                  |
| Quadratic sum of syst.        | 0.0015      | 0.0032           | 0.0036          | 0.0067        | $^{+0.06}_{-0.07}$   | 0.06               | 0.006    | 0.007       | 0.011              |

## Here $K^+K^-$ (3 fb<sup>-1</sup>) [Phys. Rev. Lett. 114 041801 (2015)]

### Results: (polarisation dependent)

![](_page_34_Figure_2.jpeg)

**Simon Akar** 

FPCP 2015, Mixing-induced CP violation in Bs decays

# **Here** $K^+K^-$ (3 fb<sup>-1</sup>)

[Phys. Rev. Lett. 114 041801 (2015)]

### Systematics: (polarisation dependent)

| Source                        | $ \lambda^0 $ | $ \lambda^{  }/\lambda^{0} $ | $ \lambda^{\perp}/\lambda^{0} $ | $ \lambda^{ m S}/\lambda^{ m 0} $ | $\phi_s^0$ | $\phi^{  }_s-\phi^0_s$ | $\phi_s^\perp - \phi_s^0$ | $\phi^{ m S}_s-\phi^0_s$ |
|-------------------------------|---------------|------------------------------|---------------------------------|-----------------------------------|------------|------------------------|---------------------------|--------------------------|
|                               |               |                              |                                 |                                   | [rad]      | [rad]                  | [rad]                     | [rad]                    |
| Total stat. uncertainty       | 0.058         | 0.12                         | 0.16                            | 0.12                              | 0.053      | 0.043                  | 0.035                     | 0.061                    |
| Mass factorisation            | 0.010         | 0.04                         | 0.01                            | 0.03                              | 0.003      | 0.005                  | 0.003                     | 0.016                    |
| b-hadron background           | 0.002         | 0.01                         | -                               | 0.01                              | 0.003      | 0.001                  | 0.001                     | 0.009                    |
| Ang. efficiency (reweighting) | —             | —                            | -                               | 0.02                              | 0.001      | 0.002                  | 0.001                     | 0.007                    |
| Ang. efficiency (stat.)       | 0.004         | 0.02                         | 0.01                            | 0.01                              | 0.004      | 0.007                  | 0.005                     | 0.004                    |
| Decay-time resolution         | 0.006         | 0.01                         | -                               | 0.01                              | 0.003      | 0.002                  | 0.001                     | 0.002                    |
| S-P coupling factors          | _             | —                            | —                               | _                                 | _          | -                      | -                         | 0.006                    |
| Quadratic sum of syst.        | 0.013         | 0.05                         | 0.01                            | 0.04                              | 0.007      | 0.009                  | 0.006                     | 0.021                    |

#### Simon Akar

![](_page_36_Picture_0.jpeg)

Phys. Rev. D. 90, 052007 (2014)]

**CMS-PAS-BPH-13-012** 

### Results:

$$\begin{split} \phi_s &= 0.12 \pm 0.25 \text{ (stat.)} \pm 0.05 \text{ (syst.) rad} \\ \Delta \Gamma_s &= 0.053 \pm 0.021 \text{ (stat.)} \pm 0.010 \text{ (syst.) ps}^{-1} \\ \Gamma_s &= 0.677 \pm 0.007 \text{ (stat.)} \pm 0.004 \text{ (syst.) ps}^{-1} \\ |A_{\parallel}(0)|^2 &= 0.220 \pm 0.008 \text{ (stat.)} \pm 0.009 \text{ (syst.)} \\ |A_0(0)|^2 &= 0.529 \pm 0.006 \text{ (stat.)} \pm 0.012 \text{ (syst.)} \\ \delta_{\perp} &= 3.89 \pm 0.47 \text{ (stat.)} \pm 0.11 \text{ (syst.) rad} \end{split}$$

| Parameter                               | Fit result        |
|-----------------------------------------|-------------------|
|                                         |                   |
| $ A_0 ^2$                               | $0.511 \pm 0.006$ |
| $ A_{S} ^{2}$                           | $0.015\pm0.016$   |
| $ A_{\perp} ^2$                         | $0.242\pm0.008$   |
| $\delta_{\parallel}$ [rad]              | $3.48\pm0.09$     |
| $\delta^{"}_{S\perp}$ [rad]             | $0.34\pm0.24$     |
| $\delta_{\perp} \; [\mathrm{rad}]$      | $2.73\pm0.36$     |
| <i>cτ</i> [μm]                          | $447.3\pm3.0$     |
| $\Delta\Gamma_{\rm s}  [{\rm ps}^{-1}]$ | $0.096\pm0.014$   |
| $\phi_{\rm s} \ [{\rm rad}]$            | $-0.03\pm0.11$    |

#### **Simon Akar**

![](_page_37_Picture_0.jpeg)

### Systematics:

|                    | $\phi_s$    | $\Delta \Gamma_s$ | $\Gamma_s$  | $ A_{  }(0) ^2$ | $ A_0(0) ^2$ | $ A_{S}(0) ^{2}$ | $\delta_{\perp}$ | $\delta_{\parallel}$ | $\delta_{\perp} - \delta_S$ |
|--------------------|-------------|-------------------|-------------|-----------------|--------------|------------------|------------------|----------------------|-----------------------------|
|                    | [rad]       | $[ps^{-1}]$       | $[ps^{-1}]$ |                 |              |                  | [rad]            | [rad]                | [rad]                       |
| ID alignment       | $< 10^{-2}$ | $< 10^{-3}$       | $< 10^{-3}$ | $< 10^{-3}$     | $< 10^{-3}$  | -                | $< 10^{-2}$      | $< 10^{-2}$          | -                           |
| Trigger efficiency | $< 10^{-2}$ | $< 10^{-3}$       | 0.002       | $< 10^{-3}$     | $< 10^{-3}$  | $< 10^{-3}$      | $< 10^{-2}$      | $< 10^{-2}$          | $< 10^{-2}$                 |
| $B^0$ contribution | 0.03        | 0.001             | $< 10^{-3}$ | $< 10^{-3}$     | 0.005        | 0.001            | 0.02             | $< 10^{-2}$          | $< 10^{-2}$                 |
| Tagging            | 0.03        | $< 10^{-3}$       | $< 10^{-3}$ | $< 10^{-3}$     | $< 10^{-3}$  | $< 10^{-3}$      | 0.04             | $< 10^{-2}$          | $< 10^{-2}$                 |
| Acceptance         | 0.02        | 0.004             | 0.002       | 0.002           | 0.004        | -                | -                | $< 10^{-2}$          | -                           |
| Models:            |             |                   |             |                 |              |                  |                  |                      |                             |
| Default fit        | $< 10^{-2}$ | 0.003             | $< 10^{-3}$ | 0.001           | 0.001        | 0.006            | 0.07             | 0.01                 | 0.01                        |
| Signal mass        | $< 10^{-2}$ | 0.001             | $< 10^{-3}$ | $< 10^{-3}$     | 0.001        | $< 10^{-3}$      | 0.03             | 0.04                 | 0.01                        |
| Background mass    | $< 10^{-2}$ | 0.001             | 0.001       | $< 10^{-3}$     | $< 10^{-3}$  | 0.002            | 0.06             | 0.02                 | 0.02                        |
| Resolution         | 0.02        | $< 10^{-3}$       | 0.001       | 0.001           | $< 10^{-3}$  | 0.002            | 0.04             | 0.02                 | 0.01                        |
| Background time    | 0.01        | 0.001             | $< 10^{-3}$ | 0.001           | $< 10^{-3}$  | 0.002            | 0.01             | 0.02                 | 0.02                        |
| Background angles  | 0.02        | 0.008             | 0.002       | 0.008           | 0.009        | 0.027            | 0.06             | 0.07                 | 0.03                        |
| Total              | 0.05        | 0.010             | 0.004       | 0.009           | 0.012        | 0.028            | 0.11             | 0.09                 | 0.04                        |

![](_page_37_Picture_4.jpeg)

## Simon Akar

CMS-PAS-BPH-13-012]

CMS

![](_page_38_Picture_0.jpeg)

## Measurement of $\phi_s$ in $B_s \rightarrow J/\psi K^+K^-$ (3 fb<sup>-1</sup>)

## Tagging:

![](_page_38_Picture_3.jpeg)

| Tagger               | Efficiency [%] | Dilution [%]   | Tagging Power [%] |
|----------------------|----------------|----------------|-------------------|
| Combined $\mu$       | $3.37\pm0.04$  | $50.6\pm0.5$   | $0.86\pm0.04$     |
| Segment Tagged $\mu$ | $1.08\pm0.02$  | $36.7\pm0.7$   | $0.15\pm0.02$     |
| Jet charge           | $27.7\pm0.1$   | $12.68\pm0.06$ | $0.45\pm0.03$     |
| Total                | $32.1\pm0.1$   | $21.3\pm0.08$  | $1.45\pm0.05$     |

![](_page_38_Picture_5.jpeg)

|                                         | Muons                    | Electrons                |
|-----------------------------------------|--------------------------|--------------------------|
| Mistag fraction $\omega$ [%]            | $30.7 \pm 0.4 \pm 0.7$   | $34.8 \pm 0.3 \pm 1.0$   |
| Tagging efficiency $\epsilon_{tag}$ [%] | $4.55 \pm 0.03 \pm 0.08$ | $3.26 \pm 0.02 \pm 0.01$ |
| Tagging power P <sub>tag</sub> [%]      | $0.68 \pm 0.03 \pm 0.05$ | $0.30 \pm 0.02 \pm 0.04$ |

#### **Simon Akar**

![](_page_39_Picture_0.jpeg)

Measurement of  $\phi_s$  in  $B_s \rightarrow D^+_s D^-_s$  (3 fb<sup>-1</sup>)

[Phys. Rev. Lett. 113 (2014) 211801]

### Systematics:

| Systematic uncertainty        | $\phi_s \; ( \lambda =1)$ | $\phi_s$           | $ \lambda $        |
|-------------------------------|---------------------------|--------------------|--------------------|
| Resolution                    | $\pm 0.098 \sigma$        | $\pm 0.094 \sigma$ | $\pm 0.100 \sigma$ |
| Mass                          | $\pm 0.044 \sigma$        | $\pm 0.043 \sigma$ | $\pm 0.010 \sigma$ |
| Acceptance (model)            | $\pm 0.022 \sigma$        | $\pm 0.027~\sigma$ | $\pm 0.027~\sigma$ |
| Acceptance (stat.)            | $\pm 0.013 \sigma$        | $\pm 0.013 \sigma$ | $\pm 0.014 \sigma$ |
| <b>Background subtraction</b> | $\pm 0.009  \sigma$       | $\pm 0.008~\sigma$ | $\pm 0.046~\sigma$ |
| Total                         | $\pm 0.11 \sigma$         | $\pm 0.11 \sigma$  | $\pm 0.11 \sigma$  |

Simon Akar

![](_page_40_Picture_0.jpeg)

## Measurement of TDCP asymmetries in $B_s \rightarrow J/\psi K^0 S (3 \text{ fb}^{-1})$

Article submitted to JHEP [arXiv:1503.07055]

### Systematics:

| Source                | $\mathcal{A}_{\Delta\Gamma}$ | $C_{ m dir}$ | $S_{ m mix}$ | $\begin{array}{c} {\rm Long} \\ R\times 10^5 \end{array}$ | $\begin{array}{c} \text{Downstream} \\ R\times 10^5 \end{array}$ |
|-----------------------|------------------------------|--------------|--------------|-----------------------------------------------------------|------------------------------------------------------------------|
| Mass modelling        | 0.045                        | 0.009        | 0.009        | 15.5                                                      | 17.2                                                             |
| Decay-time resolution | 0.038                        | 0.066        | 0.070        | 0.6                                                       | 0.3                                                              |
| Decay-time acceptance | 0.022                        | 0.004        | 0.004        | 0.6                                                       | 0.5                                                              |
| Tagging calibration   | 0.002                        | 0.021        | 0.023        | 0.1                                                       | 0.2                                                              |
| Mass resolution       | 0.010                        | 0.005        | 0.006        | 12.6                                                      | 8.0                                                              |
| Mass–time correlation | 0.003                        | 0.037        | 0.036        | 0.2                                                       | 0.1                                                              |
| Total                 | 0.064                        | 0.079        | 0.083        | 20.0                                                      | 19.0                                                             |

![](_page_41_Picture_0.jpeg)

# Measurement of $\beta$ in $B_d \rightarrow J/\psi \pi^+\pi^-$ (3 fb<sup>-1</sup>)[Phys. Lett. B742 (2015) 38]Limits on penguin effects in $\phi_s$

### Systematics:

| Sources                          | $\phi_s(\mathrm{mrad})$ | $\lambda$    |
|----------------------------------|-------------------------|--------------|
| Decay time acceptance            | $\pm 0.6$               | $\pm 0.0008$ |
| Mass acceptance                  | $\pm 0.3$               | $\pm 0.0003$ |
| Background time PDF              | $\pm 0.2$               | $\pm 0.0011$ |
| Background mass distribution PDF | $\pm 0.6$               | $\pm 0.0016$ |
| Resonance model                  | $\pm 6.0$               | $\pm 0.0100$ |
| Resonance parameters             | $\pm 0.7$               | $\pm 0.0007$ |
| Other fixed parameters           | $\pm 0.4$               | $\pm 0.0009$ |
| Production asymmetry             | $\pm 5.8$               | $\pm 0.0017$ |
| Total                            | $\pm 8.4$               | $\pm 0.010$  |

#### Simon Akar

![](_page_42_Picture_0.jpeg)

### • $\pi\pi$ spectrum resonant composition:

![](_page_42_Figure_2.jpeg)

#### Simon Akar