#### Electric Dipole Moments: A Look Beyond the Standard Model

#### M.J. Ramsey-Musolf

#### U Mass Amherst

- AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

http://www.physics.umass.edu/acfi/

My pronouns: he/him/his

KMI 2019 Nagoya University, February 2019



#### **Goals for This Talk**

- Give a brief update on the experimental status & outlook for EDM searches
- Discuss the implications for explaining the cosmic matter-antimatter asymmetry
- Illustrate the interplay of EDM searches with collider searches
- Highlight the range of BSM mass scales EDM searches access

| System            | Limit (e cm)*              | SM CKM CPV                | BSM CPV                  |
|-------------------|----------------------------|---------------------------|--------------------------|
| <sup>199</sup> Hg | 7.4 x 10 <sup>-30</sup>    | 10 <sup>-35</sup>         | <b>10</b> <sup>-30</sup> |
| ThO               | 1.1 x 10 <sup>-29</sup> ** | <b>10</b> <sup>-38</sup>  | <b>10</b> -29            |
| n                 | 3.3 x 10 <sup>-26</sup>    | <b>10</b> - <sup>31</sup> | <b>10</b> <sup>-26</sup> |

\* 95% CL \*\* e<sup>-</sup> equivalent

| System            | Limit (e cm)*              | SM CKM CPV                | BSM CPV                  |
|-------------------|----------------------------|---------------------------|--------------------------|
| <sup>199</sup> Hg | 7.4 x 10 <sup>-30</sup>    | 10 <sup>-35</sup>         | <b>10</b> <sup>-30</sup> |
| ThO               | 1.1 x 10 <sup>-29</sup> ** | <b>10</b> - <sup>38</sup> | 10 <sup>-29</sup>        |
| n                 | 3.3 x 10 <sup>-26</sup>    | <b>10</b> <sup>-31</sup>  | <b>10</b> <sup>-26</sup> |

\* 95% CL \*\* e- equivalent

Paramagnetic



| System            | Limit (e cm)*              | SM CKM CPV               | BSM CPV                  |
|-------------------|----------------------------|--------------------------|--------------------------|
| <sup>199</sup> Hg | 7.4 x 10 <sup>-30</sup>    | 10 <sup>-35</sup>        | <b>10</b> <sup>-30</sup> |
| ThO               | 1.1 x 10 <sup>-29</sup> ** | <b>10</b> <sup>-38</sup> | <b>10</b> -29            |
| n                 | 3.3 x 10 <sup>-26</sup>    | <b>10</b> <sup>-31</sup> | <b>10</b> <sup>-26</sup> |

\* 95% CL \*\* e- equivalent

Mass Scale Sensitivity

| System            | Limit (e cm)*              | SM CKM CPV               | BSM CPV                  |
|-------------------|----------------------------|--------------------------|--------------------------|
| <sup>199</sup> Hg | 7.4 x 10 <sup>-30</sup>    | 10 <sup>-35</sup>        | <b>10</b> <sup>-30</sup> |
| ThO               | 1.1 x 10 <sup>-29</sup> ** | <b>10</b> <sup>-38</sup> | <b>10</b> <sup>-29</sup> |
| n                 | 3.3 x 10 <sup>-26</sup>    | <b>10</b> <sup>-31</sup> | <b>10</b> <sup>-26</sup> |

\* 95% CL \*\* e<sup>-</sup> equivalent



Not shown: muon

# Outline

- I. EDM Interpretation: The SM & BSM context
- II. The Cosmic Matter-Antimatter Asymmetry
- III. The Higgs Boson & Top Quark Portals
- IV. EDM Complementarity
- V. Outlook

## I. Interpretation: The SM & BSM Context

# $d_n^{SM} \sim (10^{-16} \text{ e cm}) \times \theta_{QCD} + d_n^{CKM}$

$$d_n^{SM} \sim (10^{-16} \text{ e cm}) \times \theta_{QCD} + d_n^{CKM}$$
  
 $d_n^{CKM} = (1 - 6) \times 10^{-32} \text{ e cm}$   
C. Seng arXiv: 1411.1476

$$d_n^{SM} \sim (10^{-16} \text{ e cm}) \times \theta_{QCD} + d_n^{CKM}$$
  
 $d_n^{CKM} = (1 - 6) \times 10^{-32} \text{ e cm}^*$   
C. Seng arXiv: 1411.1476

\* 3.3 x 10<sup>-33</sup> e cm <  $d_p$  < 3.3 x 10<sup>-32</sup> e cm

# $d \sim (10^{-16} \text{ e cm}) \times (\upsilon / \Lambda)^2 \times \sin \phi \times y_f F$

# $d \sim (10^{-16} \text{ e cm}) \times (v / \Lambda)^2 \times \sin \phi \times y_f F$ CPV Phase: large enough for baryogenesis ?

$$d \sim (10^{-16} \text{ e cm}) x (v / \Lambda)^2 x \sin \phi x y_f F$$
  
BSM mass scale: TeV ? Much higher ?

# $d \sim (10^{-16} \text{ e cm}) \times (\upsilon / \Lambda)^2 \times \sin \phi \times y_f F$

BSM dynamics: perturbative? Strongly coupled? Dependence on other parameters ?





- Baryon asymmetry
- High energy collisions
- EDMs

Cosmic Frontier Energy Frontier Intensity Frontier







Coupling

# **BSM Physics: T (CP) Invariant ?**

# II. The Matter-Antimatter Asymmetry

#### **Baryogenesis Scenarios**



Energy Scale (GeV)

23

#### **Baryogenesis Scenarios**



*Era of EWSB:*  $t_{univ} \sim 10 \text{ ps}$ 

24

# **Electroweak Baryogenesis**

Was Y<sub>B</sub> generated in conjunction with electroweak symmetry-breaking?

## EWBG: MSSM & Beyond

- Strong first order EWPT: LHC → Excluded for the MSSM → Possible w/ extensions (e.g., NMSSM)
- **CPV:** Sources same as in MSSM + possible additional



Heavy sfermions: LHC consistent & suppress 1-loop EDMs



Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases



Heavy sfermions: LHC consistent & suppress 1-loop EDMs



Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases



Li, Profumo, RM '09-'10



Heavy sfermions: LHC consistent & suppress 1-loop EDMs



Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

29



Li, Profumo, RM '09-'10



Heavy sfermions: LHC consistent & suppress 1-loop EDMs



Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases



Li, Profumo, RM '09-'10



# **CPV for EWBG**





# **CPV for EWBG**





- Flavored CPV
- "Partially secluded" CPV
- CPV w/ vector-like fermions

• • • •

## "Two-Step EW Baryogenesis"

#### *Two CPV sources for baryon asymmetry*



#### Inoue, Ovanesyan, R-M: 1508.05404

#### III. Portals: The BSM Mass Scale & CP



Coupling

# **BSM Physics: T (CP) Invariant ?**

| System            | Limit (e cm)*              | SM CKM CPV               | BSM CPV                  |
|-------------------|----------------------------|--------------------------|--------------------------|
| <sup>199</sup> Hg | 7.4 x 10 <sup>-30</sup>    | 10 <sup>-35</sup>        | <b>10</b> <sup>-30</sup> |
| ThO               | 1.1 x 10 <sup>-29</sup> ** | <b>10</b> <sup>-38</sup> | <b>10</b> -29            |
| n                 | 3.3 x 10 <sup>-26</sup>    | <b>10</b> <sup>-31</sup> | <b>10</b> <sup>-26</sup> |

\* 95% CL \*\* e- equivalent

Mass Scale Sensitivity
# EDMs: New Light CPV?

| System            | Limit (e cm)*              | SM CKM CPV               | BSM CPV                  |
|-------------------|----------------------------|--------------------------|--------------------------|
| <sup>199</sup> Hg | 7.4 x 10 <sup>-30</sup>    | 10 <sup>-33</sup>        | <b>10</b> <sup>-29</sup> |
| ThO               | 1.1 x 10 <sup>-29</sup> ** | <b>10</b> <sup>-38</sup> | <b>10</b> <sup>-28</sup> |
| n                 | 3.3 x 10 <sup>-26</sup>    | <b>10</b> <sup>-31</sup> | <b>10</b> <sup>-26</sup> |

\* 95% CL \*\* e<sup>-</sup> equivalent

**Ultralight Mass Scale Sensitivity** 

$$d_n^{SM} \sim (10^{-16} \text{ e cm}) \times \theta_{QCD} + d_n^{CKM}$$

Limits on  $d_n \& d_A$  (<sup>199</sup>Hg)  $\rightarrow \theta < 10^{-10}$ Suggests Peccei-Quinn symmetry & existence of axion (ultralight)

### Specific Illustrations: "Portals"

- Higgs boson
- Top quark
- Dark photon

### Where is BSM CPV hiding ?

# The Higgs Portal



#### What is the CP Nature of the Higgs Boson ?

- Interesting possibilities if part of an extended scalar sector
- Two Higgs doublets ?

 $H 
ightarrow H_1$  ,  $H_2$ 

• New parameters:

 $tan \beta = \langle H_1 \rangle / \langle H_2 \rangle$ sin  $\alpha_b$ 

#### What is the CP Nature of the Higgs Boson ?

- Interesting possibilities if part of an extended scalar sector
- Two Higgs doublets ?

 $H 
ightarrow H_1$  ,  $H_2$ 

• New parameters:

$$\frac{\tan \beta = \langle H_1 \rangle / \langle H_2 \rangle}{\sin \alpha_b}$$

$$CPV : scalar-pseudoscalar mixing from V(H_1, H_2)$$

# **Higgs Portal CPV: EDMs**

#### CPV & 2HDM: Type II illustration

#### $\lambda_{67} = 0$ for simplicity



scalar mixing

42 Inoue, R-M, Zhang: 1403.4257

# **Higgs Portal CPV: EDMs & LHC**

#### CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$  for simplicity



# The Top Quark Portal



#### **CPV Top Quark Interactions?**

- 3<sup>rd</sup> generation quarks often have a special role in BSM scenarios, given m<sub>t</sub> >> all other m<sub>f</sub>
- If BSM CPV exists, d<sub>t</sub> may be enhanced
- Top EDMs difficult to probe experimentally
- Light fermion EDMs to the rescue !



#### **CPV Top Quark Interactions?**

Cordero-Cid et al '08, Kamenik et al '12, Cirigliano et al '16, Fuyuto & MRM in 1706.08548

Model-indep: independent SU(2)<sub>L</sub> & U(1)<sub>Y</sub> dipole operators:  $C_{tB}$ ,  $C_{tW} \rightarrow$ Tree level  $d_t$  & loop level  $d_e$ ,  $d_{light q}$ 



Induced d<sub>e</sub> , d<sub>light quark</sub>

Fuyuto & MRM '17 Fuyuto '19: Updated for new ThO

46

# Dark Photon Portal



# **Dark Photon Portal**



New CPV ?

# Dark Photon Portal





Thanks: K. Fuyuto

### **CPV Dark Photon**



K. Fuyuto, X.-G. He, G. Li, MJRM 1902.XXXXX

### **CPV Dark Photon**



### **CPV Dark Photon**



52

IV. EDM Complementarity

# Why Multiple Systems ?

Multiple sources & multiple scales



TI, YbF, ThO...





TI, YbF, ThO...





Chupp, Fierlinger, R-M, Singh 1710.02504; Fleig & Jung 1802.02171

Inclusion of HfF+ : ~ 6 times stronger bounds on  $d_e \& C_S \rightarrow 2.5$  higher on  $\Lambda$ 

TI, YbF, ThO, HfF+

New ThO  $\rightarrow$  even stronger !

## Illustrative Example: Leptoquark Model



60

## Illustrative Example: Leptoquark Model



Fuyuto, R-M, Shen 1804.01137

(3, 2, 7/6)

 $\mathcal{L} \ni -\lambda_u^{ab} \bar{u}_R^a X^T \epsilon L^b - \lambda_e^{ab} \bar{e}_R^a X^\dagger Q^b + \text{h.c.}$ 

# Illustrative Example: Leptoquark Model



Fuyuto, R-M, Shen 1804.01137

(3, 2, 7/6)

 $\mathcal{L} \ni -\lambda_u^{ab} \bar{u}_R^a X^T \epsilon L^b - \lambda_e^{ab} \bar{e}_R^a X^\dagger Q^b + \text{h.c.}$ 

# IV. Outlook

- Searches for permanent EDMs of atoms, molecules, hadrons and nuclei provide powerful probes of BSM physics at a range of mass scales and constitute important tests of weak scale baryogenesis
- Studies on complementary systems is essential for first finding and then disentangling new CPV
- There exists a rich interplay between EDM searches and the quest to discover BSM physics at the Energy and Cosmic frontiers
- The next decade could yield exciting discoveries that provide a new window on some of the most compelling open questions in science  $\rightarrow$  Stay tuned !

# **Back Up Slides**

# **Two-Step EW Baryogenesis**



St'd Model Scalar Sector

BSM Scalar Sector: at least one  $SU(2)_L$  non-singlet plus possibly gauge singlets ("partially secluded sector")



BSM CPV in  $\phi$  H interactions: baryogenesis during step 1

Inoue, Ovanesyan, R-M: 1508.05404; Patel & R-M: 1212.5652; Blinov, Kozaczuk, Morrissey: 1504.05195

# **Two-Step EW Baryogenesis**





Illustrative Model:

New sector: "Real Triplet"  $\Sigma$ Gauge singlet S

 $H \rightarrow Set of "SM" fields: 2 HDM$ 

(SUSY: "TNMSSM", Coriano...)

Two CPV Phases:

 $\delta_{\Sigma}$  :  $\delta_{\mathsf{S}}$  :

*Triplet phase Singlet phase* 

Inoue, Ovanesyan, R-M: 1508.05404

# **Two-Step EW Baryogenesis & EDMs**



## Flavored EW Baryogenesis





Flavor basis (high T)

$$\mathscr{L}_{\text{Yukawa}}^{\text{Lepton}} = -\overline{E_L^i} \left[ (Y_1^E)_{ij} \Phi_1 + (Y_2^E)_{ij} \Phi_2 \right] e_R^j + h.c.$$

Mass basis (T=0)

$$\frac{m_f}{v}\kappa_\tau(\cos\phi_\tau\bar{\tau}\tau+\sin\phi_\tau\bar{\tau}i\gamma_5\tau)h$$

*Guo, Li, Liu, R-M, Shu 1609.09849 Chiang, Fuyuto, Senaha 1607.07316* 

# Flavored EW Baryogenesis





Jarlskog invariant

$$J_{A} = \frac{1}{v^{2} \mu_{12}^{\text{HB}}} \sum_{a,b,c=1}^{2} v_{a} v_{b}^{*} \mu_{bc} \text{Tr} \left[ Y_{c} Y_{a}^{\dagger} \right]$$

T=0 Higgs couplings $Im (y_{\tau}) \sim Im (J_A)$ 

EWBG CPV Source 
$$S^{CPV} \sim Im (J_A)$$

Flavor basis (high T)

$$\mathscr{L}_{\text{Yukawa}}^{\text{Lepton}} = -\overline{E_L^i} \left[ (Y_1^E)_{ij} \Phi_1 + (Y_2^E)_{ij} \Phi_2 \right] e_R^j + h.c.$$

Mass basis (T=0)  

$$CPV h 
ightarrow au au$$
  
 $rac{m_f}{v}\kappa_{ au}(\cos\phi_{ au}ar{ au} au + \sin\phi_{ au}ar{ au}i\gamma_5 au)h$ 

*Guo, Li, Liu, R-M, Shu 1609.09849 Chiang, Fuyuto, Senaha 1607.07316* 

# Flavored EW Baryogenesis





Δφ<sub>τ</sub> ~ 10° : 3 ab<sup>-1</sup> @ LHC 14

 $\langle \phi(x) \rangle$ 

# **Higgs Portal CPV**

Inoue, R-M, Zhang: 1403.4257

CPV & 2HDM: Type I & II

 $\lambda_{6,7} = 0$  for simplicity

$$V = \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[ \lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \text{h.c.} \right] - \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[ m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}.$$

Ţ

$$\delta_{1} = \operatorname{Arg} \left[\lambda_{5}^{*}(m_{12}^{2})^{2}\right],$$

$$\delta_{2} = \operatorname{Arg} \left[\lambda_{5}^{*}(m_{12}^{2})v_{1}v_{2}^{*}\right]$$

$$k, H^{0}, A^{0} \rightarrow h_{1,2,3}$$

$$\left(\begin{array}{c} -s_{\alpha}c_{\alpha_{b}} & c_{\alpha}c_{\alpha_{b}} & s_{\alpha_{b}}\\ s_{\alpha}s_{\alpha_{b}}s_{\alpha_{c}} - c_{\alpha}c_{\alpha_{c}} - s_{\alpha}c_{\alpha_{c}} - c_{\alpha}s_{\alpha_{b}}s_{\alpha_{c}}\\ s_{\alpha}s_{\alpha_{b}}c_{\alpha_{c}} + c_{\alpha}s_{\alpha_{c}} & s_{\alpha}s_{\alpha_{c}} - c_{\alpha}s_{\alpha_{b}}c_{\alpha_{c}}\\ s_{\alpha}s_{\alpha_{b}}c_{\alpha_{c}} + c_{\alpha}s_{\alpha_{c}} & s_{\alpha}s_{\alpha_{c}} - c_{\alpha}s_{\alpha_{b}}c_{\alpha_{c}}\\ s_{\alpha}s_{\alpha_{b}}c_{\alpha_{c}} + c_{\alpha}s_{\alpha_{c}} & s_{\alpha}s_{\alpha_{c}} - c_{\alpha}s_{\alpha_{b}}c_{\alpha_{c}}\\ \end{array}\right)$$

# **Higgs Portal CPV**

Inoue, R-M, Zhang: 1403.4257

CPV & 2HDM: Type I & II

 $\lambda_{6,7} = 0$  for simplicity

$$V = \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{1}{2} \left[ \lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \text{h.c.} \right] - \frac{1}{2} \left\{ m_{11}^2 (\phi_1^{\dagger} \phi_1) + \left[ m_{12}^2 (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right] + m_{22}^2 (\phi_2^{\dagger} \phi_2) \right\}.$$


### **Higgs Portal CPV: EDMs & LHC**

#### CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$  for simplicity



### **Higgs Portal CPV: EDMs & LHC**

#### CPV & 2HDM: Type II illustration

 $\lambda_{6.7} = 0$  for simplicity



Inoue, R-M, Zhang: 1403.4257

### Had & Nuc Uncertainties

#### CPV & 2HDM: Type II illustration

### $\lambda_{6,7} = 0$ for simplicity



Present

 $sin \alpha_b$  : CPV scalar mixing

80

### Had & Nuc Uncertainties

#### CPV & 2HDM: Type II illustration

### $\lambda_{6,7} = 0$ for simplicity



Present

# Challenge

 $sin \alpha_b$  : CPV scalar mixing



## Effective Operators: The Bridge

$$\mathcal{L}_{\mathrm{CPV}} = \mathcal{L}_{\mathrm{CKM}} + \mathcal{L}_{\bar{\theta}} + \mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}}$$

$$\mathcal{L}_{ ext{BSM}}^{ ext{eff}} = rac{1}{\Lambda^2} \sum_i lpha_i^{(n)} O_i^{(6)}$$

78

+...



### Wilson Coefficients: Summary



12 total +  $\overline{\theta}$ 

*light flavors only (e,u,d)* 

**Complementary searches needed**