

Samo Korpar, Belle II ARICH group University of Maribor and Jožef Stefan Institute, Ljubljana B1 Heavy Flavor and Dark Matter Joint Unit Symposium, 30 March 2023, Nagoya

Outline:

- Belle II ARICH:
 - operation status
 - upgrade considerations
 - aerogel radiator
 - photon sensor
 - LAPPD tests
 - electronics
 - LAPPD test with FastIC

ARICH - basics

Proximity focusing Aerogel Ring Imaging CHerenkov detector (ARICH) components:

- double layer focusing aerogel radiator (20 mm + 20 mm)
- 160 mm expansion gap
- photon detector based on 420 Hybrid Avalanche Photo Detectors (HAPD)
- front-end electronics with dedicated ASICs and FPGAs

Combined PID - strong scattering/decay

- Large fraction of misidentified pions, especially at low momenta, are due to pions that are strongly scattered or decay on their way to ARICH detector.
- Due to missing photos around extrapolated track position such tracks are likely to be identified as kaons.
- Such tracks can be identified by missing ECL cluster and/or missing signal in case of tracks hit in HAPD window.

 Only minor loss of performance with 25% loss of HAPDs or 10 fold increase of nominal background

Combined CDC and ARICH PID

30. 3. 2023 (slide 3)

K eff.

Samo Korpar Univ. of Maribor and J. Stefan Institute

ARICH operation status before LS1

Since March 2019 ARICH is fully operational.

- Current status:
 - ≈ 94 % of ARICH channels operational
 - ≈ 1 %, 1 merger group with 5 HAPD modules, off due to LV cable problem
 - \approx 5 %, off due to HV or bias problems different reasons under study
- Electronics efficiency for single photon signals well above 90% threshold set at 50 mV.

Thershold scan for all the channels connected to merger 18 - LED illumination

B1 Heavy Flavor and Dark Matter Joint Unit Symposium

(slide 4)

LS1 (in progress):

- LV cable repair DONE!
- firmware upgrade BRAM based pipeline

LS2:

- repair of HAPDs and replacement with available spares (order of 10)
- aerogel radiator upgrade under consideration, to partially compensate for loss of HAPDs

Beyond LS2 (long term):

- photon detector upgrade:
 - replacement of HAPDs with MCP-PMTs or SiPMS
 - new front-end electronics compatible with sensors
 - new mechanics, cooling ...

Aerogel radiator

- two layers of 20 mm thick hydrophobic aerogel :
 - upstream, n \approx 1.045, $\lambda_{400 nm} \approx$ 45 mm
 - downstream, n=1.055 , $\lambda_{400nm}pprox$ 35 mm
- 4 segmented rings, 2×124 tiles
- all but exit surface of each pair covered by black paper
- each pair fixed by two black strings running radially
- completed in December 2016

~17 cm

29-30 March 2023, Nagoya B1 Heavy Flavor and Dark Matter Joint Unit Symposium **30. 3. 2023** (slide 6)

Aerogel radiator upgrade options

Aerogel radiator options under consideration if transmission length can be increased – retry pinhole dried aerogels?

- increase of downstream layer transmission length by factor1.5
- increase of transmission length of both layers by factor 1.5
- increase of refractive index of both layers provided that transmission length remains the same:
 - $n_1: 1.045 \rightarrow 1.055$
 - $n_2: 1.055 \rightarrow 1.065$
- possible introduction of acrylic filter to reduce detection of scattered photons (short λ)

Preliminary studies show largest improvement for refractive index increase. Further studies needed in combination with loss of photon detector performance.

Current Aerogel parameters

29-30 March 2023, Nagoya B1 Heavy Flavor and Dark Matter Joint Unit Symposium 30. 3. 2023 (slide 8)

Samo Korpar Univ. of Maribor and J. Stefan Institute

HAPD leakage current - fluence

Neutron fluence estimate:

- Average increase of leakage current $\approx 400 \ nA/APD$ (30 $nA \rightarrow \approx 10^9 \frac{n_{eq}}{cm^2}$)
- fluence estimate: $\Delta I_b \approx 400 \ nA \rightarrow \approx 1.3 \cdot 10^{10} \frac{n_{eq}}{cm^2} \rightarrow$ more than one order below total expected from simulation
- expected to operate at least up to $10^{12} \frac{n_{eq}}{cm^2}$

1.Mar.2019-22.Apr.2022

SiPM for ARICH: early tests

ARICH photon detector module prototype:

- Hamamatsu 64 channel MPPC module S11834-3388DF, 8 \times 8 array of 3 \times 3 mm^2 SiPMs @ 5 mm pitch
- matching array of quartz light concentrators used
- two 20 mm thick aerogel tiles in focusing configuration (n = 1.045, 1.055)
- tested in 5 GeV electron beam at DESY
- estimated 36 hits on full ring
- electronics with < 1 ns resolution
- radiation hardness DCR increase by neutron irradiation?
- cooling

30.3.2023

(slide 10)

Ô

ring in Cherenkov space

SiPM irradiation tests @JSI

Producer	Туре	Size (mm²)	Cell size (µm)	V _{br} (V)
Sensl	MicroRA-100XX- MLP	1x1	35	28
Sensl	MicroFJ-300XX- TSV	3x3	35	24.5
Ketek Ketek	PM3325-WB PM3350-EB	3x3 3x3	25 50	27 24.5
Hamamatsu	S13360-3050PE	3x3	50	51
Hamamatsu Advansid	ASD-NUV3S-P	3x3 3x3	50 40	51 26
Advansid	ASD-RGB3S-P	3x3 3.8x3.	40	28
Broadcom	AFBR-S4N44C013	8	30	27

10¹¹n/cm² 10¹²n/cm²

Laser triggered response to low light

29-30 March 2023, Nagoya B1 Heavy Flavor and Dark Matter Joint Unit Symposium

▶Trig′d

B1 Heavy Flavor and Dark Matter Joint Unit Symposium

29-30 March 2023, Nagoya

30. 3. 2023 (slide 12)

Univ. of Maribor and J. Stefan Institute

Bandwidth

BW Limit

 \square 100MHz

Filter

SiPM irradiation studies @TMU

Tests of irradiated samples after annealing for several days at 170°C (Motohashi-san at 44th B2GM):

• Tests show that SiPMs could possibly be used if cooled, regularly annealed and replaced each year.

Result of waveform on 3050VE @ V_{bd} + 3[V]

MPPC sample	Pixel pitch[µm]	Gain($ imes 10^5$)	PDE[%]	Size[mm ²]	Dark count rate[kcps]	Capacity [pF]	Geometrical fill factor[%]
3050VE	50	17	40	3×3	500	320	74

<u>Irradiation 10^{11} </u> ⇒ means use for annual on Belle II

29-30 March 2023, Nagoya B1 Heavy Flavor and Dark Matter Joint Unit Symposium **30. 3. 2023** (slide 13)

Samo Korpar Univ. of Maribor and J. Stefan Institute

LAPPD (or HRPPD) for ARICH

Tested sample - LAPPD #109:

- $\approx 200 \times 200 \ mm^2$
- 20 μm pores @ 25 μm pitch
- resistive anode plane, capacitive coupled readout
- 5 mm thick glass backplate
- 5 HV levels: PC, MCP1in, MCP1out, MCP2in, MCP2out and resistive anode at ground potential
- Standard setup with QDC, TDC, 3D stage ...
- TDC value corrected for time-walk
- ALPHALAS PICOPOWER[™]-LD Series of Picosecond Diode Lasers – 405 nm
- FWHM $\approx 20 \text{ ps}$
- light spot diameter on the order of $100~\mu{
 m m}$

LAPPD - HV supply

CAEN HiVolta (DT1415ET), 8 Ch Reversible 1 kV/1 mA Desktop HV Power Supply – floating channels

- 1 kV/1 mA and 0.6 W(!) per channel
- ch.0 MCP2out AN
- ch.1+ch.2 MCP2in MCP2out (2 ch. due to power limit per channel)
- ch.3 MCP1out MCP2in
- ch.4 MCP1in MCP1out
- ch.5 PC MCP1in

ROP voltages A-PC: 500/825(400+425)/200/825/100 V

Custom		VMon	IMon	ISet	Pw	Status	SWVmax
00.000	500.00	500.06	3.8730	50.00	On		500
00.001	400.00	400.16	791.5960	900.00	On		400
00.002	425.00	425.30	791.7310	900.00	On		450
00.003	200.00	200.22	15.7010	50.00	On		200
00.004	825.00	825.46	345.5840	450.00	On		850
00.005	100.00	100.20	0.0680	5.00	On		150

29-30 March 2023, Nagoya B1 Heavy Flavor and Dark Matter Joint Unit Symposium

30. 3. 2023 (slide 15)

Samo Korpar Univ. of Maribor and J. Stefan Institute

LAPPD - sensing electrodes

PETSYS conn. 0 0 6 -IOtr V2R2 2 7 8 O FastIC 0. .0 board C.C. conn. D 172 0 18 E 0 A22_1 8 9 **INCOM** IJS Sec dot Sec det O SEC 199 PRI Seculary methods? ...

29-30 March 2023, Nagoya **B1** Heavy Flavor and Dark Matter Joint Unit Symposium 30. 3. 2023 (slide 16)

Samo Korpar Univ. of Maribor and J. Stefan Institute

• transformed signal

• direct signal (gain $\approx 2 \cdot 10^6$)

30. 3. 2023 (slide 17)

Modular readout system for tests

- TDC: 25ps LSB(σ~11ps)
- QDC: dual range 800pC, 200pC

LAPPD - time-walk correction

- TDC corrected for time-walk
- timing resolution (prompt peak) $\sigma \approx 40~{\rm ps}$ after time-walk correction

29-30 March 2023, Nagoya B1 Heavy Flavor and Dark Matter Joint Unit Symposium **30. 3. 2023** (slide 19)

22500 20000

LAPPD - timing disdribution

- measured timing distribution typical for MCP-PMT
- main prompt peak with some inelastic and elastic backscattering contribution
- additional small peak at about 1 ns delay probably due to some reflection (light?), delay not affected by PC-MCP1 voltage
- plot is for the PC-MCP1 voltage of 150 V and ROP for others

29-30 March 2023, Nagoya B1 Heavy Flavor and Dark Matter Joint Unit Symposium

B1 Heavy Flavor and Dark Matter Joint Unit Symposium

(slide 21)

Univ. of Maribor and J. Stefan Institute

LAPPD - induced charge

- fraction of the signal on ch. 2 vs laser spot x position: $f(x) = \frac{q_2}{\sum_i q_i}$
- first approximation of expected fraction f(x), fitted' by hand (weighting potential of a strip in an infinite conductive plane)
- induced charge distribution FWHM \approx 8 mm (below)
- further tests with smaller pads, narrower strips
- for pad sizes of few mm a thinner back-plate will be needed

Entry of Entry

Exit of Entry

Univ. of Maribor and J. Stefan Institute

29-30 March 2023, Nagoya B1 Heavy Flavor and Dark Matter Joint Unit Symposium

Ω

4./(x*x+16.)/3.14

10

20

.30

mm

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

-40

-.30

-20

-10

30. 3. 2023 (slide 22)

LAPPD - induced charge fraction

- fraction of the signal on ch. 2 vs laser spot x position: $f(x) = \frac{q_2}{\sum_i q_i}$
- green band (log scale) indicates the range of a backscattered photoelectrons – twice the PC-MC1 distance (on each side)
- ROP for upper plots and 100 V between MCP2 and A for lower ones
- Signal spread not mainly from electron spread but induced charge spread on coupled electrode

29-30 March 2023, Nagoya B1 Heavy Flavor and Dark Matter Joint Unit Symposium

(slide 23)

Univ. of Maribor and J. Stefan Institute

LAPPD - charge sharing

- more detailed scan between the centres of adjacent pads (top)
- central slice where signal is equally split between the pads (bottom)
- narrow peak is due to the light spot size and photoelectron spread
- longer tail from photoelectron backscattering - ≈ 6 mm on each side → ≈ 3 mm PC – MCP1 distance

29-30 March 2023, Nagoya B1 Heavy Flavor and Dark Matter Joint Unit Symposium

(slide 24)

Univ. of Maribor and J. Stefan Institute

LAPPD vs. BURLE PLANACON

LAPPD (capacitive coupling) – BURLE PLANACON (internal anodes) signal spread comparison – same pad size, same range

LAPPD - induced charge calculations

LAPPD - induced charge estimates

Collected charge by pads of different size and for different (MCP2out-A)/(A-pad) distances. ϵ not included.

B1 Heavy Flavor and Dark Matter Joint Unit Symposium

(slide 27)

Front-end electronics

- Front-end electronics is organized in units of one merger board (MB) controlling 6 (or 5) front-end boards (FEB)
- FEB is based on 4 36 ch. ASICs each covering one APD, and Spartan-6 FPGA
- MB controls FEB slow control parameters, and collects and transfers data to back-end DAQ

29-30 March 2023, Nagoya

B1 Heavy Flavor and Dark Matter Joint Unit Symposium

30. 3. 2023 (slide 28)

Univ. of Maribor and J. Stefan Institute

Samo Korpar

LAPPD + FastIC

- 8 CH ASIC
- Technology 65 nm CMOS
- ~ 6 mW/ch
- Number of channels: 8 SE / 4 DIFF
- Connection Type Configurable SE (Pos/Neg polarity) DIFF, Sum of 4 (Pos/Neg polarity)
- Electronics Time Jitter ~ 25 ps rms
- Energy Resolution Linear (~ 2.5 % Linearity error)

Output LVDS Driver <u>×</u>

Cursons E Measure E Math int Analysis

Samo Korpar Univ. of Maribor and J. Stefan Institute

29-30 March 2023, Nagoya B1 Heavy Flavor and Dark Matter Joint Unit Symposium **30. 3. 2023** (slide 29)

LAPPD + FastIC

• Timing resolution at different positions of laser spot $\approx 115 \ ps$ – no time-walk correction

Univ. of Maribor and J. Stefan Institute

• Timing resolution $\approx 70 \ ps$ with time-walk correction, ADC from shared signal on the neighbouring pad used

29-30 March 2023, Nagoya B1 Heavy Flavor and Dark Matter Joint Unit Symposium

30. 3. 2023 (slide 30)

Summary & Plan

Operation of ARICH is stable with good PID performance

- detector is expected to work without upgrade throughout the Belle II operation
- LV connectors fixed during LS1 no changes to the detector
- repair and replacement of some HAPDs planed for LS2
- possible aerogel radiator upgrade is considered for LS2 or beyond
- photodetector upgrade foreseen beyond LS2 possible candidates:
 - MCP-PMTs (LAPPD, HRPPD ...)
 - SiPMS
- simulations and tests of hardware are in progress ...

From irradiation tests

Neutron irradiation tests:

- $S_{APD} \approx 1000 \ mm^2$
- fluence $10^{12} \frac{n_{eq}}{cm^2} \rightarrow \approx 30 \ \mu A/APD$
- $30 nA \rightarrow \approx 10^9 \frac{n_{eq}}{cm^2}$

Noise Level & Total Gain dose not change before and after irradiation.
If HAPD dose not Break down, we can use it.

Film A type APD with intermediate electrode selected for production

30. 3. 2023 (slide 33)

29-30 March 2023, Nagoya B1 Heavy Flavor and Dark Matter Joint Unit Symposium **30. 3. 2023** (slide 34)

Samo Korpar Univ. of Maribor and J. Stefan Institute