ヒッグス粒子研究のまとめ

増渕 達也 東京大学素粒子物理国際研究センター (ICEPP)

先端加速器LHCが切り拓くテラスケールの素粒子物理学 研究会@名古屋大学 東山キャンパス

A Higgs Boson (not Higgs-"like")

New results indicate that particle discovered at CERN is a Higgs boson

Geneva, 14 March 2013.

At the Moriond Conference today, the ATLAS and CMS collaborations at CERN's Large Hadron Collider (LHC) presented preliminary new results that further elucidate the particle discovered last year.

Having analysed two and a half times more data than was available for the discovery announcement in July, they find that **the new particle is looking more and more like a Higgs boson**, the particle linked to the mechanism that gives mass to elementary particles...

アウトライン

- ・イントロダクション
- ・ 簡単に各論(ATLAS & CMS)
 - $H \rightarrow \gamma \gamma$, ZZ $\rightarrow 4I$, H $\rightarrow WW \rightarrow IvIv$
 - $H \rightarrow bb, H \rightarrow \tau \tau$
- ・ヒッグス粒子の性質測定と全体像(ATLAS & CMS)
 - 質量測定
 - カップリング測定 – スピン/パリティ測定

何がどこまで測れているか? SMとのズレは?

・まとめ

Higgs Production and Decay

・現在の解析状況(ATLAS)

チャンネル	7 TeV (4.7-4.9fb ⁻¹)	8 TeV (21.0 fb ⁻¹)	
н→үү	4.9fb ⁻¹	21fb ⁻¹	
H→ZZ→4I	4.8fb ⁻¹	21fb ⁻¹	LHC Run I Full data!!
H→WW→lvlv	4.7fb ⁻¹	21fb ⁻¹	
Н→ττ	4.7fb ⁻¹	13.0fb ⁻¹	
H→bb	4.7fb ⁻¹	13.0fb ⁻¹	「アップデート中

チャンネル	7 TeV (4.7-4.9fb ⁻¹)	8 TeV (21.0 fb ⁻¹)	
H→Zgam	4.9fb ⁻¹	21fb ⁻¹	
н→μμ	-	21fb ⁻¹	比較的新しいDecay
ttH→bb	4.7fb ⁻¹	-	「 mode, production mode たのが」かめている
H→invisible	4.7fb ⁻¹	13.0fb ⁻¹	

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG

Η→γγ

VBF H→γγ Candidate

先端加速器LHCが切り拓くテラス ケールの素粒子物理学

2013/05/24

H→vv

事象選択

di-photon trigger (99% efficiency w.r.t. offline photons)

先端加速器LHCが切り

- $E_T(\gamma 1) > 40 \text{ GeV}, E_T(\gamma 2) > 30 \text{ GeV} (|\eta_v| < 2.37)$
- Photon ID based on shower shape (NN particle ID in 7 TeV)

lepton category(VH)

- Require 1 lepton or $60 < M_{ii} < 110 \text{ GeV}$
- High MET significance

VBF Category(VBF)

- \geq 2 jets high M_{ii} with MVA analysis
- High BDT score, low BDT score

Other 9 categories(ggF)

- i. conversion or unconversion
- ii. Photon n
- p_{Tt} (>60 or <60 GeV) iii.

2013/05/24

<u>Н→үү</u>

- m_{γγ} mass distribution (inclusive)
 - 23788 events (7 TeV), 118893 (8 TeV)

2013/05/24

元端加速器LHCか切り拓くテフス ケールの素粒子物理学

$\underline{H \rightarrow ZZ^{(*)} \rightarrow 4I}$

VBF 2e2µ Candidate

$\underline{H \rightarrow ZZ^{(*)} \rightarrow 4I}$

- Golden-channel
 - 終状態に4レプトン(4e,4µ,2e2µ)を含む (Good S/B = ~0.6-1.7)
 - Narrow signal mass peak ($\Delta m_{4l} \sim 1.6-2.4 \text{ GeV} @ m_{H}=125 \text{ GeV}$)
- 事象選択
 - 4 isolated lepton ($p_T > 20$ GeV, 15 GeV, 10 GeV, 7(e) or 6(μ) GeV)
 - 2 same-flavor and opposite-sign lepton pairs 50 < m₁₂ < 106 GeV, m_{min} < m₃₄ < 115 GeV (m_{min}はm₄₁に依存して最適化 e.g. m_{min}=12 GeV at m₄₁=125 GeV)
 - selection efficiency (m_H=125 GeV) : 39% for 4 μ , 26% for 2e2 μ /2 μ 2e, 19% for 4e
 - Categorization : $\Delta \eta_{jj}$ > 3.0, M_{jj} > 350 (VBF category)

Additional 1 lepton with $p_T > 8$ GeV (VH category)

- 背景事象
 - continuum ZZ (MCから評価)
 - Z+jets, ttbar (MCとdataを用いて評価)

$\underline{H \rightarrow ZZ^{(*)} \rightarrow 4I}$

- m_{4l}分布 (7TeV+8TeV)
 - 125GeV付近にデータの超過を^w 観測
 - 高い質量領域はSM ZZ背景事 象と良い一致
 - Local p_0 at 124.3 GeV
 - 7+8 TeV : **6.6σ** (exp. 4.4σ)

signal strength

μ=1.7^{+0.5}_{-0.4}@124.3 GeV

120 <m<sub>4l<130 GeV</m<sub>	Signal (125 GeV)	ZZ	Z+jets,tt	Signal+Bkg	Observed
4μ	6.3±0.8	2.8±0.1	0.55±0.15	9.6±1.0	13
2µ2e	3.0±0.4	1.4±0.1	1.56±0.33	6.0±0.8	5
2e2µ	4.0±0.5	2.1±0.1	1.55±0.17	6.6±0.8	8
4e	2.6±0.4	1.2±0.1	1.11±0.28	4.9±0.8	6

$H \rightarrow WW^{(*)} \rightarrow IvIv$

VBF Candidate (eµ+MET+ forward jets)

$\underline{\mathsf{H}} \rightarrow \mathsf{WW}^{(*)} \rightarrow \mathsf{IvIv}$

- 2 leptons+high MET+jets(ggF for 0/1j, VBF for 2j)
 - 終状態に2つのニュートリノを含むため質量再構成が困難
 Δm(yy, ZZ→4l) ~1-2 GeV, Δm(WW)~20GeV
 - → 背景事象と区別がつきにくい
 - それぞれのカテゴリーで最適な事象選択 を行っている
 - 主な背景事象

WW, W+jets, Z+jets, top, non-WW diboson

• Z+jets rejection, top rejection (1,2jets), WW rejection

	0jet	1jet	>=2jets
ee-ch	0	0	0
μμ-ch	0	0	0
eµ,µe-ch	0	0	0

1000

 $m_T = \sqrt{(E_T^{ll} + E_T^{miss})^2 - (\mathbf{P}_T^{ll} + \mathbf{E}_T^{miss})^2}$

- m_T分布fitから最終結果を計算
- 信号領域で超過が観測

Njet(ee+µµ+eµ)	Nobs	Nbkg	Nsig
0jet	831	739±39	97±20
1jet	309	261±28	40±13
>=2jets	55	36±4	10.6±1.4

 $E_T^{ll} = \sqrt{(P_T^{ll})^2 + m_{ll}^2}$

H→bb, H→ττ(CMS)
・ H→bb, H→ττも見え始めている。。。

実際の解析はMVAで。。。

Higgs Boson	Subsequent		$\int L dt$		10
Decay	Decav	Sub-Channels	$[fb^{-1}]$	Ref.	19
	2000		[10]]	-	ATLAS
		2011 $\sqrt{s} = 7$ TeV			
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2-\text{jet VBF}, \ell-\text{tag}\}$	4.6	[8]	$H \rightarrow vv$. ZZ $\rightarrow 4I$. WW $\rightarrow IvIv$
$H \rightarrow \gamma \gamma$	_	10 categories	48	[7]	
11 - 11		$\{p_{\mathrm{Tt}} \otimes \eta_{\gamma} \otimes \mathrm{conversion}\} \oplus \{2\text{-jet VBF}\}$	1.0		➔ full-data
$H \to WW^{(*)}$	<i>ℓνℓν</i>	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet VBF}\}$	4.6	[9]	
	$\tau_{lep}\tau_{lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{\mathrm{T},\tau\tau} > 100 \text{ GeV}, VH\}$	4.6		H→bb,ττ
$H \rightarrow \tau \tau$	$\tau_{lep}\tau_{had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	4.6	[10]	
	$\tau_{had}\tau_{had}$	{1-jet, 2-jet}	4.6		\rightarrow HCP data(13fb ⁻¹)
	$Z \rightarrow vv$	$E_{\rm T}^{\rm mas} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	4.6		
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^{\prime\prime} \in \{<50, 50-100, 100-150, 150-200, \ge 200 \text{ GeV}\}$	4.7	[11]	
	$Z \rightarrow \ell \ell$	$p_{\rm T}^2 \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ Gev}\}$	4./		
		2012 $\sqrt{s} = 8 \text{ TeV}$			
$H \rightarrow ZZ^{(*)}$	4 <i>l</i>	{4e, 2e2µ, 2µ2e, 4µ, 2-jet VBF, ℓ-tag}}	20.7	[8]	CMS
$H \rightarrow ant$		14 categories	20.7	[7]	
$\Pi \rightarrow \gamma \gamma$	-	${p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}} \oplus {2\text{-jet VBF}} \oplus {\ell\text{-tag, } E_{\text{T}}^{\text{miss}}\text{-tag, } 2\text{-jet VI}$	} 20.7	1/1	$H \rightarrow vv 77 \rightarrow 4I WW \rightarrow v v H \rightarrow \tau\tau$
$H \to WW^{(*)}$	lvlv	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet VBF}\}$	20.7	[9]	
	$\tau_{\rm lep} \tau_{\rm lep}$	$\{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{\mathrm{T},\tau\tau} > 100 \text{ GeV}, VH\}$	13		➔ full-data
$H \rightarrow \tau \tau$	$\tau_{\rm lep} \tau_{\rm had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	13	[10]	
	$\tau_{had}\tau_{had}$	{1-jet, 2-jet}	13		H→bb
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm mass} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	13		
$VH \rightarrow Vbb$	$W \to \ell v$	$p_{\rm T}^{\prime\prime} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13	[11]	\rightarrow HCP data(12fb ⁻¹)
	$Z \to \ell \ell$	$p_{\mathrm{T}}^{2} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13		
	orante	anoninate anabbea ananiada re cateboneoro a naj	- Bracer	Bran	LI COACAL.

			Analyses	No. of	mH	Lumi	(fb ⁻¹)	Ref.
	H decay	Prod. tag	Exclusive final states	channels	resolution	7 TeV	8TeV	
		untagged	$\gamma\gamma$ (4 diphoton classes)	4 + 4	1-2%	5.1	19.6	
	$\gamma\gamma$	VBF-tag	$\gamma\gamma + (jj)_{VBF}$ (two dijet classes for 8 TeV)	1 + 2	<1.5%	5.1	19.6	[63]
		VH-tag	$\gamma\gamma + (e, \mu, MET)$	3	<1.5%		19.6	
	$77 \rightarrow 4\ell$	$N_{jet} < 2$	4e. 4 y. 2e2 y	3+3	1-2%	5.1	19.6	[64]
		$N_{jet} \ge 2$	and a final sector	3+3	1-2/0		17.0	[ov]
		0/1-jets	(DF or SF dileptons) × (0 or 1 jets)	4+4	20%	4.9	19.5	[65]
	$WW \rightarrow \ell \nu \ell \nu$	V BF-tag	$\ell \nu \ell \nu + (jj)_{VBF}$ (DF or SF dileptons for 8 TeV)	1+2	20%	4.9	12.1	[66]
		WH-tag	$3\ell 3\nu$ (same-sign SF and otherwise)	2+2		4.9	19.5	[67]
		0/1-jet	$(e\tau_h, \mu\tau_h, e\mu, \mu\mu) \times (low or high p_T^T)$	16 + 16				
		1-jet	ች ጉ	1 + 1	15%	4.9	19.6	[68]
	ττ	VBF-tag	$(e\tau_h, \mu\tau_h, e\mu, \mu\mu, \tau_h\tau_h) + (jj)_{VBF}$	5+5				
		ZH-tag	$(ee, \mu\mu) \times (\tau_k \tau_k, e\tau_k, \mu\tau_k, e\mu)$	8+8		5.0	195	[69]
		WH-tag	$\tau_{\mu}\mu\mu$, $\tau_{\mu}e\mu$, $e\tau_{h}\tau_{h}$, $\mu\tau_{h}\tau_{h}$	4 + 4		0.0	19.5	[05]
		VH-tag	$(\nu\nu, ee, \mu\mu, e\nu, \mu\nu \text{ with 2 b-jets}) \times (low or high p_T(V) or loose b-tag)$	10 + 13	10%	5.0	12.1	[70]
	bb	ttH-tag	$(\ell \text{ with } 4, 5 \text{ or } \geq 6 \text{ jets}) \times (3 \text{ or } \geq 4 \text{ b-tags});$	6+6		5.0	5.1	[71]
5		iur-tag	(ℓ with 6 jets with 2 b-tags); ($\ell\ell$ with 2 or \geq 3 b-tagged jets)	3+3		0.0	0.1	0.1

2013/05

Higgs Boson Decay	n Subs De	Subsequent Sub-Channels Decay					$\int L \mathrm{d}t \\ [\mathrm{fb}^{-1}]$	Ref.					20
		$2011 \sqrt{s} = 7 \text{ TeV}$							ATLAS				
$H \rightarrow ZZ^{(*)}$		ŀℓ	{4e, 2e2µ,	2µ2e, 4µ, 2-j	et VBF, <i>l</i> -tag}		4.6	[8]	$H \rightarrow \gamma \gamma, ZZ \rightarrow 4I,$	ww->	IvIv		
$H \rightarrow \gamma \gamma$			m _H =12	25.5 Ge	eV		.8	[7]	→full-data				
$H \rightarrow WW$	Dec	ay mode	Expe	cted (o) Observe	ed (a	5) ^{.6}	[10]	H→bb,ττ				
$H \rightarrow \tau \tau$	ZZ		4.4		6.6		.6 .6		→HCP data(13)	fb⁻1)			
$VH \rightarrow Vbc$	γγ		4.1		7.4		.7 .7	[11]					
$H \rightarrow ZZ^{(*)}$	ww	1	3.7		3.8).7	[8]	CMS				
$H \to \gamma \gamma$	bb(I	HCP data)	~1σ		< 1σ).7	[7]	$H \rightarrow \gamma \gamma, ZZ \rightarrow 4I,$	ww->) •Ivlv	, н→	ττ
$n \rightarrow w w$	ττ(Η	CP data)	1.7		1.1		3	[10]	→full-data				
$VH \rightarrow Vbb$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $								fb ⁻¹)				
		H decay	Prod. tag	Exc		m _H =	=125	5.7 Ge	eV	m _H resolution	Lumi 7 TeV	(fb ⁻¹) 8TeV	Ref.
		$\gamma\gamma$	untagged VBF-tag VH-tag	$\frac{m}{m}$ De	cay mode	Ex	pect	ed (o	σ) Observed (σ)	$egin{array}{c} 1-2\% \\ <1.5\% \\ <1.5\% \end{array}$	5.1 5.1	19.6 19.6 19.6	[63]
		$ZZ\to 4\ell$	$N_{\text{jet}} < 2$ $N_{\text{jet}} \ge 2$	^{4e,} ZZ		7.:	1		6.7	1-2%	5.1	19.6	[64]
		WW $\rightarrow \ell \nu \ell \nu$	0/1-jets VBF-tag WH-tag	(DF 8/8 3 <i>l</i> 3		3.9	9		3.2	20% 20%	4.9 4.9 4.9	19.5 12.1 19.5	[65] [66] [67]
		ττ	0/1-jet 1-jet VBF-tag	(eन इ.स. W (eन	N	5.3	3		3.9	15%	4.9	19.6	[68]
			ZH-tag WH-tag	(ee, bb ॠ⊭	(HCP data)	2.2	2		2.0		5.0	19.5	[69]
		bb	VH-tag ttH-tag	(νν (ℓ w ττ		2.6	6		2.8	10%	5.0 5.0	12.1 5.1	[70] [71]
20	13/05			(l Winnop	10 mili 2 0-mgo/, (e	C WILL	204 20	0-005-C	ajeb/ 070	-			

<u>質量測定</u>

- 2つの質量解像度が良いチャンネルH→γγ vs H→ZZ→4l
 - H→γγの系統誤差 : γ energy scale/resolution
 - H→ZZ→4Iの主な系統誤差:µmomentum scale/resolution
 * electron energy scale/
 * electron energy scale/

Combined Signal Strength

• Combined signal strength (SMに規格したときの観測さ

<u>カップリングの測定</u>

• 生成過程でのヒッグスとの結合

• 崩壊過程でのヒッグスとの結合

<u>H→yyは両方の</u>

24 ggF vs. VBF Production 同じ崩壊チャンネルを見る事での崩壊からの不定性はキャンセル (生成過程に対するµのズレを見る事が可能) $\mu_{VBF+VH} \times B/B_{SM}$ 10 **ATLAS** Preliminary $\sqrt{s} = 7 \text{ TeV}$: $\int \text{Ldt} = 4.6-4.8 \text{ fb}^{-1}$ 8 $\sqrt{s} = 8 \text{ TeV}$: |Ldt = 13-20.7 fb⁻¹ H→WWはggF低めに出ている 6 $- H \rightarrow \gamma \gamma$ Standard Mode H→yyはggF低め、VBF高め - H \rightarrow ZZ^(*) \rightarrow 41 × Best fit $H \rightarrow WW^{(*)} \rightarrow h/h - 68\% CL$ --- 95% CL CMS Preliminary $\sqrt{s} = 7$ TeV, $L \le 5.1$ fb⁻¹ $\sqrt{s} = 8$ TeV, $L \le 19.6$ fb⁻¹ μ _{VBF,VH} $H \rightarrow \tau \tau$ SN $H \rightarrow WW$ 0 $H \rightarrow ZZ$ $H \rightarrow bb$ -2 $H \rightarrow \gamma \gamma$ m_µ = 125.5 GeV SM 3 5 6 $\mu_{ggF+ttH} \times B/B_{SM}$ 2 H→yyはggF/VBF共に高めに出ている(<2o) SM 他のチャンネルも大きくSMとずれているもの はない 0 * H→τt:ggFの感度なし * H→ZZ→4I: VBFの感度なし SM 2 0 -1 先端加速器LHCが切り ggH,ttH

2013/05/24

ケールの素粒子物理字

ggF vs VBF Production

比(µ_{VBF+VH}/µ_{ggF+ttH})をとることでそれぞれの崩壊モード
 を同じ変数として比較可能(コンバインも可能)

2013/05/24

BR(invisible) < 0.6(0.52) @95% CL in ATLAS(CMS)

2013/05/24

<u>スピン・パリティ測定</u>

- H→γγ, H→WW→lvlv, H→ZZ→4lチャンネルでスピン測定
 - Spin 0⁺ vs 2⁺: 最もシンプルなgravition-likeモデルをspin2⁺のベン チマークとして使用 (Spin 1^{+/-}はLandau-Yang定理で禁止されている)
 - ZZ→4Iは0⁻,1⁺,1⁻,2⁻との識別にも感度がある

Phys. Rev. D 16, 2219-2225 (1977)

- ◆ H→γγ: Z-軸と光子の放出角度|cosθ*|のみをもちいてスピンを 測定
- $|\cos\theta^*| \ge m_{\gamma\gamma}$ (bkg normalization in side band)をフィットする

<u>スピン・パリティ測定</u>

<u>スピン・パリティ測定</u>

まとめ

 ヒッグス(like)粒子の発見以来,順調にデータ取得&解析が進行中 <u>質量測定</u>

ATLAS : 125.5±0.2(stat)^{+0.5}_{-0.6}(sys)

CMS: 125.7±0.3(stat)±0.3(sys)

<u>スピン/パリティ測定</u>

- 0⁺ vs 2⁺ → 0⁺を強く示唆 (99%以上の信頼度で2⁺を棄却)
- 0⁺ vs 0⁻,1⁺,1⁻ → 0⁺を強く示唆 (~99%の信頼度で0⁻,1⁺,1⁻を棄却)

<u>カップリング測定</u>

- SMとの大きなズレは観測されていない
- フェルミオンとのカップリングはH→π, H→bbの解析のアップデー
 トに期待 → 近日公開(ATLAS)

<u>"A Higgs boson"を発見</u>

他のヒッグスがある 可能性は明日のトークで

34

 今後,より低い生成断面積のプロセス(ttH, VBF, VH),崩壊モード (H→μμ,H→Zγ)の研究でヒッグス粒子の性質の精密測定が可能に

先端加速器LHCが切り拓くテラス

ケールの素粒子物理学

まとめ

・ ヒッグス(like)粒子の発見以来,順調にデータ取得&解析が進行中

<u> バックアップ</u>

H

HIGGS BOSON

先端加速器LHCが切り拓くテラス ケールの素粒子物理学

2013/05/24
Rare-Production mode

• ttH \rightarrow bb (direct Y_{top} Search)

2013/05/24

先端加速器LHCが切り拓くテラス ケールの素粒子物理学

Rare-Production Mode (CMS)

<u>Signal Strengthの質量依存性</u>

• γγ vs ZZ

<u>カップリング測定</u>

- i. W,Z couplingの比(λ_{wz}=κ_w/κ_z)を直接測定 : SU(2)_v custodial symmetryとpパラメータの測定から λ_{wz}~1
 - $H \rightarrow ZZ \rightarrow 4I : \kappa_7$
 - $H \rightarrow \gamma \gamma, H \rightarrow WW \rightarrow |v|v:\kappa_w$

先端加速器LHCが切り拓くテラス ケールの素粒子物理学

<u>CMS</u>

ケールの素粒子物理学

<u>カップリング測定</u>

κ_ν, κ_F 1D

ケールの素粒子物理学

先端加速器LHCが切り拓くテラス ケールの素粒子物理学

<u>スピン2モデル</u>

gravition-like tensor(pseudo-tensor)

$$\begin{split} A(H \to VV) &= \Lambda^{-1} \left[2g_{1}t_{\mu\nu}f^{*1,\mu\alpha}f^{*2,\nu\alpha} + 2g_{2}t_{\mu\nu}\frac{q_{\alpha}q_{\beta}}{\Lambda^{2}}f^{*1,\mu\alpha}f^{*2,\nu\beta} \\ &+ g_{3}\frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}}t_{\beta\nu}(f^{*1,\mu\nu}f^{*2}_{\mu\alpha} + f^{*2,\mu\nu}f^{*1}_{\mu\alpha}) + g_{4}\frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} \\ &+ m_{V}^{2} \left(2g_{5}t_{\mu\nu}\epsilon^{*\mu}_{1}\epsilon^{*\nu}_{2} + 2g_{6}\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}(\epsilon^{*\nu}_{1}\epsilon^{*\alpha}_{2} - \epsilon^{*\alpha}_{1}\epsilon^{*\nu}_{2}) + g_{7}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}\epsilon^{*}_{1}\epsilon^{*}_{2} \right) \\ &+ g_{8}\frac{\tilde{q}_{\mu}\tilde{q}_{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}\tilde{f}^{*(2)}_{\alpha\beta} + g_{9}t_{\mu\alpha}\tilde{q}^{\alpha}\epsilon_{\mu\nu\rho\sigma}\epsilon^{*\nu}_{1}\epsilon^{*\rho}_{2}q^{\sigma} \\ &+ \frac{g_{10}t_{\mu\alpha}\tilde{q}^{\alpha}}{\Lambda^{2}}\epsilon_{\mu\nu\rho\sigma}q^{\rho}\tilde{q}^{\sigma}(\epsilon^{*\nu}_{1}(q\epsilon^{*}_{2}) + \epsilon^{*\nu}_{2}(q\epsilon^{*}_{1})) \right], \end{split}$$

パラメータg₁-g₁₀を変えてspin 2⁻, 2⁺をモデルする gluon-gluon fusionとqqbar annihirationが混在可能 productionの割合(qq/qqbar)はスキャンする

<u>スピン測定(ZZ→4I)</u>

終状態が全て測定可能なZZ→4Iは強力

- θ₁,θ₂, Φはパリティをを 区別するときに有用
- これらの角度変数の
 他にm₁₂, m₃₄も用いる
 一つ一つの変数は非

カだがMVAで識別可 能

先端加速器LHCが切り拓くテラス ケールの素粒子物理学

$H \rightarrow ZZ \rightarrow 4I$ (CMS)

ケールの素粒子物理学

2013/05/24

先端加速器LHCが切り拓くテラス ケールの素粒子物理学

<u>スピン測定(0+ vs 2+)</u>

• H \rightarrow vv, H \rightarrow WW \rightarrow lvlv, H \rightarrow ZZ \rightarrow 4l コンビネーション

<u>スピン測定(ZZ→4I)</u>

終状態が全て測定可能なZZ→4Iは強力

<u>ヒッグス!?を見つけた</u>

<u>ATLAS実験</u>

"Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC" Physics Letters B716 (2012) 1-29

<u>CMS実験</u>

"Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC" Physics Letters B716 (2012) 30-61

"Search for the Standard Model Higgs boson in the $H \rightarrow WW \rightarrow Ivlv$ decay mode with 4.7fb⁻¹ ATLAS data at $\sqrt{s=7TeV}$ " Physics Letters B716 (2012) 62-81

2013/05/24

57

2013/05/24

ggF vs VBF

<u>H→γγ(カテゴリー別)</u>

ケールの素粒子物理学

<u>H→yy(カテゴリー別)</u>

2013/05/24

• a

2013/05/24

先端加速器LHCがち ケールの素粒-

$H \rightarrow ZZ \rightarrow 4I$ Signal Mass Shape

m₄₁ (7TeV and 8 TeV)

先端加速器LHCが切り拓くテラス ケールの素粒子物理学

H→ZZ material

• m₄₁ (4e,4µ, 2e2µ)

$\underline{H \rightarrow ZZ \rightarrow 4I}$

Exclusion

- photon
 - absolute energy scale calibration factor : ±0.3%
 - imperfect material before calorimeter : ± 0.3%
 - 各EM calorimeter layer σ relative calibration : ±0.1%, ±0.2%
 - eとγのshower発展の違い:±0.1%
 - H→γγ photonとZ→ee electronの違い : ±0.15%
 - pile up impact < ±0.1%</p>
 - conversion photonのperformanceのdataとMCの違い: ±0.13%
 - background modelの違い:±0.1%
 - mass resolution \mathcal{O} stability : ±0.15%
 - photonのangleから起因するbias: ±0.03%
 - → Total systematic uncertainty ±0.7 GeV for $H \rightarrow \gamma \gamma$
 - → Z→IIγを用いてcross check

• muon

- muon momentum scale/resolution with J/ $\psi \rightarrow \mu \mu$, Z $\rightarrow \mu \mu$ < ±0.1%
- charge-symmetric scale biases and local charge-asymmetric scale biases...
- \rightarrow total uncertainty ±0.2% for 4 μ
- electron
 - Sourceはphotonと同じ
 - electron energy scale/resolution ±0.4%
 - final-state QED radiation modeling < ±0.1%
- Total systematic uncertainty ± 0.3 GeV for $H \rightarrow ZZ \rightarrow 4I$
- Stat ±0.9 GeV

$H \rightarrow WW \rightarrow IvIv$

$H \rightarrow WW \rightarrow IvIv$

Signal Strength (μ)

 1.01 ± 0.21 (stat.) ± 0.19 (theo. syst.) ± 0.12 (expt. syst.) ± 0.04 (lumi.)

• $\sigma(pp \rightarrow H) * BR(H \rightarrow WW) @8TeV$

 $6.0 \pm 1.1 \text{ (stat.)} \pm 0.8 \text{ (theo. syst.)} \pm 0.7 \text{ (expt. syst.)} \pm 0.3 \text{ (lumi.)} \text{ pb}$

理論值: $4.77^{+0.64}_{-0.64}$ (cross section) $^{+0.20}_{-0.20}$ (branching fraction) pb

<u>Η→ττ</u>

$H \rightarrow \tau \tau (\tau_{lep} \tau_{lep}, \tau_{lep} \tau_{had}, \tau_{had} \tau_{had})$

- 3つのチャンネル(τ_{lep}τ_{lep}(2leps), τ_{lep}τ_{had}(1lep), τ_{had}τ_{had}(0lep))を解析
 e/µの数でexclusiveに解析を分けている
- それぞれのチャンネルはさらにカテゴリーを分けて解析を最適化

category(τ _{lep} τ _{lep})	2 jet VBF	Boosted	2-jet VH	1 jet
主なセレクション	m _{jj} > 400 GeV Δη _{jj} > 3.0	$p_T^{TT} = p_T^{11} + p_T^{12} + p_T^{miss} $ >100 GeV	30 < m _{jj} < 100 Δη _{jj} < 2.0	m _{πj .>} 225 GeV
主な信号	VBF	ggF	VH	ggF

$category(\tau_{lep}\tau_{had})$	2 jet VBF	Boosted	1 jet	0 jet
主なセレクション	m _{jj} > 500 GeV Δη _{jj} > 3.0	$p_T^{H}= p_T^{I}+p_T^{\tau had}+E_T^{miss} $ >100 GeV	E _t ^{miss} > 20 GeV, at least 1 jet	E _t ^{miss} > 20 GeV, 0jet
主な信号	VBF	ggF	ggF	ggF

$category(\tau_{had}\tau_{had})$	2 jet VBF	Boosted
主なセレクション	m _{jj} > 350 GeV Δη _{jj} > 2.6	1jet p _T >70 GeV ΔR(τ ₁ ,τ ₂) < 1.9, min{Δφ(E_T^{miss} , τ ₁), Δφ(E_T^{miss} , τ ₂)} < 0.1π
主な信号	VBF	ggF
2013/05/24		ケールの表料之物理学

$H \rightarrow \tau \tau (\tau_{lep} \tau_{lep}, \tau_{lep} \tau_{had}, \tau_{had} \tau_{had})$

W/ZH(→bbar)

- H→bb探索で有望チャンネル
 - WH,ZH:終状態にレプトンorMETを 含む(lepton or MET trigger)
 - pT(W/Z)でカテゴリー分け
 - 主な背景事象はW/Z+jets, ttbar, QCD, Diboson (WZ,ZZ)

 μ_D =1.09±0.22(stat.)±0.22(sys) significance 4.0 σ

WH→Ivbb	ZH→llbb	ZH→vvbb
one lepton (e,μ)	two leptons (ee, μμ)	$E_T^{miss} > 120 \text{ GeV}$
E _T ^{miss} > 25(50), GeV, (40 <) m _T < 120 GeV	83 GeV < m _{ll} < 99 GeV, E _T ^{miss} < 60 GeV	$p_T^{miss} > 30 \text{ GeV}, \Delta \phi(E_T^{miss}, p_T^{miss}) < \pi/2,$ $ \Delta \phi(E_t^{miss}, jet) > 1.5, \Delta \phi(E_t^{miss}, bb) > 2.8$

Two b-jets (45,25 GeV) b-tag efficiency 70% (c mistag 20%, light mistag 0.07%)

Categorize events depending on vector boson $p_T (p_{TV})$ or MET (Boost VH Events)

 $p_{TV} < 50,50 < p_{TV} < 100,100 < p_{TV} < 150,150 < p_{TV} < 200,$ $p_{TV} > 200 \text{ GeV}$ $120 < E_T^{miss} < 160,160 < E_T^{miss} < 200, E_T^{miss} > 200 \text{ GeV}$

