B_c meson lifetime and the shape of New Physics in $B ightarrow D^{(*)} au u$

Rodrigo Alonso¹, Benjamín Grinstein² and Jorge Martin Camalich¹

¹CERN

²UCSD

March 27, 2017 Miniworkshop on $B
ightarrow D^{(*)} au
u$ and related topics Nagoya, Japan

Benjamín Grinstein (UCSD)

Introduction

- Famously 2HDM model does not explain au anomalies
- Right ingredients:
 - charged "current"
 - LUV (lepton universality violation)
- Fails on combined fit, as function of $\tan\beta/m_{H^\pm}$
- Specific to 2HDM? Need to re-do analysis for each NP model?

- 4 同 6 4 日 6 4 日 6

No: Use EFT to characterize any model with heavy mediators

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F V_{cb}}{\sqrt{2}} \left[\left(1 + \epsilon_L \right) \bar{\tau} \gamma_\mu P_L \nu_\tau \cdot \bar{c} \gamma^\mu P_L b + \epsilon_R \bar{\tau} \gamma_\mu P_L \nu_\tau \cdot \bar{c} \gamma^\mu P_R b \right]$$

 $\left. + \epsilon_T \, \bar{\tau} \sigma_{\mu\nu} P_L \nu_\tau \cdot \bar{c} \sigma^{\mu\nu} P_L b + \epsilon_{S_L} \bar{\tau} P_L \nu_\tau \cdot \bar{c} P_L b + \epsilon_{S_R} \bar{\tau} P_L \nu_\tau \cdot \bar{c} P_R b \right] + \text{h.c.}$

2HDM: $\epsilon_L = \epsilon_R = \epsilon_T = 0$

$$\epsilon_{S_L} = \frac{m_\tau m_c}{m_{H^{\pm}}^2} \xi_{S_L}, \quad \epsilon_{S_R} = \frac{m_\tau m_b}{m_{H^{\pm}}^2} \xi_{S_R}$$

	type l	type II	lep-specific	flipped
ξ_{S_l}	$-\cot^2\beta$	1	1	$-\cot^2\beta$
ξS_R	$\cot^2 eta$	$ an^2eta$	-1	-1

イロト 不得下 イヨト イヨト 二日

No: Use EFT to characterize any model with heavy mediators

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F V_{cb}}{\sqrt{2}} \left[\left(1 + \epsilon_L \right) \bar{\tau} \gamma_\mu P_L \nu_\tau \cdot \bar{c} \gamma^\mu P_L b + \epsilon_R \bar{\tau} \gamma_\mu P_L \nu_\tau \cdot \bar{c} \gamma^\mu P_R b \right]$$

 $\left. + \epsilon_{T} \, \bar{\tau} \sigma_{\mu\nu} P_{L} \nu_{\tau} \cdot \bar{c} \sigma^{\mu\nu} P_{L} b + \epsilon_{S_{L}} \bar{\tau} P_{L} \nu_{\tau} \cdot \bar{c} P_{L} b + \epsilon_{S_{R}} \bar{\tau} P_{L} \nu_{\tau} \cdot \bar{c} P_{R} b \right] + \text{h.c.}$

2HDM:
$$\epsilon_L = \epsilon_R = \epsilon_T = 0$$

_

$$\epsilon_{S_L} = \frac{m_{\tau} m_c}{m_{H^{\pm}}^2} \xi_{S_L}, \quad \epsilon_{S_R} = \frac{m_{\tau} m_b}{m_{H^{\pm}}^2} \xi_{S_R}$$

$$\frac{\text{type I} \quad \text{type II} \quad \text{lep-specific} \quad \text{flipped}}{\xi_{S_L} - \cot^2 \beta \quad 1 \quad 1 \quad -\cot^2 \beta}$$

$$\xi_{S_R} \quad \cot^2 \beta \quad \tan^2 \beta \quad -1 \quad -1$$

Could have plotted against ϵ_{S_R} !

March 27, 2017 3 / 17

Objective

The purpose of this work is to constrain \mathcal{L}_{eff} (the shape of New Physics) by means unrelated to $B \rightarrow D^{(*)} \tau \nu$

- 3 *B_c* lifetime
- 4 Interplay with $B \to D^{(*)} \ell \nu$ observables
 - One line conclusion

3

A D A D A D A

SM-EFT

SM-EFT

- SM-EFT: Effective Field Theory of SM
- Assume SM field content: all new particles have masses above $\Lambda \gg m_t$
- Supplement SM with operators of dimension ≥ 5
- \bullet Find contributions to $\mathcal{L}_{\rm eff}$ at low energies (integrate out heavy (SM) fields)

4-fermion operators:

$$Q_{lequ}^{(1)} = (\bar{\ell}e_R)(\bar{q}_L u_R) + \text{h.c.} \qquad Q_{lequ}^{(3)} = (\bar{\ell}\sigma_{\mu\nu}e_R)(\bar{q}_L\sigma^{\mu\nu}u_R) + \text{h.c.}$$
$$Q_{\ell q}^{(3)} = (\bar{q}\vec{\tau}\gamma^{\mu}q_L) \cdot (\bar{\ell}\vec{\tau}\gamma_{\mu}\ell_L) \qquad Q_{\ell edq} = (\bar{\ell}_L e_R)(\bar{d}_R q) + \text{h.c.}$$
None give $\mathcal{L}_{\text{eff}} = -\frac{4G_F V_{cb}}{\sqrt{2}} \left[\dots + \epsilon_R \bar{\tau}\gamma_{\mu}P_L \nu_{\tau} \cdot \bar{c}\gamma^{\mu}P_R b + \dots \right]$

3

- 4 同 6 4 日 6 4 日 6

Only $Q_{HHud} = i\tilde{H}^{\dagger}D_{\mu}H\,\bar{u}\gamma^{\mu}d_{R}$ contributes to ϵ_{R} :

Respects Lepton Universality; discard:

$$\mathcal{L}_{eff} = -\frac{4G_F V_{cb}}{\sqrt{2}} \left[\left(1 + \epsilon_L \right) \bar{\tau} \gamma_\mu P_L \nu_\tau \cdot \bar{c} \gamma^\mu P_L b + \epsilon_R \bar{\tau} \gamma_\mu P_L \nu_\tau \cdot \bar{c} \gamma^\mu P_R b \right] \\ + \epsilon_T \bar{\tau} \sigma_{\mu\nu} P_L \nu_\tau \cdot \bar{c} \sigma^{\mu\nu} P_L b + \epsilon_{S_L} \bar{\tau} P_L \nu_\tau \cdot \bar{c} P_L b + \epsilon_{S_R} \bar{\tau} P_L \nu_\tau \cdot \bar{c} P_R b \right] + h.c.$$
Benjamín Grinstein (UCSD)
Bec meson lifetime
March 27, 2017 6 / 17

Only $Q_{HHud} = i\tilde{H}^{\dagger}D_{\mu}H\,\bar{u}\gamma^{\mu}d_{R}$ contributes to ϵ_{R} :

Respects Lepton Universality; discard:

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F V_{cb}}{\sqrt{2}} \left[\left(1 + \epsilon_L \right) \bar{\tau} \gamma_\mu P_L \nu_\tau \cdot \bar{c} \gamma^\mu P_L b \right]$$

$$+ \epsilon_T \bar{\tau} \sigma_{\mu\nu} P_L \nu_\tau \cdot \bar{c} \sigma^{\mu\nu} P_L b + \epsilon_{S_L} \bar{\tau} P_L \nu_\tau \cdot \bar{c} P_L b + \epsilon_{S_R} \bar{\tau} P_L \nu_\tau \cdot \bar{c} P_R b + \text{h.c.}$$
Benjamín Grinstein (UCSD)
Benjamín Grinstein (UCSD)
Benjamín Grinstein (UCSD)
Benjamín Grinstein (UCSD)

For $B ightarrow D^{(*)} au u$

イロン イヨン イヨン イヨン

March 27, 2017 7 / 17

3

<ロ> (日) (日) (日) (日) (日)

Bounds from B_c decays are independent of observed anomaly
Branching fraction

$$\operatorname{Br}(B_c \to \tau \bar{\nu}_{\tau}) = \tau_{B_c^-} \frac{m_{B_c} m_{\tau}^2 f_{B_c}^2 G_F^2 |V_{cb}|^2}{8\pi} \left(1 - \frac{m_{\tau}^2}{m_{B_c}^2}\right)^2 \left|1 + \epsilon_L + \frac{m_{B_c}^2}{m_{\tau}(m_b + m_c)} \epsilon_P\right|^2$$

depends on pseudoscalar coupling $\epsilon_{P} = \epsilon_{S_{R}} - \epsilon_{S_{L}}$ and ϵ_{L} through

$$\epsilon_L + rac{m_{B_c}^2}{m_{ au}(m_b+m_c)}\epsilon_P \simeq \epsilon_L + 4\epsilon_P$$

Below use $\epsilon_L = 0$; to restore ϵ_L in bounds: $\epsilon_P \rightarrow \epsilon_P + \frac{1}{4}\epsilon_L$

- $R_{D^*}^{\mathrm{expt}} = 0.316$, need $\epsilon_P = 1.48 \Rightarrow \mathrm{Br}(B_c \to \tau \bar{\nu}_{\tau}) \approx 104\%$.
- Measurement of ${
 m Br}(B^-_c o auar
 u_ au)$: sensitive probe. [Du et al, PLB414 (1997) 130]

▲ロト ▲興ト ▲ヨト ▲ヨト ニヨー わえぐ

Problem is $B_c^+ \text{ DECAY MODES} \times B(\overline{b} \rightarrow B_c)$

 B_c^- modes are charge conjugates of the modes below.

action (Γ_i/Γ) Confidence le
9

The following quantities are not pure branching ratios; rather the fraction $\Gamma_i/\Gamma \times B(\overline{b} \rightarrow B_c)$.

Γ1	$J/\psi(1S)\ell^+ u_\ell$ anything	(5.2 +2.	$^{4}_{1}$) × 10 ⁻⁵	
Г2	$J/\psi(1S)\mu^+ u_\mu$			
Гз	$J/\psi(1S)\pi^+$	seen		
Γ4	$J/\psi(1S)K^+$	seen		
Γ ₅	$J/\psi(1S)\pi^+\pi^+\pi^-$	seen		
Г ₆	$J/\psi(1S) a_1(1260)$	< 1.2	× 10 ⁻³	90%
۲ ₇	$J/\psi(1S)K^{+}K^{-}\pi^{+}$	seen		
Г ₈	$J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	seen		
Г9	$\psi(2S)\pi^+$	seen		
Γ ₁₀	$J/\psi(1S)D_s^+$	seen		
Γ11	$J/\psi(1S)D_s^{*+}$	seen		
Γ ₁₂	$J/\psi(1S) p \overline{p} \pi^+$	seen		
Γ ₁₃	$D^*(2010)^+ \overline{D}{}^0$	< 6.2	× 10 ⁻³	90%
Γ ₁₄	$D^+ K^{*0}$	< 0.20	× 10 ⁻⁶	90%
Γ ₁₅	$D^+\overline{K}^{*0}$	< 0.16	× 10 ⁻⁶	90%
Γ ₁₆	$D_{s}^{+}K^{*0}$	< 0.28	× 10 ⁻⁶	90%
Γ ₁₇	$D_s^+ \overline{K}^{*0}$	< 0.4	× 10 ⁻⁶	90%
Γ ₁₈	$D_{s}^{+}\phi$	< 0.32	× 10 ⁻⁶	90%
Γ ₁₉	$K^{+}K^{0}$	< 4.6	× 10 ⁻⁷	90%
Γ ₂₀	$B_s^0 \pi^+ / B(\overline{b} \rightarrow B_s)$	(2.37+0.	$^{37}_{35}) \times 10^{-3}$	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- Measurement of ${
 m Br}(B_c^- o au ar
 u_ au)$ may be sensitive probe in future?
- NEW strategy: lifetime
 - Very high precision (1.5%): $au_{B_c} = 0.507(8) imes 10^{-12}$ s
 - Relatively well understood
 - Overview of result using NR-OPE: [Beneke&Buchala, PRD53,4991]
 - $au^{
 m OPE}_{B_c} = 0.52^{+0.18}_{-0.12}$ ps; take $au^{
 m OPE}_{B_c} < 0.70$ ps
 - OPE is inclusive; but only Weak Annihilation (WA) gives $B_c \rightarrow \tau \nu$.

•
$$\Gamma_{WA}^{OPE} \leq 3\%$$

$$\begin{split} \Gamma^{\mathrm{exp}} &= 0.97 \Gamma^{\mathrm{OPE}} + \Gamma^{\mathrm{OPE}}_{\mathrm{WA}} > 0.97 \Gamma^{\mathrm{OPE}} + \Gamma(B_c \to \tau \nu) \\ &> 0.97 \Gamma^{\mathrm{OPE}}_{\mathrm{min}} + \Gamma(B_c \to \tau \nu) \end{split}$$

• $\Rightarrow Br(B_c \rightarrow \tau \nu) < 30\%$

- Note Strategy does nothing for ϵ_L :
 - with $R_D^{(*)}/R_{D,\rm SM}^{(*)} = 1.3 = (1 + \epsilon_L)^2$ gives small effect Br $(B_c \rightarrow \tau \nu) = 2.7\%$ (and $\Gamma_{\rm WA} < 4\%$)
 - even for perfect theory and including tau from spectator diagrams get effect below experimental uncertainty: $\Delta \tau_{B_c} / \tau_{B_c} = 1.2\%$

Theory of B_c lifetime 0-th order, free quark decay

Lusignoli/Massetti, Z.Phys.C51,549(1991) Gershtein et al, P.Uspekhi 38,1,(1995) Bigi, PLB 371, 105(1996) Beneke/Buchala, PRD 53,4991(1996) Change et al, PRD 64, 014003(2001) Kiselev, NPB 585, 353(2000) Gouz et al, Phys Atm Nucl 67, 1559(2004)

Simple:

$$\Gamma = \Gamma(b
ightarrow X) + \Gamma(c
ightarrow X) + \Gamma(ann)$$

with

$$\Gamma(b \to X) = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192\pi^3} \times 9$$
$$\Gamma(c \to X) = \frac{G_F^2 |V_{cs}|^2 m_c^5}{192\pi^3} \times 5$$

and $\Gamma(ann)$ as in Br $(\tau \nu)$ (with a factor of $3|V_{cs}|^2$ for $\bar{c}s$)

1st order, phase space correction: large effect on $c \rightarrow s$ because $m_B/m_{B_c} \sim 0.8$

Effect of phase space in pictures:

Decay mode	Free quarks	$\mathbf{B}_{\mathbf{c}}^{+}$	BR	Decay mode	Free quarks	$\mathbf{B}_{\mathbf{c}}^{+}$	BR
$b \rightarrow \bar{c} + e^+ \nu_e$	62	62	4.7	$c \rightarrow s + e^+ + \nu_e$	124	74	5.6
$\bar{b}\to \bar{c}+\mu^+\nu_\mu$	62	62	4.7	$c \to s + \mu^+ + \nu_\mu$	124	74	5.6
$\bar{b} \rightarrow \bar{c} + \tau^+ \nu_\tau$	14	14	1.0	$c \to s+u+\bar{d}$	675	405	30.5
$\bar{b} \rightarrow \bar{c} + \bar{d} + u$	248	248	18.7	$c \to s+u+\overline{s}$	33	20	1.5
$\bar{b} \rightarrow \bar{c} + \bar{s} + u$	13	13	1.0	$c \to d + e^+ \nu$	7	4	0.3
$\bar{b} \rightarrow \bar{c} + \bar{s} + c$	87	87	6.5	$c \rightarrow d + \mu^+ + \nu_\mu$	7	4	0.3
$\bar{b} \rightarrow \bar{c} + \bar{d} + c$	5	5	0.4	$c \rightarrow d + u + \bar{d}$	39	23	1.7
$\mathrm{B}_{\mathrm{c}}^{+} \rightarrow \tau^{+} + \nu_{\tau}$	_	63	4.7	$B_c^+ \rightarrow c + \overline{s}$	_	162	12.2
$B_c^+ \to c + \bar{d}$	—	8	0.6	$B_c^+ \to all$	_	1328	100

This simple minded approach gives widths (10^{-6}eV) and Br's

Note: $10^6/1328 eV^{-1} = 0.496 ps$

Decay mode	Free quarks	\mathbf{B}_{c}^{+}	BR	Decay mode	Free quarks	$\rm B_c^+$	BR
$\overline{b \to \bar{c} + e^+ \nu_e}$	62	62	4.7	$c \rightarrow s + e^+ + \nu_e$	124	74	5.6
$\bar{b} \rightarrow \bar{c} + \mu^+ \nu_{\mu}$	62	62	4.7	$c \to s + \mu^+ + \nu_\mu$	124	74	5.6
$\bar{b} \rightarrow \bar{c} + \tau^+ \nu_\tau$	14	14	1.0	$c \to s+u+\bar{d}$	675	405	30.5
$\bar{b} \rightarrow \bar{c} + \bar{d} + u$	248	248	18.7	$c \to s+u+\overline{s}$	33	20	1.5
$\bar{b} \rightarrow \bar{c} + \bar{s} + u$	13	13	1.0	$c \to d + e^+ \nu$	7	4	0.3
$\bar{b} \rightarrow \bar{c} + \bar{s} + c$	87	87	6.5	$c \to d + \mu^+ + \nu_\mu$	7	4	0.3
$\bar{b} \rightarrow \bar{c} + \bar{d} + c$	5	5	0.4	$c \to d+u+\bar{d}$	39	23	1.7
$\mathrm{B}^+_\mathrm{c} \to \tau^+ + \nu_\tau$	_	63	4.7	$B_c^+ \rightarrow c + \bar{s}$	_	162	12.2
$B_c^+ \rightarrow c + \bar{d}$	_	8	0.6	$B_c^+ \rightarrow all$		1328	100
lote: 10 ⁶ /1328e	$V^{-1} = 0.496$ ps						
d order: OPE in	NRQFT, basically s	ame result, b	out systemat	ic Mode		Partial rate (ps ⁻¹)	
1	6.4			$\overline{b} \rightarrow \overline{c} u \overline{d}$		0.310	
$\Gamma_{B_c} = \frac{1}{2m}$	$-\langle B_c \text{Im } i d^4 \times T \mathcal{H}$	$_{\mathrm{eff}}(x)\mathcal{H}_{\mathrm{eff}}$	$(0) B_c\rangle$	$\overline{b} \rightarrow \overline{c} c \overline{s}$		0.137	
2111 <u>B</u>	c ,			$\overline{h} \rightarrow \overline{c} e \mu$		0.075	

This simple minded approach gives widths (10^{-6}eV) and Br's

followed by OPE expansion

- Not fully proven, but works pretty well for Γ_B , Γ_Λ
- Matrix Elements fairly accurate from potential model
- Largest uncertainty: quark masses (huge room for improvement)

stematic	Mode	Partial rate (ps ⁻¹)			
	$\overline{b} \rightarrow \overline{c} u \overline{d}$	0.310			
c >	$\overline{b} \rightarrow \overline{c} c \overline{s}$	0.137			
	$\overline{b} \rightarrow \overline{c} e \nu$	0.075			
	$\overline{b} \rightarrow \overline{c} \tau \nu$	0.018			
^	$\Sigma \overline{b} \rightarrow \overline{c}$	0.615			
nodel	$c \rightarrow su\overline{d}$	0.905			
or	$c \rightarrow se \nu$	0.162			
	$\Sigma c \rightarrow s$	1.229			
	WA: $\overline{b}c \rightarrow c\overline{s}$	0.138			
	WA: $\overline{b}c \rightarrow \tau \nu$	0.056			
	PI	-0.124			
	Total	1.914	æ,	500	
B_c meson lifetime		March 27, 2017		13 / 17	

Taking care of errors (using $Br(B_c \rightarrow \tau \nu) < 30\%$ as above)

Correlation between R_{D^*} and $Br(B_c \rightarrow \tau \nu)$ for a pseudoscalar NP interaction (red line). The shaded areas are the 1 σ -band corresponding to the measurement of R_{D^*} (vertical orange) and to the bound on the NP contribution to the lifetime of the B_c assuming that the SM accounts for the 70% of it (gray horizontal).

3

Interplay with $B \rightarrow D^{(*)} \ell \nu$ observables

- Only choices left for $R_{D^{(*)}}$: ϵ_L and ϵ_T ($\epsilon_S \neq 0$ with $\epsilon_P = 0$ probably requires fine tuning in SM-EFT)
- $\epsilon_L \approx 0.13$ is a universal enhancement of all $b \to c \tau \nu$: no change in shapes of distributions
- ϵ_T (and ϵ_S) modifies also shapes.
- Fitting ϵ_T to R_D and R_{D^*} ,

$$\epsilon_T = 0.377(12), \quad \chi^2 = 1.49 \qquad (vs \; \epsilon_L = 0.13(3), \quad \chi^2 = 0.013)$$

• Shape, e.g.,

$$dP_L^{(*)} = rac{d\Gamma_+ - d\Gamma_-}{d\Gamma_+ + d\Gamma_-}$$
 $\lambda_{ au} = \pm ext{ is } au ext{-helicity}$

•
$$P_L^{*,\text{expt}} = -0.44(47)_{-0.17}^{+0.20}$$

[Belle, 1608.06391]

≣ ► ≣ *•* **१** ९ ९ ९

• Fit above: $P_L^* = 0.190(10) \ (P_L^{*, SM} = -0.504(24))$

• New fit, ϵ_{T} unchanged, but $\chi^{\bar{2}} = 3$

The (black) dashed line represents the parametric ϵ_T -dependence of R_{D^*} and P_L^* . The overlaid (red) solid line corresponds to values of ϵ_T for which R_D is consistent with the experimental measurement at 1σ . The shaded areas are the 1σ -bands corresponding to current data set (orange) and *naïve* experimental prospects discussed in the main text (purple).

B_c meson lifetime

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Conclusion

If I were a model builder and wanted to explain τ anomalies I would build a model with $\epsilon_R = \epsilon_{S_R} = \epsilon_{S_L} = \epsilon_T = 0$ and $\epsilon_I = 0.13$