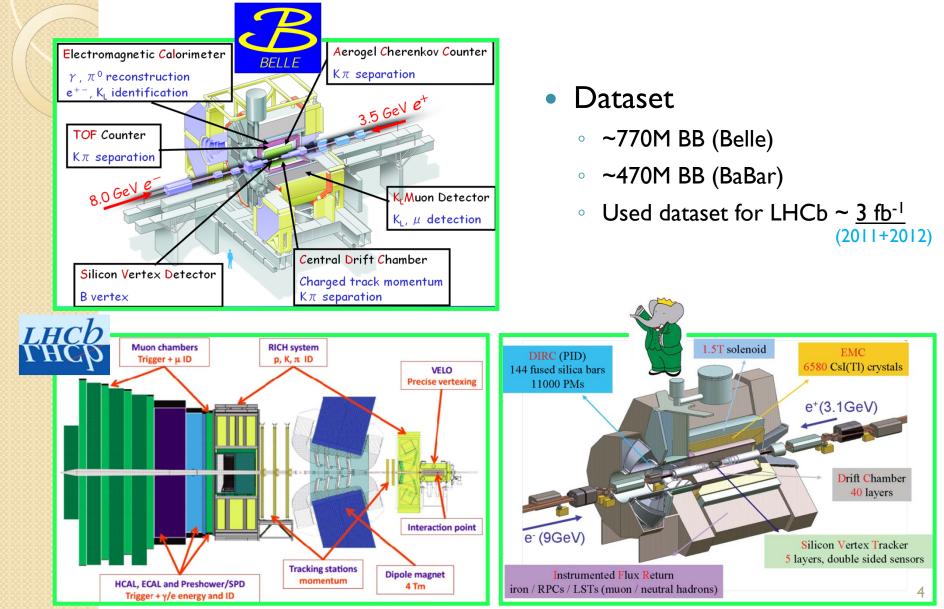
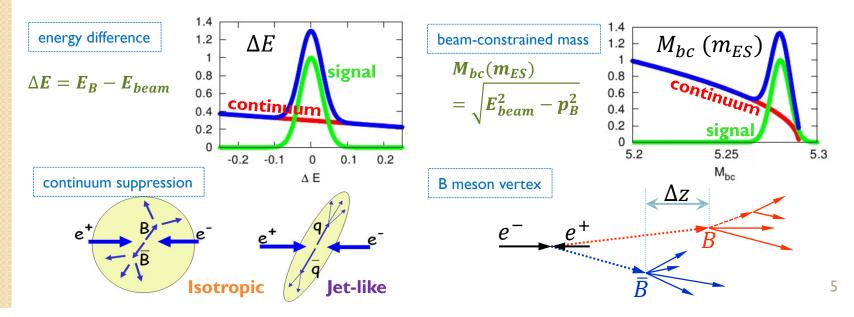


Flavor Physics & CP Violation 2015

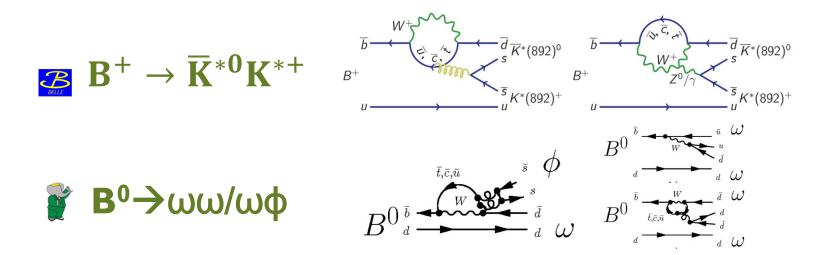
Outline


- Experimental overview
- $B \rightarrow VV$ (two vector mesons)
 - **BF & f**_L in $B^+ \to \overline{K}^{*0}K^{*+}$ by Belle
 - **F** in $B^0 \rightarrow \omega \omega / \omega \phi$ by BaBar
- $\phi_2(\alpha)$ constraints
 - BF in $B^0 \rightarrow \pi^0 \pi^0$ by Belle
 - BF in $B^0 \rightarrow \eta \pi^0$ by Belle
 - ° K BF & f_L in B⁰→ $\rho^0\rho^0$ by LHCb
- $\phi_3(\gamma)$ constraint and ΔA_{CP} puzzle
 - **F** BF and direct CPV in $B^+ \rightarrow K_s \pi^+ \pi^0$ by BaBar
- Summary

Charmless B decays

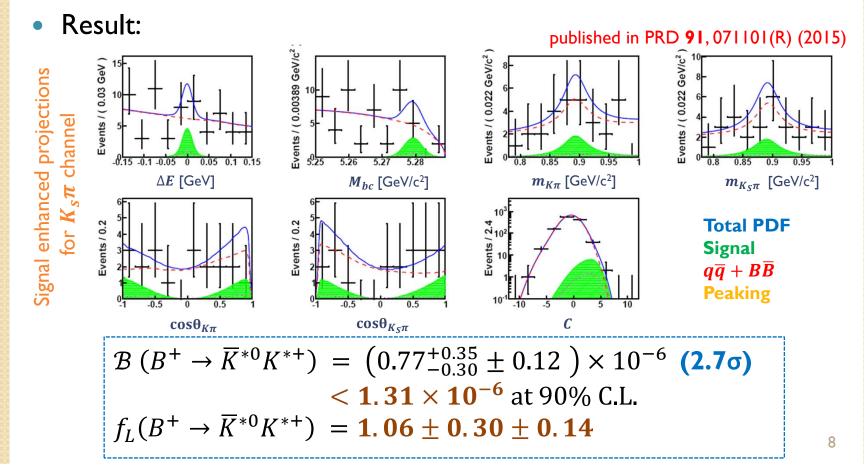

- b \rightarrow c decays take O(99%) of all B decays. The others (b \rightarrow u,d,s, or b \rightarrow NP) are charmless and rare.
- Charmless B decays probe dynamics of weak and strong interactions
 - Interference between penguin and tree diagrams can lead to direct CP violation
 - Relative weak phase of tree and penguin gives Unitarity Triangle angles
- Allows searches for New Physics from new particles by looking for enhanced BF, A_{CP}, ...

Detectors of Belle/Babar/LHCb


Analysis techniques

- Use precise kinematical information $(M_{bc} (m_{ES}) \text{ and } \Delta E)$ from beam and two B-vertices. (Belle/BaBar)
- Use loose selections (flight distance/direction) of B and NeuroBayes Multivariate discriminator for the identification of secondary vertices consistent with *b* hadron decays. (LHCb)
- Combined event topology variables in a Neural Network or Fisher Discriminant for continuum $(e^+e^- \rightarrow q\bar{q})$ suppression.
- Use vetos to reduce large BB backgrounds contributions.

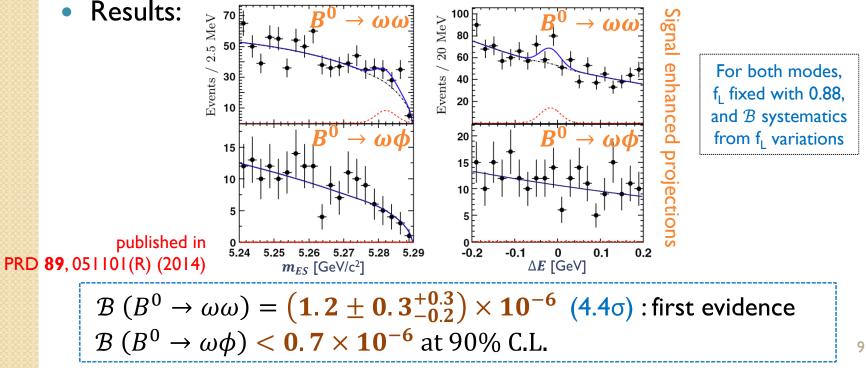
- Proceeds via the b \rightarrow u tree and b \rightarrow d penguin transitions
- Sensitive to possible new particle contributions in the loop
- Most f_L of $b \rightarrow d$ decays not measured.
- A baffling pattern in the longitudinal polarizations of $B \rightarrow VV$
 - QCD factorization \rightarrow expected f_L~I
 - Belle: $B^0 \to \phi K^{*0} \quad f_L = 0.499 \pm 0.030 \pm 0.018 \text{ PRD 88, 072004 (2013)}$

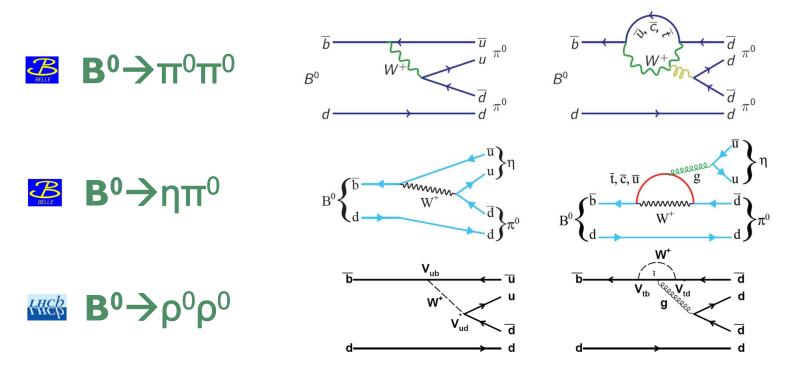

$B \rightarrow VV$ - analysis

- Cut based selection with continuum $e^+e^- \rightarrow q\bar{q}$ background suppression (neural network / Fisher discriminant / Boosted decision tree).
- Use Multi-dimensional fit with S/B separation and polarization variables.
 - Mbc(mES)(beam-constrained) B mass ΔE energy difference btw B and beam m_{V_1}, m_{V_1} vector meson candidate invariant mass $\cos \Phi_{\omega_1}, \cos \Phi_{\omega_2}$ π^0 polar angle (w.r.t ω flight direction) in $\pi^+\pi^-$ rest frameCcontinuum suppression $\cos \theta_{V_1}$ $\cos \theta_{V_2}$
- Fit usually includes polarized signals, continuum, charm/charmless, and peaking background components.

$$\sum_{B \in LLE} B^+ \to \overline{K}^{*0} K^{*+} - \mathcal{B} \& f_L$$

• Previous measurement:


BABAR: $B^+ \to \overline{K}^{*0} K^{*+}$ $B = (1.2 \pm 0.5 \pm 0.1) \times 10^{-6}$ PRD 79, 051102(R) (2009) $f_L = 0.75^{+0.16}_{-0.26} \pm 0.03$

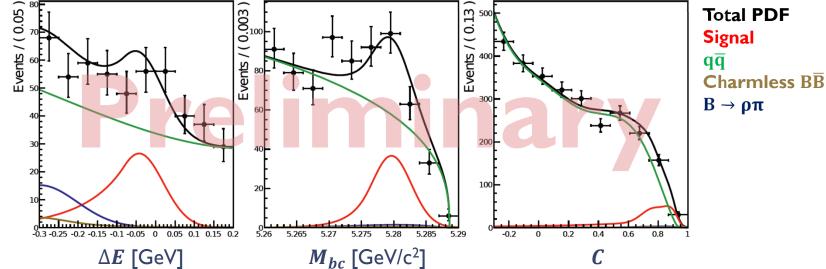


- Previous measurements:
 - CLEO $\mathcal{B}(B^0 \to \omega \omega) < 1.9 \times 10^{-5}$ PRL 81, 272 (1998)
 - Babar $\mathcal{B}(B^0 \to \omega \omega) < 4.0 \times 10^{-6}$, $\mathcal{B}(B^0 \to \omega \phi) < 1.2 \times 10^{-6}$ PRD **74**,051102 (2006)
 - SM expectations : $\mathcal{B}(B^0 \to \omega \omega / \omega \phi) = [0.5 3] \times 10^{-6} / [0.01 2] \times 10^{-6}$

$\phi_2(\alpha)$ constraints

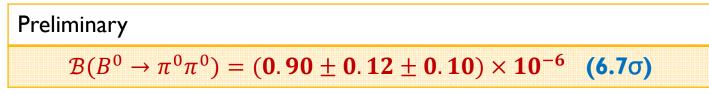
- Proceeds via the b \rightarrow u tree and penguin diagrams
- $\mathbf{B} \rightarrow \pi \pi / \eta \pi / \rho^0 \rho^0$ sensitive to $\phi_2(\alpha)$.
 - $\phi_2(\alpha)$ can be extracted from an isospin analysis of π - $\pi(\rho$ - $\rho)$ system by using the branching fraction and A_{CP} .
 - $B \rightarrow \eta \pi$ can be used to constrain isospin-breaking effects on $\sin \phi_2$ (sin α).

$\mathcal{B}^0 \rightarrow \pi^0 \pi^0$ - analysis

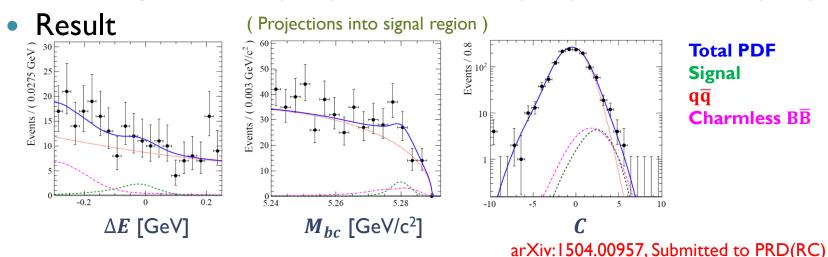

• Previous measurements:

- Belle $\mathcal{B} = (2.3 \pm 0.4 \pm 0.5) \times 10^{-6}$ PRL **94**, 181803 (2005) (275*M* $B\overline{B}$)
- Belle $\mathcal{B} = (1.1 \pm 0.3 \pm 0.1) \times 10^{-6}$ ICHEP 2006 (535*M* $B\bar{B}$)
- Babar $\mathcal{B} = (1.83 \pm 0.21 \pm 0.13) \times 10^{-6}$ PRD **87**, 052009 (2013) (467*M* $B\bar{B}$)
- Theory (QCDF) $\mathcal{B} \leq 1 \times 10^{-6}$ Nucl.Phys. **B675** 333 (2003)

• Analysis $(752M B\overline{B})$


- Fit variables : M_{bc} beam-constrained mass ΔE energy difference
 - *bc* Deam-constrained mass
 E energy difference
 C continuum suppression (Fisher Discriminant)
- ECL hit timing removes 99% of the background and keeps 99% of the signal
- Fit includes 4 components of signal, continuum, $\rho^+\pi^0$, and other rare charmless B decays.

Projections into signal region


• Simultaneous fit to B^0 and $\overline{B}^0 \rightarrow$ signal yield 224 \pm 29

(A_{CP} result will come soon)

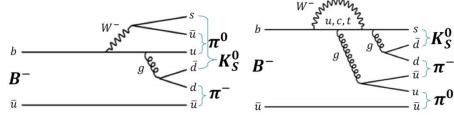
$\mathcal{B}^{0} \rightarrow \eta \pi^{0} - \text{fit result } \mathcal{B}$

- Previous measurements:
 - Belle $\mathcal{B} < 2.5 \times 10^{-6}$ PRD **71**, 091106 (2005)
 - Babar $\mathcal{B} < 1.5 \times 10^{-6}$ PRD **78**, 011107 (2008)
 - Theory (QCDF, Soft Collinear Effective, flavor SU(3)) : $\mathcal{B} = (2 12) \times 10^{-7}$ Nucl.Phys. **B609** 469 (2001), PRD **74**, 014003 (2006), PRD **68**, 074012 (2003)

• $\mathcal{B}(B^0 \to \eta \pi^0) = (4.1^{+1.7+0.5}_{-1.5-0.7}) \times 10^{-7}$ (3.00)

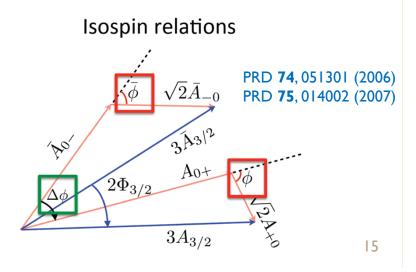
- The first evidence and Good agreement with theoretical expectations
- Isospin-breaking correction to $\phi_2(\alpha)$ in B $\rightarrow \pi\pi$ due to $\pi^0 \eta \eta'$ mixing is less than 0.97° at 90% CL based on PRD **71** 074017 (2005)

$\overset{\text{\tiny HCB}}{\longrightarrow} B^0 \rightarrow \rho^0 \rho^0 - \mathcal{B} \& f_L$ **Previous measurements:**


BABAR: $B = (0.92 \pm 0.32 \pm 0.14) \times 10^{-6}$ PRD 78, 071104(R) (2008) $f_L = 0.75^{+0.11}_{-0.14} \pm 0.05$ BELLE: $B = (1.02 \pm 0.30 \pm 0.15) \times 10^{-6}$ PRD 89, 072008 (2014) $f_L = 0.21^{+0.18}_{-0.22} \pm 0.15$ sPlot technique **Result:** 4-body mass spectrum 0.1 Yield / (0.314 LHCb LHCb Tota Yield/((16 MeV/c²) 5/(16 MeV/c²) 200 LHCb $B^0 \rightarrow (\pi^+\pi^-)(\pi^+\pi^-)$ LHCb 0120 $- B_s^0 \rightarrow (\pi^+\pi^-)(\pi^+\pi^-)$ 60 150 **/ield** 40 F 100 10 20 5100 5200 5300 5400 600 800 -0.5 0.5 -2 400 1000 -1 0 0 2 $\cos\theta_{12}$ $m_{(\pi^+\pi^-)(\pi^+\pi^-)}$ [GeV/c²] $\varphi_{1,2}$ [rad] $m(\pi^+\pi^-)_{1,2}$ [GeV/c²] $\mathcal{B} (B^0 \to \rho^0 \rho^0) = (0.94 \pm 0.17 \pm 0.09 \pm 0.06^*) \times 10^{-6} (7.1\sigma)$ $f_L(B^0 \to \rho^0 \rho^0) = 0.745^{+0.048}_{-0.058} \pm 0.034$

(First observation)

(*) last uncertainty is due to the $B^0 \rightarrow \phi K^{*0}$ reference mode. arXiv:1503.07770, Submitted to PLB


$\phi_3(\gamma)$ constraint

- Proceeds via the b \rightarrow u tree and penguin diagrams
- $B \rightarrow K^* \pi$ tree amplitude sensitive to $\phi_3(\gamma)$.
 - $\phi_3(\gamma)$ can be extracted from interferences btw intermediate states in Kππ Dalitz plane.
- Relative phases between two $K^*\pi$ intermediate states
 - $K^{*0}\pi^+ \& K^{*+}\pi^0$
 - In $K_S \pi^+ \pi^0$, Dalitz plot can be used to measure CKM angle $\phi_3(\gamma)$
- $K^{*0}\pi^+$ is a pure penguin decay
 - $\Delta \phi$ is approximately zero
- In absence of EW penguins,

•
$$\Phi_{3/2} = \phi_3(\gamma)$$

$B^+ \rightarrow K_s \pi^+ \pi^0 - analysis$

- Cut based selection with Boosted Decision Tree based continuum suppression
- Dalitz plot (DP) based analysis gives relative phase, BF, and A_{CP}
 - DP fit model contains $K^*(892)$, $K\pi$ S-wave and $\rho(770)$ contributions
- 5D simultaneous fit to B^{\pm}

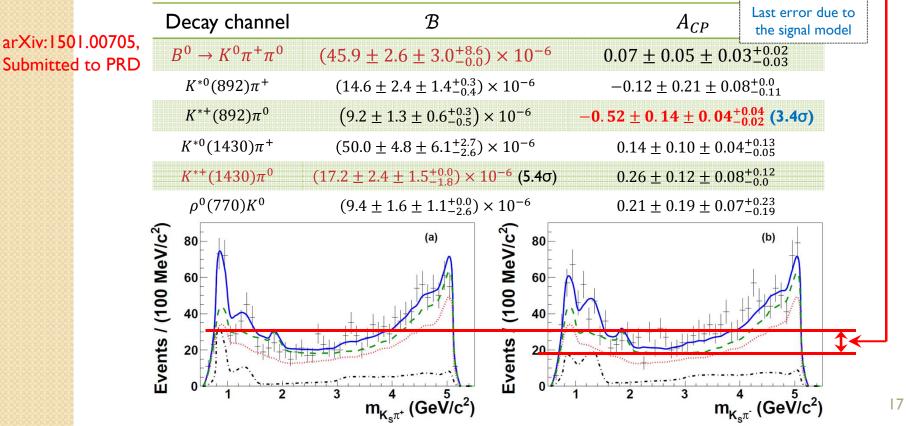
 m_{ES} beam-constrained B mass

 ΔE energy difference btw *B* and beam

 $m_{K_{S}\pi^{+}}^{2}, m_{\pi^{+}\pi^{0}}^{2}$ Dalitz plot parameters

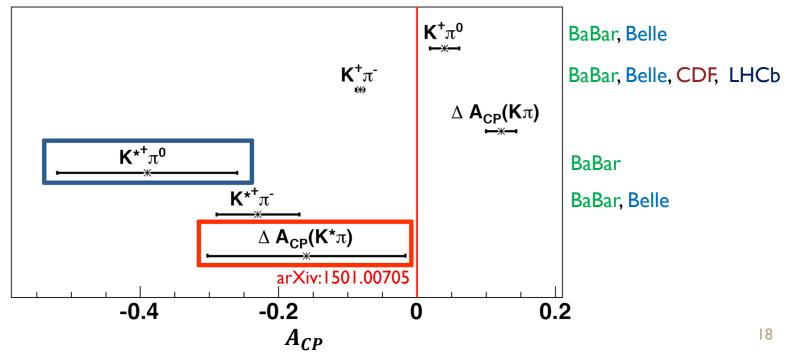
BDT_{out} continuum suppression

• Fit components


S/B separation

- Signal $(K^0\pi^+\pi^0, K^{*0}\pi^+, K^{*+}\pi^0, K^{*0}(1430)\pi^+, K^{*+}(1430)\pi^0, \rho^+K^0)$
- Continuum and $B\overline{B}$ backgrounds
- Previous measurements:
 - Belle&Babar $A_{CP}(B^0 \rightarrow K^{*+}\pi^-) = -0.23 \pm 0.06$ HFAG Average
 - Babar $A_{CP}(B^+ \to K^{*+}\pi^0) = -0.06 \pm 0.24$ (using $K^+\pi^0\pi^0$) PRD **84**, 092007 (2011)
 - CLEO $\mathcal{B}(B^+ \to K^0 \pi^+ \pi^0) < 66 \times 10^{-6}$ PRL **89**, 251801 (2002)

B⁺ \rightarrow **K**_s $\pi^{+}\pi^{0}$ – result

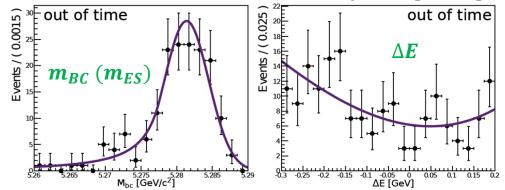

- First measurement of inclusive $K^0\pi^+\pi^0$ and $K^{*+}(1430)\pi^0$ BFs
- First evidence of direct CP violation in $B^+ \to K^{*+}\pi^0$
- A_{CP} for $B^+ \to K^{*0}(892)\pi^+$ consistent with zero (as expected)
- Relative phase $(K^*\pi)$ uncertainty is too large to measure $\phi_3(\gamma)$

$B^+ \rightarrow K_S \pi^+ \pi^0$ – effect on Kπ puzzle

- Plot uses world average values for $K\pi$ and $K^{*+}\pi^{-}$ asymmetries and average of two BaBar results for $K^{*+}\pi^{0}$
- Gives $\Delta A_{CP}(K^*\pi) \equiv A_{CP}(K^{*+}\pi^0) A_{CP}(K^{*+}\pi^-) = -0.16 \pm 0.13$
 - Consistent with zero
- Uncertainty much improved but still too large to be conclusive

Summary

- Belle and BaBar presented the angular analysis in $B^+ \rightarrow \overline{K}^{*0}K^{*+}$ and $B^0 \rightarrow \omega \omega / \omega \phi$, and $B^0 \rightarrow \omega \omega$ result is the first evidence.
- Belle presented the precise measurement of \mathcal{B} in $B^0 \rightarrow \pi^0 \pi^0$ and the first evidence of \mathcal{B} in $B^0 \rightarrow \eta \pi^0$.
- BaBar presented the first evidence of DCPV in $B^+ \rightarrow K^{*+} \pi^0$.
- More data is required to increase sensitivity to potential signs of New Physics and improved results will come from Belle II and LHCb.


Result summary

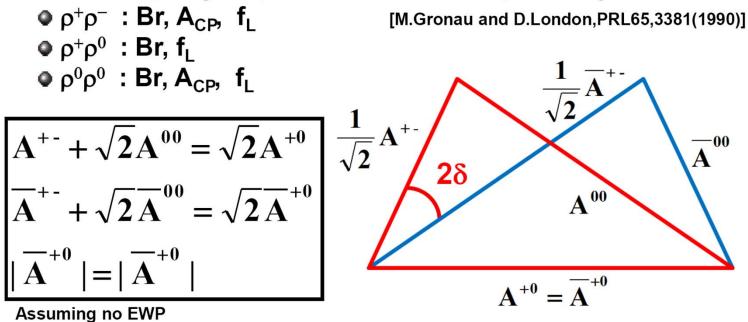
Decay channel		Keyword	Result		
	$B^0 ightarrow \pi^0 \pi^0$ Preliminary	Precise BF measurement, 6.7 σ	$\mathcal{B} = (0.90 \pm 0.12 \pm 0.10) \times 10^{-6}$		
BELLE	$B^0 ightarrow \eta \pi^0$ arXiv:1504.00957	First BF evidence, 3.0σ	$\mathcal{B} = \left(4.1^{+1.7+0.5}_{-1.5-0.7}\right) \times 10^{-7}$		
	$\begin{array}{c} B^0 \rightarrow K^0_S \pi^+ \pi^0 \\ \text{ar} \times \text{iv:} 1501.00705 \end{array}$	Evidence (3.4 σ) for DCPV in B ⁺ \rightarrow K ^{*+} π^0 from Dalitz plot analysis of B ⁰ \rightarrow K ⁰ _S $\pi^+\pi^0$	$A_{CP}(B^+ \to K^{*+}\pi^0) = -0.52 \pm 0.14 \pm 0.04^{+0.04}_{-0.02}$ $\Delta A_{CP}(K^*\pi) = -0.16 \pm 0.13$		
BELLE	$\begin{array}{c} \mathbf{B^+} \rightarrow \mathbf{\overline{K}^{*0}K^{*+}} \\ \text{PRD 91, 071101} \\ \text{(2015)} \end{array}$	Angular analysis	$\mathcal{B} < 1.31 \times 10^{-6} \text{ at } 90\%$ CL $f_L = 1.06 \pm 0.30 \pm 0.14$		
	$ \begin{array}{c} B^0 \rightarrow \omega \omega / \omega \phi \\ \text{PRD 89, 051101} \\ (2015) \end{array} $	Angular analysis, first evidence (4.4 $\sigma)$ for $B^0 \to \omega\omega$	$ \begin{array}{l} \mathcal{B} \; (B^0 \to \omega \omega) = (1.2 \pm 0.3 \substack{+0.3 \\ -0.2}) \times 10^{-6} \\ \mathcal{B} \; (B^0 \to \omega \phi) < 0.7 \times 10^{-6} \ \text{at 90\% CL} \end{array} $		
инср гнср	$\begin{array}{c} B^0 \rightarrow \rho^0 \rho^0 \\ \text{arXiv:1503.07770} \end{array}$	First observation, 7.1 σ	$ \mathcal{B} = (0.94 \pm 0.17 \pm 0.09 \pm 0.06) \times 10^{-6} $ $ f_L = 0.745^{+0.048}_{-0.058} \pm 0.034 $		

- $B\overline{B}$ background is dominant:
 - background from out of time ECL showers
 - out of time ECL hit + $B\overline{B}$ event \rightarrow peaking background

• Use ECL timing information to remove out-of-time events

• Fit variables:

$m_{BC} (m_{ES})$	beam-constrained mass	tion
$\Delta \boldsymbol{E}$	energy difference	epara
С	continuum suppression	S/B s



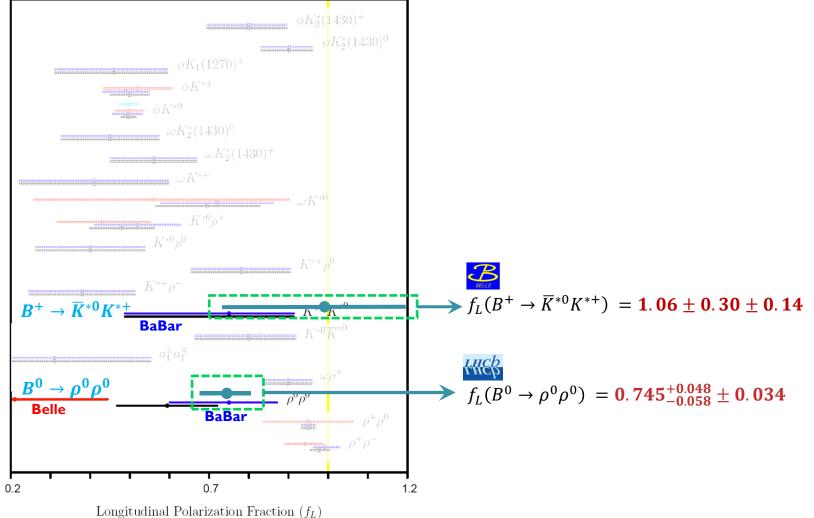
Decay channel	Keyword	Result	
$\begin{array}{c} B^0 \rightarrow \rho^0 \rho^0 \\ \text{arXiv:1503.07770} \end{array}$	First observation, 7.1 σ	$\mathcal{B} = (0.94 \pm 0.17 \pm 0.09 \pm 0.06) \times 10^{-6}$ $f_L = 0.745^{+0.048}_{-0.058} \pm 0.034$	
$B^0 \rightarrow K^+\pi^-$ arXiv:1406.7204	Effective lifetime measurement	$ au = 1.524 \pm 0.011 \pm 0.004 \ \mathrm{ps}$	
${f B^0} o {oldsymbol{\phi}} {f K^{*0}}$ JHEP 05, 069 (2014)	Angular analysis with $\Delta A_{CP} = A_{CP}(\phi K^{*0}) - A_{CP}(J/\psi K^{*0})$	$\Delta A_{CP} = (+1.5 \pm 3.2 \pm 0.5)\%$	
$ B_s^0 \to \overline{K}^{*0} K^{*0} $ arXiv:1503.05362	Measurement of BF and f _L	$ \mathcal{B} = (10.6 \pm 1.8 \pm 1.0 \pm 0.6) \times 10^{-6} f_L = 0.201 \pm 0.057 \pm 0.040 $	
$\begin{array}{c} B^{\pm} \rightarrow \pi^{+}\pi^{-}K^{\pm},\\ B^{\pm} \rightarrow K^{+}K^{-}K^{\pm},\\ B^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm},\\ B^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm} \end{array}$ PRD 90, I12004 (2014)	Inclusive CP asymmetries using Dalitz plot	$\begin{aligned} A_{CP}(B^{\pm} \to \pi^{+}\pi^{-}K^{\pm}) &= +0.025 \pm 0.004 \pm 0.004 \pm 0.007 \\ A_{CP}(B^{\pm} \to K^{+}K^{-}K^{\pm}) &= -0.036 \pm 0.004 \pm 0.002 \pm 0.007 \\ A_{CP}(B^{\pm} \to K^{+}K^{-}\pi^{\pm}) &= -0.123 \pm 0.017 \pm 0.012 \pm 0.007 \\ A_{CP}(B^{\pm} \to \pi^{+}\pi^{-}\pi^{\pm}) &= +0.058 \pm 0.008 \pm 0.009 \pm 0.007 \end{aligned}$	

$\phi_2(\alpha)$ constraints of $\rho\rho$

•
$$S_{\rho\rho} = \sqrt{1 - A_{\rho\rho}^2} \sin(2\phi_2^{\text{eff}})$$
 $\phi_2^{\text{eff}} = \phi_2 + \delta$

• Determine penguin pollution δ with isospin analysis:

$B^+ \rightarrow K_s \pi^+ \pi^0 - result$


	Relative phase (degrees)							
Resonant contribution Reference amplitude	$K^*(892)^0\pi^+$	$K^*(892)^+\pi^0$	$(K\pi)_{0}^{*0}\pi^{+}$	$(K\pi)_0^{*+}\pi^0$	$ ho(770)^{+}K_{s}^{0}$			
$B^+ \to K^* (892)^0 \pi^+$	0	-95 ± 43	174 ± 11	-89 ± 43	-122 ± 43			
$B^+ \to K^*(892)^+ \pi^0$	_		-90 ± 42	6 ± 10	-27 ± 26			
$B^+ \to (K\pi)_0^{*0} \pi^+$	—	-	0	96 ± 42	63 ± 37			
$B^+ \to (K\pi)_0^{*+}\pi^0$	_	-	_	0	-32 ± 25			
$B^+ \to \rho(770)^+ K_S^0$	—	-	_	_	0			

Large uncertainty indicates measuring CKM angle γ will be difficult

$f_L \text{ for } B \rightarrow VV$

HFAG 2014

