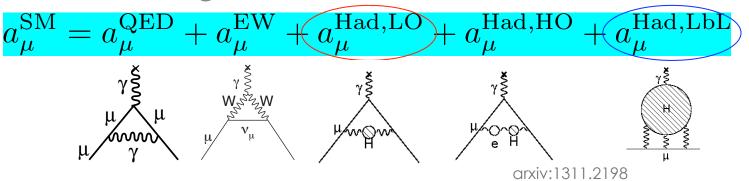
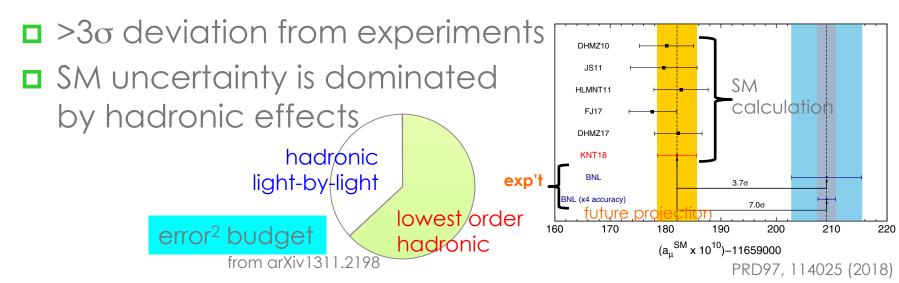
Measurement of cross section of light hadron production in e⁺e⁻ collisions in the Belle II experiment

Y. Maeda (KMI, Nagoya Univ.) for the Belle II collaboration 16th Nov, 2018

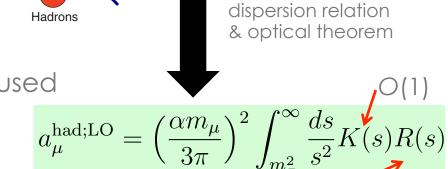

2018 WPI-next mini-workshop "Hints for New Physics in Heavy Flavors"



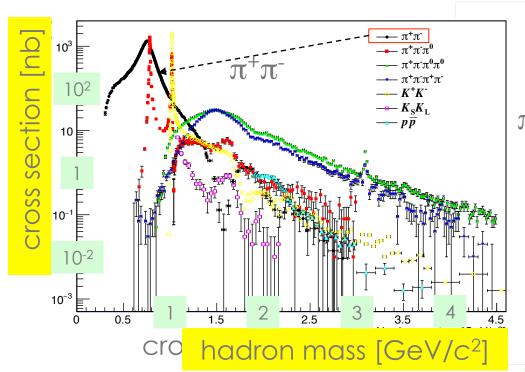
World Research Unit for **Heavy Flavor Particle Physics**

muon g-2 and the ee $\rightarrow \pi\pi$ process

□ muon g-2 SM value



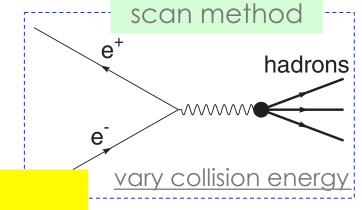
muon g-2 and the ee $\rightarrow \pi\pi$ process


□ leading order hadronic effect $Im\left(\cdots\right) = \cdots$

- hadronic loop
- involves low energy QCD → calculation is difficult
- □ but, ee→(hadrons) cross section data can be used
- Arr ee $ightarrow \pi\pi$ gives the largest contribution

$$R_{\text{had}}(s) = \sigma(e^+e^- \to \text{hadrons}) / \frac{4\pi\alpha(s)^2}{3s}$$

 \square ee $\rightarrow \pi\pi$ gives the largest contribution


others $\pi^+\pi^$ from arXiv1311.2198 contribution to a had;LO $a_{\mu}^{\text{had;LO}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi}^2}^{\infty} \frac{ds}{s^2} K(s) R(s)$

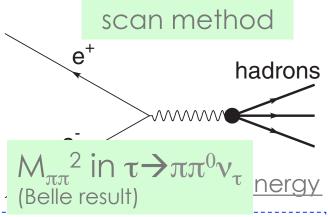
$$R_{\rm had}(s) = \sigma(e^+e^- \to {\rm hadrons}) / \frac{4\pi\alpha(s)^2}{3s}$$

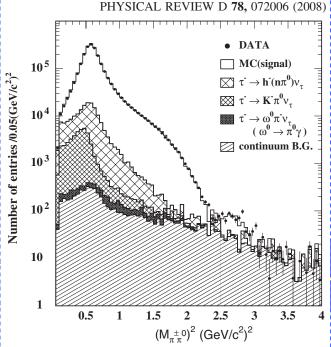
measurement methods

- direct scan:
 - change collision energy and measure # of events
 - e.g. CMD3 and SND in Novosibirsk
- ©fine scan is possible for sharp resonances
- ©different conditions among different energy
- Sdifficulty in handling low-momentum particles return method
 - □ radiative return method:
 - collision energy is fixed
 - □ require energetic γ
 (Initial State Radiation, ISR)
 →effectively low energy collision
 - measure mass spectrum of final state hadrons
 - e.g. BaBar, BES III, KLOE

 e^{+} hadrons $\sqrt{s} = M_{Y(4S)}$ $\rightarrow \sqrt{s'} = M_{had}$ e^{-} $ISR \gamma$

fixed collision energy

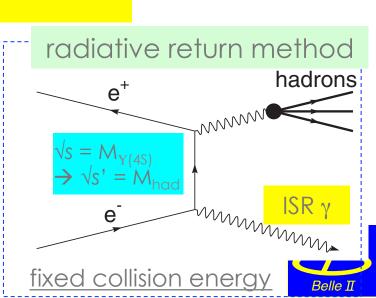



measurement methods

- ©large statistics
- Suncertainty due to correction of iso-spin breaking effect

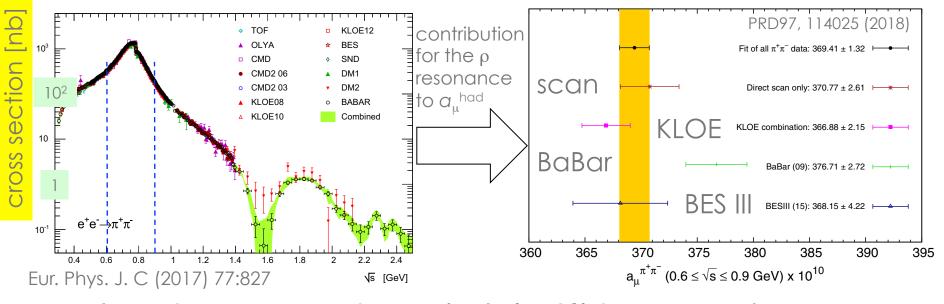
oirsk

- tau hadronic decay with CVC:
 - Conserved Vector Current hypothesis
 - □ ππ mass spectrum in $\tau \rightarrow \pi \pi^0 \nu_{\tau}$
 - e.g. LEP exp'ts, CLEO, Belle
- □ radiative return method:
 - collision energy is fixed
 - □ require energetic γ
 (Initial State Radiation, ISR)
 →effectively low energy collision
 - measure mass spectrum of final state hadrons
 - □ e.g. BaBar, BES III, KLOE



hadrons

measurement methods


- direct scan:
 - change collision energy
- \otimes low statistics due to ISR requirement ($O(\alpha)$)
- ©but is compensated high luminosity machines
- ©can scan cross section for wide energy range in the same experimental condition
 - □ e.g. LEP exp'ts, CLEO, Belle
 - radiative return method:
 - collision energy is fixed
 - □ require energetic γ
 (Initial State Radiation, ISR)
 →effectively low energy collision
 - measure mass spectrum of final state hadrons
 - e.g. BaBar, BES III, KLOE

scan method

vary collision energy

status of $\pi\pi$ cross section measurement

- □ Already measured precisely(≤1%) by several experiments
- □ small discrepancy (a few %) among measurements
- must be confirmed by Belle II
- □ target: 0.5% precision (similar or better than Babar)

advantages in Belle II

- large statistics
 - signal events themselves
 - control samples for estimation of systematic uncertainty
- well-designed triggers
 - Neither Belle and BaBar had optimized trigger for this measurement
 - Belle suffered from large efficiency loss due to trigger
- larger detector coverage
- better generator
- lessons from the BaBar measurement
 - All are giving comparable uncertainty, but <u>PID-related</u> ones are relatively large

list of systematic errors in BaBar (PRD86 032013)

Sources

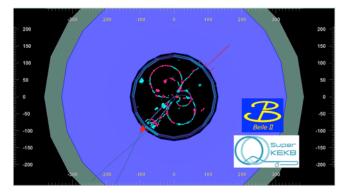
Trigger/filter
Tracking π -ID
Background

Acceptance

Kinematic fit (χ^2)

Correl. $\mu\mu$ ID loss

 $\pi\pi/\mu\mu$ non-cancel.


Unfolding

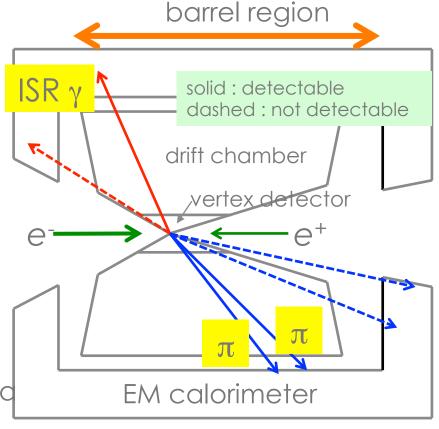
ISR luminosity

Sum (cross section)

first look at the Belle II data

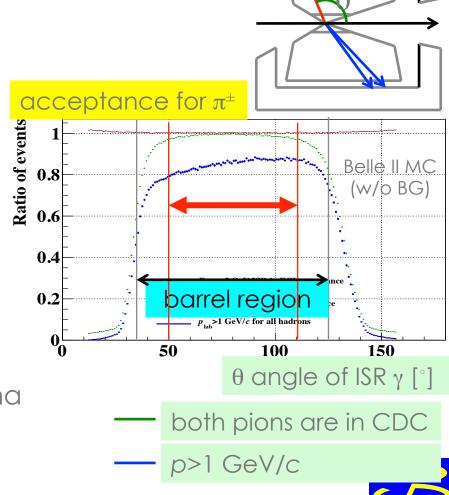
- Belle II phase2 operation
 - commissioning of the accelerator with collisions
 - end of March middle of Jul
 - □ the first collision at 26th April
- □ full data of 472 pb⁻¹ was used
- goal of the analysis
 - to observe ρ meson peak in the mass spectrum
 - yield comparison with MC simulation
 - study of trigger efficiency

©KEK IPNS



celebration of the first collision (26th Apr.)

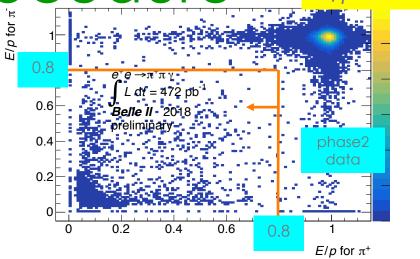
analysis procedure

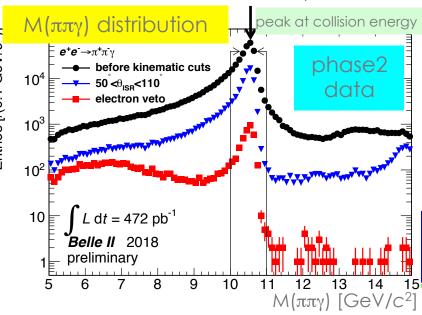

- select events with
 - □ one energetic photon (ECMS>3 GeV)
 - two charged tracks (p>1 GeV/c)
- selection criteria
 - □ photon points to central part of the barrel region $(50^{\circ} < \theta_{ISR} < 110^{\circ})$
 - E/p<0.8→remove Radiative Bhabho (ee→eeγ) contribution
 - $10 < M(\pi\pi\gamma) < 11 \text{ GeV/c}^2$ \rightarrow no other extra particles

analysis procedure

- select events with
 - □ one energetic photon (E^{CMS}>3 GeV)
 - two charged tracks (p>1 GeV/c)
- selection criteria
 - photon points to central part of the barrel region $(50^{\circ} < \theta_{ISR} < 110^{\circ})$
 - □ E/p<0.8
 →remove Radiative Bhabha
 (ee→eeγ) contribution
 - $10 < M(\pi\pi\gamma) < 11 \text{ GeV/c}^2$ \rightarrow no other extra particles

analysis procedure

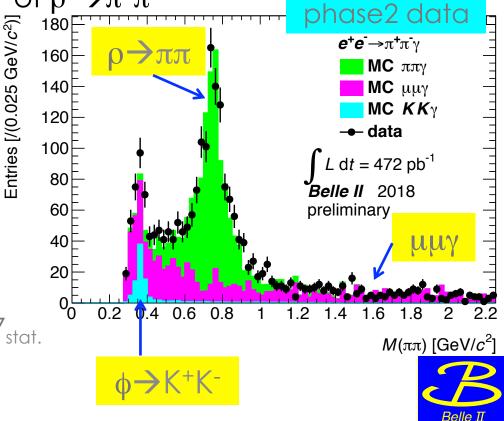

E/p ratio


- select events with
 - one energetic photon (ECMS>3 GeV)
 - two charged tracks (p>1 GeV/c)
- selection criteria
 - photon points to central photon points to central part of the barrel region 50°<θ_{ISR}<110°

 E/p<0.8

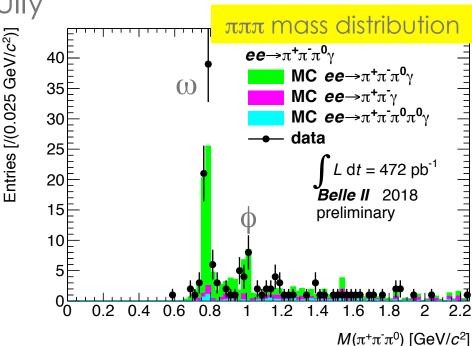
 → remove Radiative Bhabha

 Leader Contribution
 - □ E/p<0.8 (ee → ee_Y) contribution
 - □ 10<M(ππγ)<11 GeV/c² →no other extra particles



ππ mass spectrum

□ ρ meson peak is clearly observed! Belle II first "rediscovery" of ρ⁰→ π ⁺ π ⁻


- no PID cuts except for the E/p cut
 →contribution from μμγ / ΚΚγ
 - □ peak at low mass due to φ→K⁺K⁻
 - high mass (>1 GeV/c²)
 is dominated by μμγ
- reasonable data/MC agreement
 - \Box data/MC = 1.065±0.037_{stat.} (0.5-1 GeV/c²)

MC trigger efficiency is assumed to be 100%

results for other modes, K, K,

- the ee→πππγ process is also studied with phase2 data
 - 2nd biggest contribution to a_uhad;LO
- ω, φ peaks are successfully observed
 - "rediscovery"
- reasonable data/MC agreement

 $\pi^+\pi^-\pi^0$

contribution of each mode

to $a_{\mu}^{\text{had;LO}}$ ($\sqrt{s} < 1.8 \text{ GeV}$)

 $\pi^+\pi^-$

trigger efficiency for ππγ

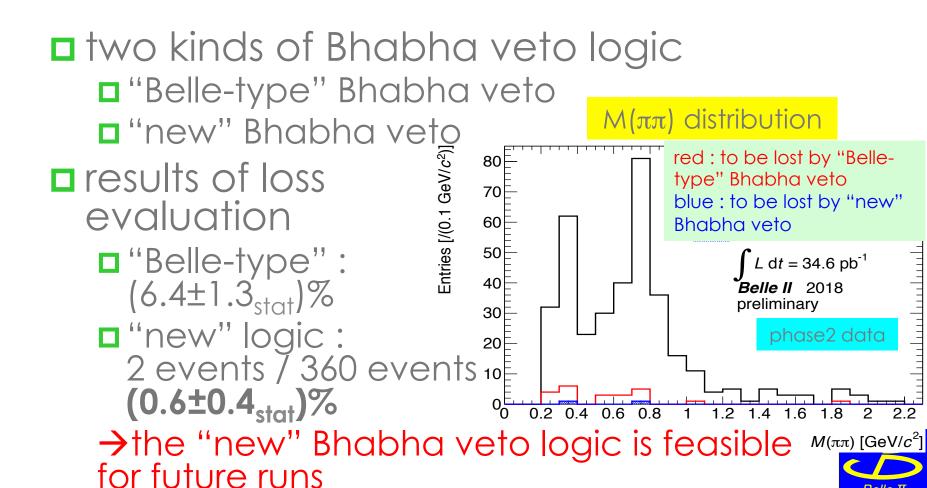
high trigger efficiency is necessary

for precision measurement

■ Belle II trigger for ee → ππγ

total calorimeter energy1 GeV

■ Bhabha veto←loss of this vetomust be small

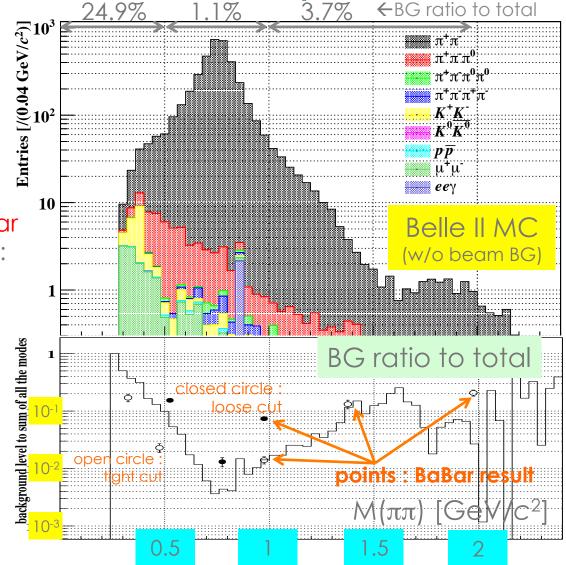

Belle trigger simulation

- □ large loss by Bhabha veto in Belle→precision measurement was difficult
- □ all Bhabha events were collected in phase2
 - Efficiency loss can be easily evaluated by counting the number of events with Bhabha trig.

Belle II

efficiency loss by Bhabha veto

expected performance by MC sim.



- BG contribution
 - other ISR modes $(\pi^+\pi^-\pi^0, K^+K^-,...)$
 - O(%) level BG; same level with BaBar
 - **n** high BG at low mass: $\pi\pi\pi^0$ with low-E π^0

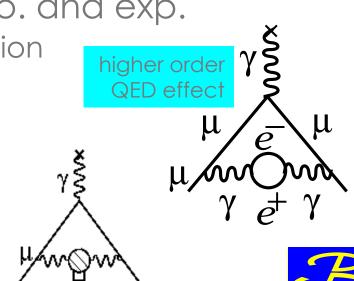
←can be reduced (kinematic fit...)

- efficiency
 - 49% for $50 < \theta_{ISR} < 110^{\circ}$
 - expect > 1M events with 500 fb⁻¹

→can have results with early Belle II data!!

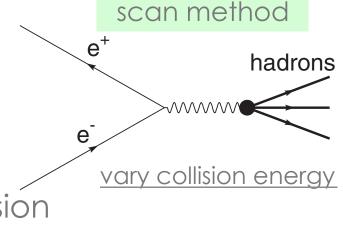
summary

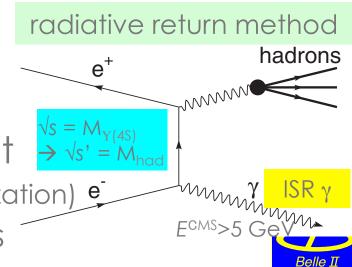
- □ ee→ππ cross section measurement in Belle II with ISR method is critical to reduce uncertainty of theoretical value for muon g-2
- In Phase2 data, ρ meson peak was clearly observed and good data-MC agreement was confirmed
- \blacksquare Peaks for ω , $\phi \rightarrow \pi^+\pi^-\pi^0$ are also observed.
- □ Although Belle suffered from large efficiency loss due to Bhabha veto in the trigger level, such loss is evaluated to be small (≤1%) with a new Bhabha veto logic in phase2 data.
- The first O(100) fb⁻¹ data will give enough signal events, which will be expected in a few years



muon g-2

$$\vec{\mu}_{\ell} = g_{\ell} \frac{Qe}{2m_{\ell}} \vec{s}$$

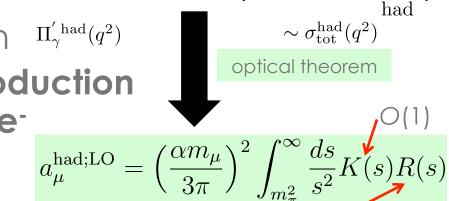

- "g-factor" of μ (also e) is slightly larger than 2 due to QED effect
 - $\Box a_{\mu} = (g-2)/2$
 - \square ~3 σ discrepancy btw theo. and exp.
 - □ both have ~0.5 ppm precision
- strong interaction and weak interaction also contribute
 - □ strong: ~60 ppm
 - weak : ~1.3 ppm



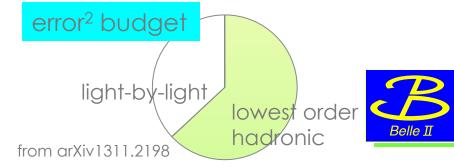
"Schwinger"

ee $\rightarrow \pi\pi$ measurement at Belle II

- radiative return method:
 detect ee → ππγ events
 - require energetic γ (Initial State Radiation, ISR)
 - →effectively low energy collision
 - □ hadron inv. mass distribution
 →corrections
 (BG, eff., unfolding...)
 - →cross section for each √s
- simultaneous measurement
 - of $\pi\pi\gamma$ (signal) and $\mu\mu\gamma$ (normalization)
 - cancellation of various errors

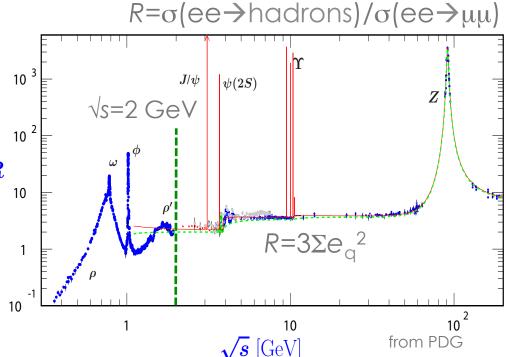

fixed collision energy

hadronic contribution


Physics Reports 477 (2009) 1–110

- \square ~60 ppm contribution $\Pi_{\gamma}^{' \text{had}}(q^2)$
- □ related to hadron production cross section from e⁺e⁻
- dominating theo. uncertainty
- higher order
 - □ smaller uncertainty
- □ light-by-light
 - □ (not discussed here)

$$R_{\rm had}(s) = \sigma(e^+e^- \to {\rm hadrons}) / \frac{4\pi\alpha(s)^2}{3s}$$


Fermion pair production in e⁺e⁻ collisions

cross section is well understood

can be neglected at $M_u^2/s \ll 1$

$$\sigma(e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}) = \underbrace{\frac{4\pi\alpha^{2}}{3s}}\sqrt{1 - 4M_{\mu}^{2}/s} (1 + 2M_{\mu}^{2}/s)$$
86.85 nb / (s [GeV²/c⁴])

- quark production is also well described at large √s
 - charge/flavor/color
- for small √s (<2 GeV), ^R experimental data is necessary
 - low energy QCD

syst. error table

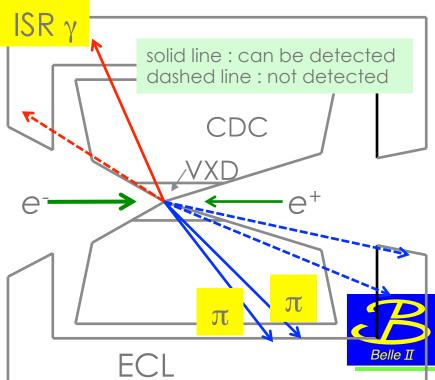
detection eff. study

- reduction of systematic errors is crucial →need to understand each efficiency within 0.5%
- important to keep high efficiency
 - geometrical acceptance
 - trigger efficiency
 - reconstruction efficiency
 - cut efficiency
 - momentum threshold
 - □ PID cut
 - background / unfolding / normalization...

in the BaBar result Sources PRD86 032013

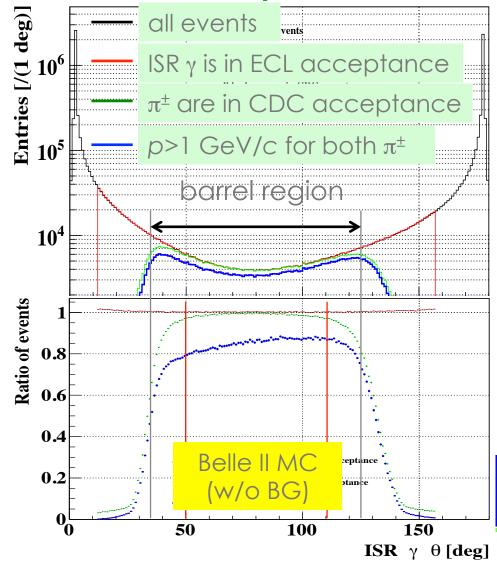
Trigger/filter **Tracking** π -ID

Background Acceptance

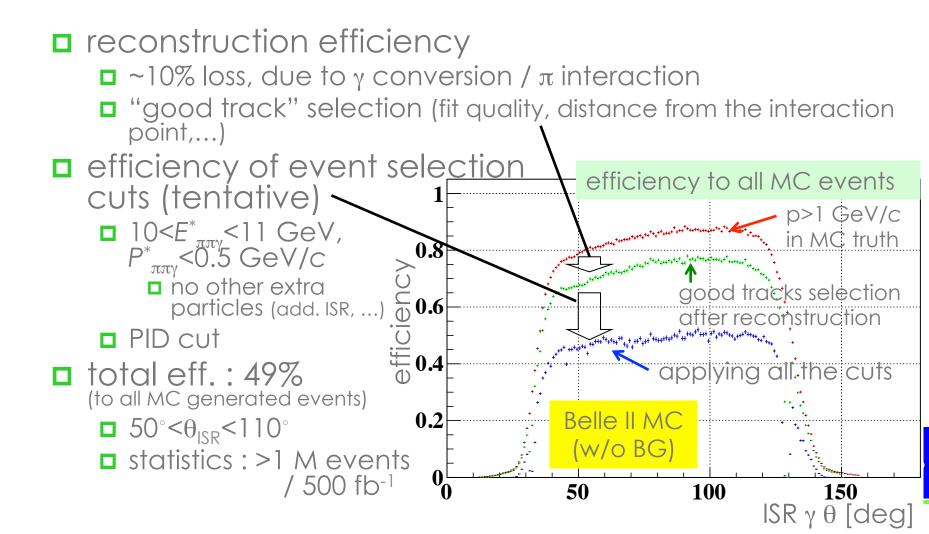

Kinematic fit (χ^2)

Correl. $\mu\mu$ ID loss $\pi\pi/\mu\mu$ non-cancel.

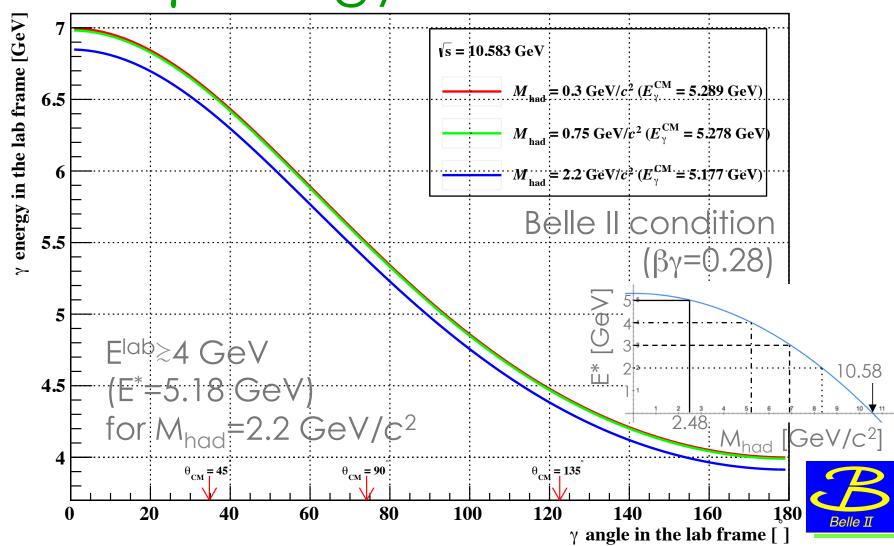
Unfolding


ISR luminosity

Sum (cross section)

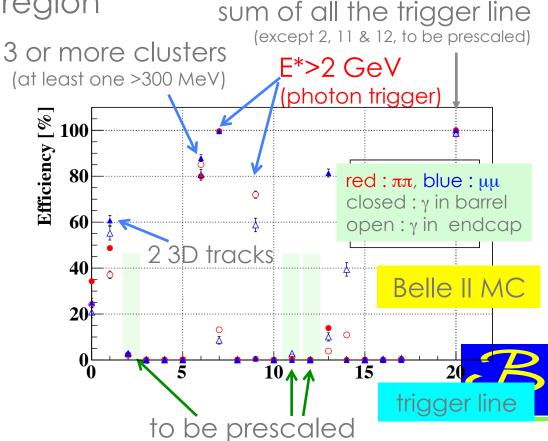


acceptance study


- efficiency is flat for large angle ISR γ
 by limiting ISR γ θ angle, acceptance can be kept high
 - lose some events, but can be easily compensated by Belle II high stat.
- □ 10-20% loss due to momentum cut (p>1 GeV/c)
 - for good muon-ID

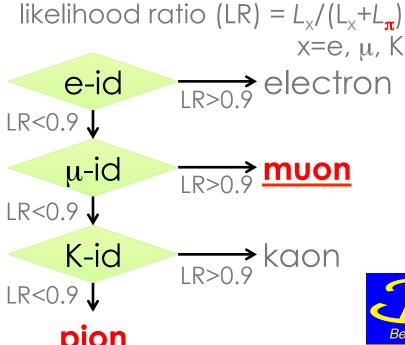
efficiency for each selection

ISR y energy in lab frame



trigger simulation

100% efficiency for good events with ISR γ pointing the barrel region


Bhabha veto is considered

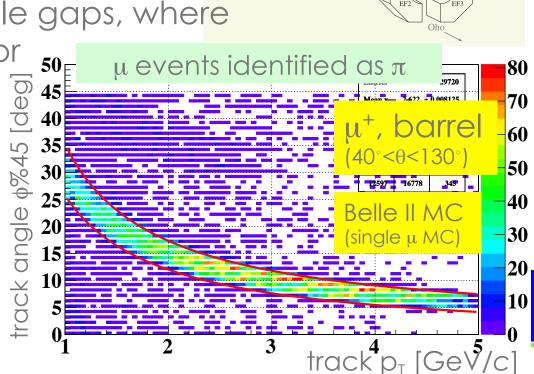
- some loss (O(%))
 for endcap,
 as designed
 (but these events are not used as discussed later)
- photon trigger is working effectively as expected

PID algorithm

- assign unique PID for each track
- require both tracks to be identified as the particle of interest
- study items
 - \square $\mu\mu \leftarrow \rightarrow \pi\pi$ cross feed
 - correlated efficiency loss

KLM module

structure

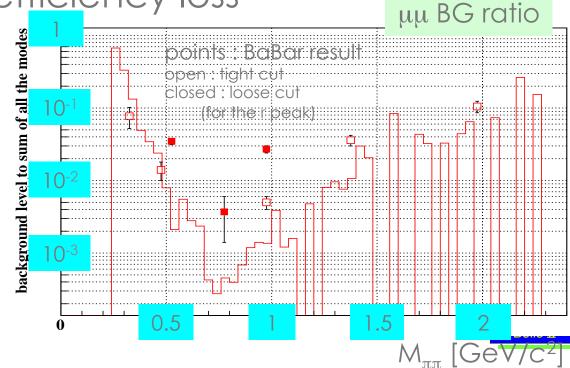

muon/pion separation

mis-identified muons tend to be recognized as pions
 →μ-id ineff. = fake π

■ avoiding KLM module gaps, where

 μ -id efficiency is poor

- visible in p_T-φ plane
- set veto regions (for barrel/endcap, positive/negative μ)
- require at least one track to be outside of the veto regions



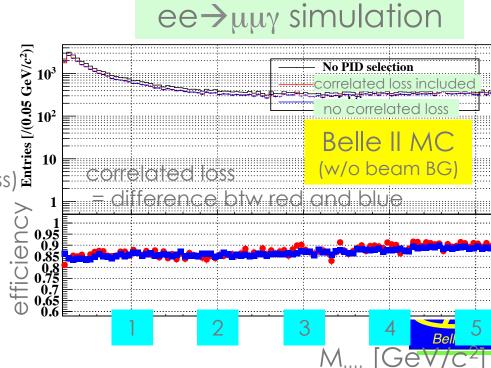
μμ BG in ππ analysis

reduction by a factor of 5 by introduction of KLM module gap veto

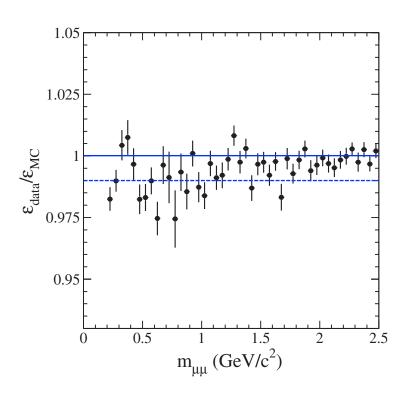
■ 9% additional efficiency loss

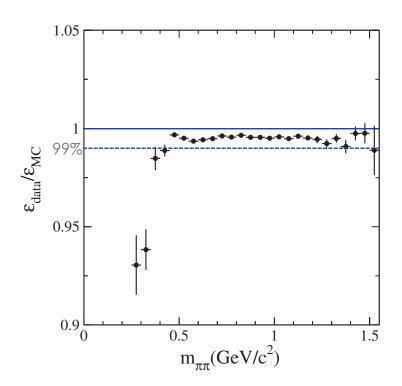
■ the same level with BaBar

correlated loss of PID eff.

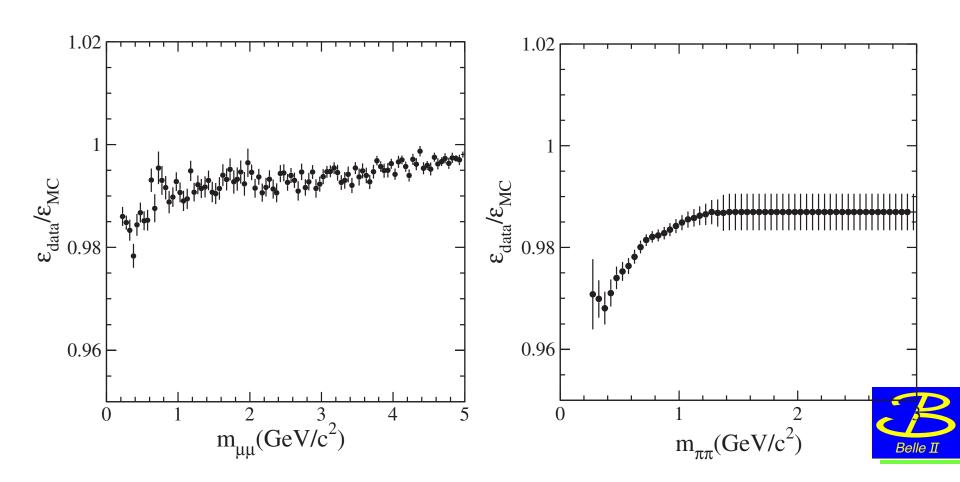

additional efficiency loss can exist due to two tracks close to each other

compare two efficiencies


 \square μ -id for both tracks


ificant correlated loss γ ancy loss γ product of μ-id

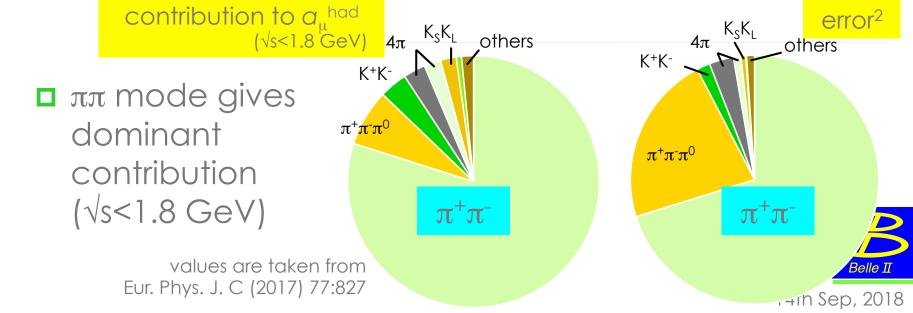
significant correlated efficiency loss was not seen

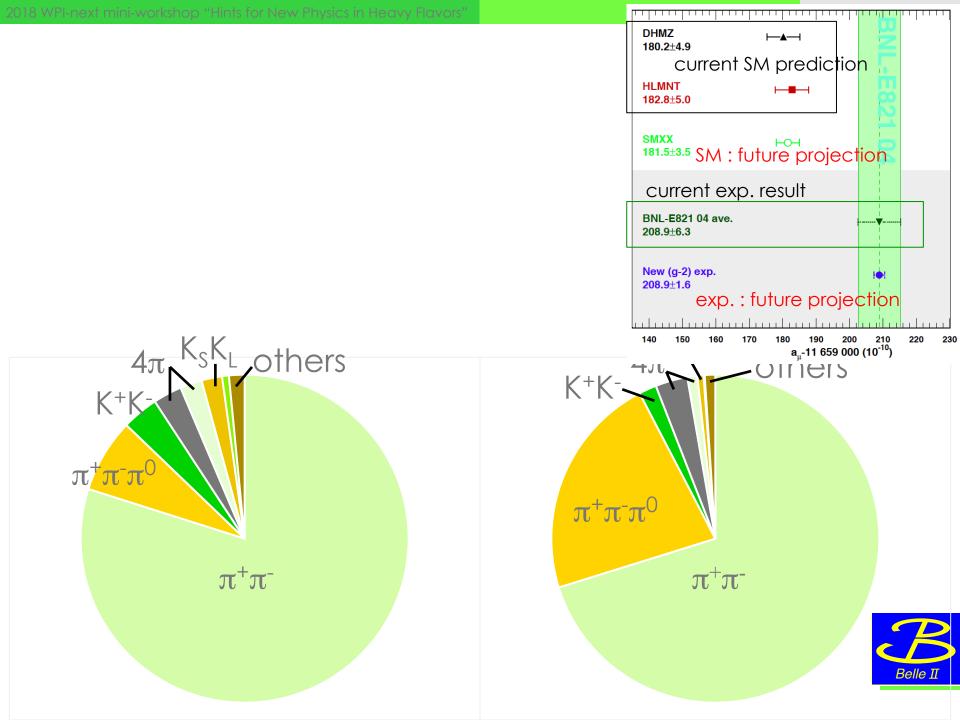

BaBar trigger/filter eff. correction

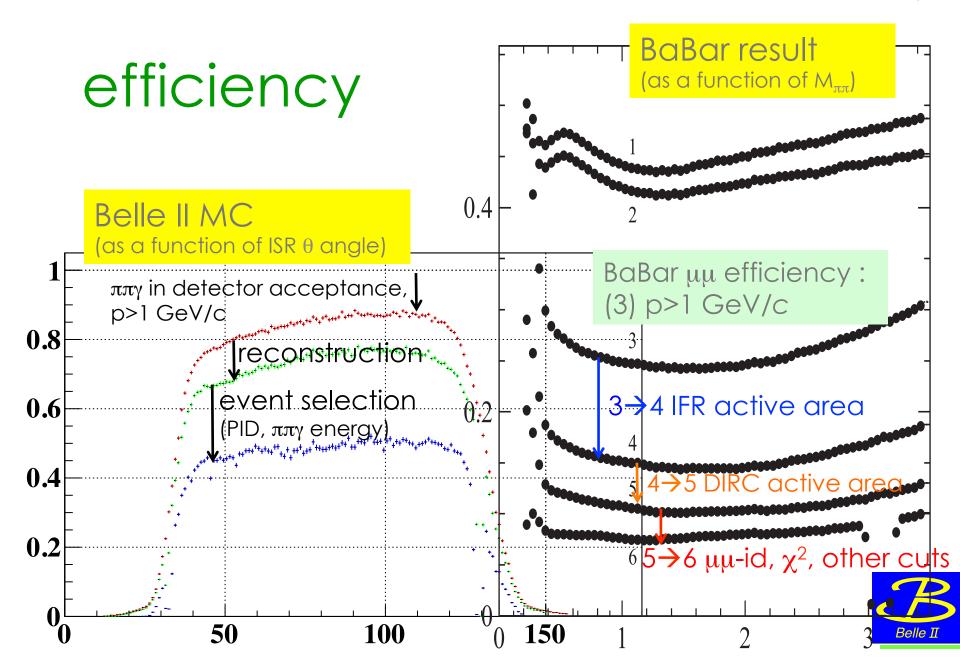
BaBar tracking eff. correction

L1 trigger menu

Bit	Phase 2 description	Prescale Phase 2	Changes for 2020	Prescale 2020
0	3 or more 3D tracks			
1	2 3D tracks, ≥1 within 25 cm, not a trkBhabha		2 3D tracks, ≥1 within 10 cm, not a trkBhabha	
2	2 3D tracks, not a trkBhabha	20		20
3	2 3D tracks, trkBhabha			2
4	1 track, <25cm, clust same hemi, no 2 GeV clust		1 track, <10cm, clust same hemi, no 2 GeV clust	
5	1 track, <25cm, clust opp hemi, no 2 GeV clust		1 track, <10cm, clust opp hemi, no 2 GeV clust	
6	≥3 clusters inc. ≥1 300 MeV, not an eclBhabha		≥3 clusters inc. ≥2 300 MeV, not an eclBhabha	
7	2 GeV E* in [4,14], not a trkBhabha			
8	2 GeV E* in [4,14], trkBhabha			2
9	2 GeV E* in 2,3,15,16, not eclBhabha			
10	2 GeV E* in 2,3,15 or 16, eclBhabha			
11	2 GeV E* in 1 or 17, not eclBhabha	10		20
12	2 GeV E* in 1 or 17, eclBhabha	10		20
13	exactly 1 E*>1 GeV and 1 E>300 MeV, in [4,15]			
14	exactly 1 E*>1 GeV and 1 E>300 MeV, in 2,3 or 16			5
15	clusters back-to-back in phi, both >250 MeV, no 2 GeV			
16	clusters back-to-back in phi, 1 <250 MeV, no 2 GeV		clust back-to-back in phi, <250 MeV, no 2 GeV, no trk>25cm	3
17	clusters back-to-back in 3D, no 2 GeV			5

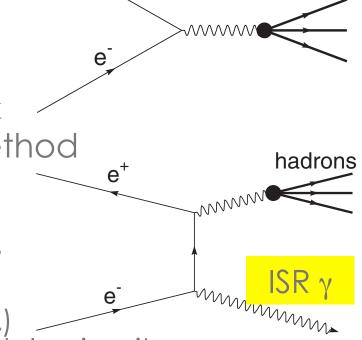



light hadron production


 \blacksquare Hadron production cross section is an important input for hadronic contribution $a_{\mu}^{\ \ had}$ of μ g-2

$$a_{\mu}^{(4)}(\text{vap, had}) = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \left(\int_{m_{\pi^0}^2}^{E_{\text{cut}}^2} \mathrm{d}s \frac{R_{\text{had}}^{\text{data}}(s)}{s^2} \hat{K}(s) + \int_{E_{\text{cut}}^2}^{\infty} \mathrm{d}s \frac{R_{\text{had}}^{\text{pQCD}}(s) \hat{K}(s)}{s^2}\right)$$

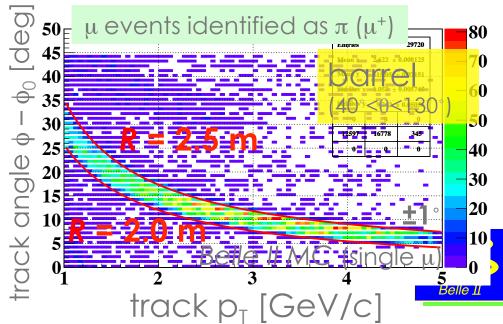
$$K(s) : \text{Kernel function}$$



hadrons

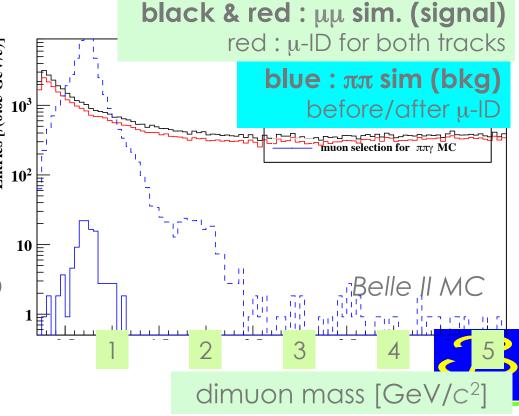
R measurement

$$a_{\mu}^{\mathrm{had;LO}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi}^2}^{\infty} \frac{ds}{s^2} K(s) R(s)$$
 R(s) dependence


- scan method
 - □ ©large statistics
 - □ ⊗limited energy range
 - ⊗point-to-point errors
 - being performed in Novosibirsk
- Initial State Radiation (ISR) method (colliders with fixed energy)
 - □ tag ISR photon (E>3 GeV)
 - ©can scan wide energy range
 - ©same exp'tal condition
 - □ Slower statistics due to ISR $O(\alpha)$ ←can be compensated by high luminosity
 - performed by BaBar / BES / KLOE

endca KLM gap effect ■ muon ID inefficiency \rightarrow fake π derived from module gaps of the K_1 - μ detector (KLM) □ also very forward (□ 160 0 140 0 μ^+ identified as π^+ 60 50 region (θ <25°), not Ξ_{120} 40 covered by KLM 100 Avoiding this region Avoidi 30 20 helps to reduce 10 μμ)ππ bkg 20 -200-100100 [deg]

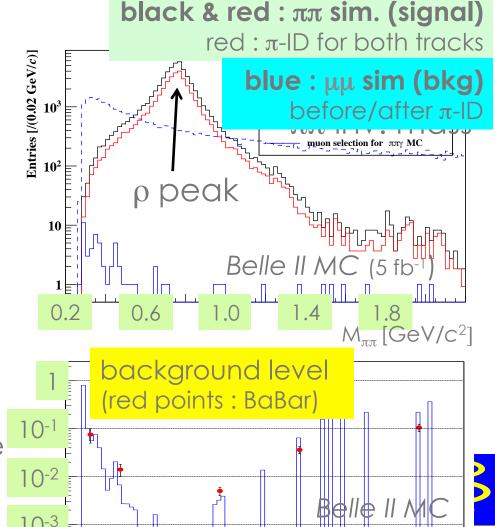
KLM-gap veto cut


- \Box veto regions in track p_T - ϕ plane $(\phi$ is measured with respect to gap angle $\phi_0)$
 - \blacksquare defined for each of particle charge and θ direction (endcap or barrel)
- prequire at least one track to be outside this veto region when track $\phi=90^{\circ}$ when track $\phi=90^{\circ}$ when $\phi^*=\cos^{-1}\frac{cBR}{\sqrt{20}}$

PID performance – μμ mode

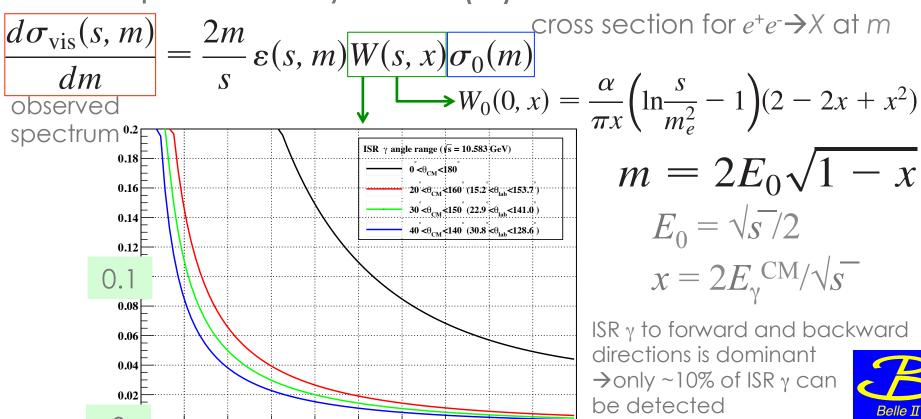
μμ/ππ modes can be background for each other

- MC stat.:
 ~5 fb⁻¹ equiv.
- □ μμ-ID eff.
 - □~80%
 - loss by veto cut: 5%
- □ππ→μμ bkg. ratio
 - □~0.4% (M_{uu}<1 GeV/c²)



 $M_{\pi\pi} \frac{2}{[\text{GeV}/c]}$

PID performance – $\pi\pi$ mode


- □ ππ-ID cut efficiency
 - **□** 69%
 - □ loss by veto cut: 8.8%
- □ μμ→ππ background
 - □ 0.15% (<1 GeV/c²)
 - ←factor 5 reduction due to the veto cut
 - □ same level as BaBar
- □ required statistic
 - 5.3k evts / 5 fb⁻¹
 →>100 fb⁻¹
 possible in early stage of Belle II run

(BaBar: 232 fb⁻¹ PRD86 032013)

radiator function

 \square probability to emit ISR γ to produce a particle system (X) with mass of m

 $x = 2E_{v}^{\text{CM}}/\sqrt{s}$

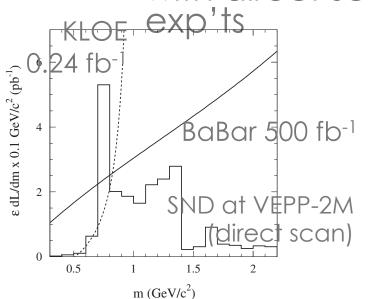
0.1

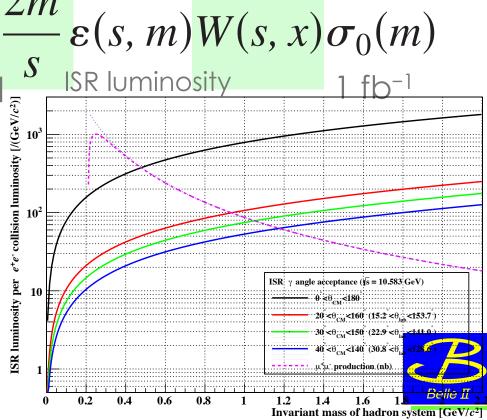
0.2

0.3

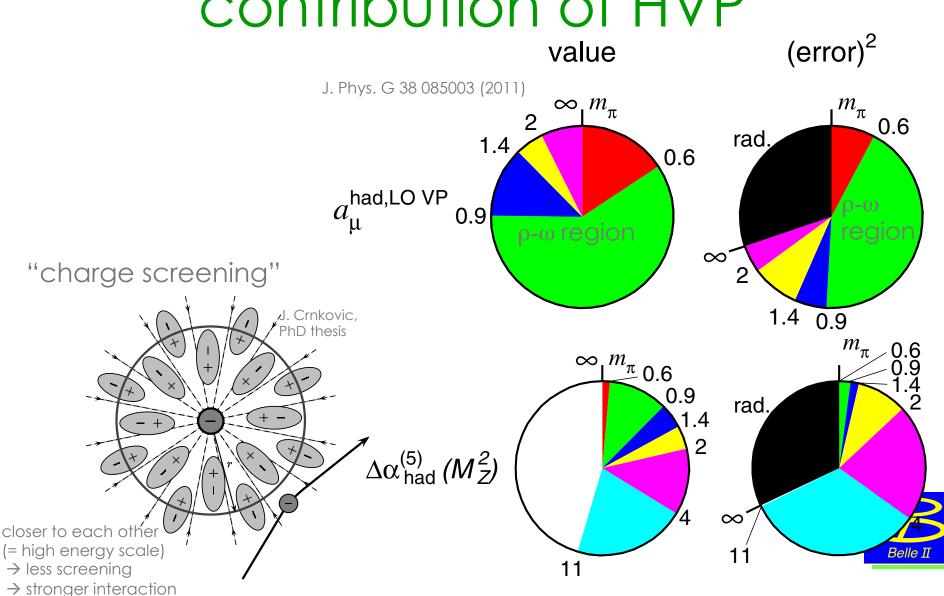
0.4

0.5


0.6

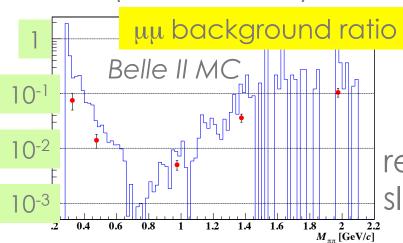

ISR luminosity

 $m = 2E_0 \sqrt{1 - x}$ □ 2m/s: to change x to m


$$\frac{d\sigma_{\text{vis}}(s,m)}{s} = 2$$

 \square can be compared with direct scan

contribution of HVP


without veto cuts $(\pi\pi)$

 \square $\pi\pi$ efficiency ~ 75%

□ μμ→ππ bkg. ratios ~ 0.85%

□ comparison

□ comparison with BaBar ana. (PRD86 032013)

blue: μμ sim (bkg)

dashed/solid:

before/after π-ID

peak

Belle II MC

1.2

black & red : $\pi\pi$ sim. (signal)

red: π -ID for both tracks

red points: BaBar analysis slightly worse in this analysis

0.8

0.6

0.4

 $M_{\pi\pi} = \frac{2}{\text{GeV}/c}$

1.8

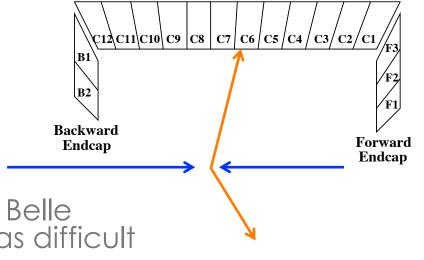
1.6

cut optimization

	μμ efficiency	ππ→μμ BG	ππ efficiency	μμ→ππ BG
no veto cut	85.2%	0.39%	75.3%	0.83%
loose cut	80.9%	0.39%	68.7%	0.15%
tight cut	58.2%	0.40%	46.2%	0.10%

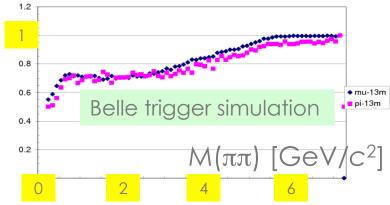
M<1 GeV/c²

tight cut (require both tracks to be outside the veto regions) loses efficiency, while background reduction is not so large



trigger efficiency for ππγ

high trigger efficiency is necessary for precision measurement


■ Belle II trigger for ee $\rightarrow \pi \pi \gamma$

- total calorimeter energy1 GeV
- Bhabha veto←loss of this vetomust be small
- □ large loss by Bhabha veto in Belle
 → precision measurement was difficult
- Bhabha veto logic in Belle II
 - 2D Bhabha veto: rely only on θ information
 - 3D Bhabha veto: include ϕ information

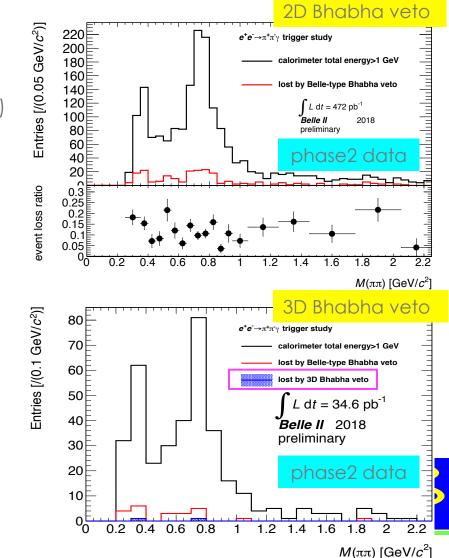
Barrel

Belle-type Bhabha veto

trigger efficiency study

- All the Bhabha events were recorded in phase2 data due to low luminosity
 - no loss of events by Bhabha veto
 - can evaluate expected loss directly

loss = # of events triggered by Bhabha trigger


of all events

standard calorimeter trigger (total E>1 GeV &&!2D-Bhabha)

2D-Bhabha trigger

event loss by Bhabha veto

- 2D Bhabha
 - \square (12.3±0.8_{stat})% (M($\pi\pi$)<2 GeV/ c^2)
 - significantly large
- □ 3D Bhabha
 - available only for the last short period
 - □ loosen γ angle cut to increase statistics [50°,110°] → [17°,128°]
 - 2 events / 360 events(0.6±0.4_{stat})%
 - much smaller loss
 - →can use the 3D Bhabha veto logic instead of the Belle -type Bhabha veto

current situation of e g-2

PRL100, 120801

```
\blacksquare measurement: a_e^{exp} = 1159652180.73(28) \times 10^{-12} \pm 0.24 \,\mathrm{ppb}
   (Harvard U) 8th and 10th order hadronic contribution
a_e(\text{theory}) = 1159652181.78(6)(4)(2)(77) \times 10^{-12} [0.67 ppb]
                                                           PRL109, 111807
     □ QED mass-dependent term:
                                   2.7478(2) \times 10^{-12}
     □ had a_e(\text{had.v.p.}) = 1.866(10)_{\text{exp}}(5)_{\text{rad}} \times 10^{-12}, 1.5 ppb
           a_e(\text{NLOhad.v.p.}) = -0.2234(12)_{\text{exp}}(7)_{\text{rad}} \times 10^{-12}
                  a_e(\text{had.} l\text{-}l) = 0.035(10) \times 10^{-12},
     ■ weak
             a_e(\text{weak}) = 0.0297 (5) \times 10^{-12}
```


current situation of μ g-2

 $= 116592089(63) \times 10^{-11} \pm 0.54 \text{ ppm}$

■ measureme

(BNL E821)

theory

QED

8th and 10th order of QED calculation

lepton mass

order	with $\alpha^{-1}(Rb)$	with $\alpha^{-1}(a_e)$
2	116 140 973.318 (77)	116 140 973.213 (30)
4	413 217.6291 (90)	413 217.6284 (89)
6	30 141.902 48 (41)	30 141.902 39 (40)
8	381.008 (19)	381.008 (19)
10	5.0938 (70)	5.0938 (70)
$a_{\mu}(\text{QED}) \times 10^{11}$	116 584 718.951 (80)	116 584 718.846 (37)

PRL109, 111808

$$a_{\mu}^{\text{QED}} = 116\ 584\ 718.951\ (0.009)(0.019)(0.007)(.077) \times 10^{-11}$$

hadron

$$a_{\mu}^{\text{had;LO}} = (6.923 \pm 42) \times 10^{-11}$$

 $a_{\mu}^{\text{had;NLO}} = (-98.4 \pm 0.6_{\text{exp}} \pm 0.4_{\text{rad}}) \times 10^{-11}$
 $a_{\mu}^{\text{HLbL}} = (105 \pm 26) \times 10^{-11}$

■weak

$$a_{\mu}^{\text{EW}} = (153.6 \pm 1.0) \times 10^{-11}$$

