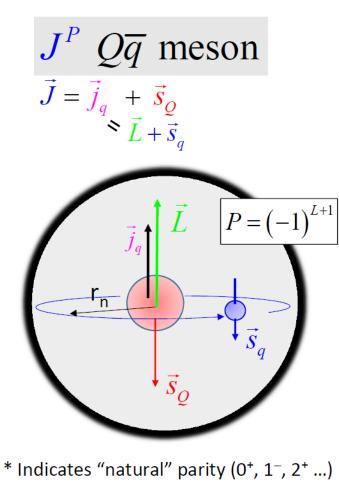
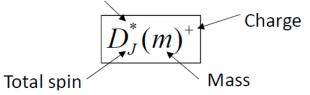


The University of Manchester

Hadronic B decays

Eduardo Rodrigues University of Manchester


On behalf of the LHCb collaboration, with results from BaBar & Belle



Excited D meson spectroscopy

- ❑ Many D and D_s resonances discovered in recent decade
- But nature of such resonances unclear/unknown in many cases

Amplitude analyses of B decays can help !
 Provide access to natural-spin resonances only

Excited D meson spectroscopy from $B \rightarrow D X$ decays

 $\Box \ B \rightarrow D \ h \ h(')$

- $\Box B \rightarrow \overline{D}^{(*)} D^{(*)} K \qquad 22 \text{ modes possible } !$
- □ Study of resonant structures - cc, cs, cd
- Determination of basic properties such as mass, width and spin
- □ Determination of branching fractions of $B \rightarrow (D) X$ "resonance decays"

Neutral <i>B</i> mode	Charged B mode
$\overline{B^0 \to D^- D^0 K^+}$	$B^+ \rightarrow \bar{D}^0 D^+ K^0$
$B^0 \rightarrow D^- D^{*0} K^+$	$B^+ \rightarrow \bar{D}^0 D^{*+} K^0$
$B^0 \rightarrow D^{*-} D^0 K^+$	$B^+ \rightarrow \bar{D}^{*0} D^+ K^0$
$B^0 \longrightarrow D^{*-} D^{*0} K^+$	$B^+ \rightarrow \bar{D}^{*0} D^{*+} K^0$
$B^0 \rightarrow D^- D^+ K^0$	$B^+ \rightarrow \bar{D}^0 D^0 K^+$
$B^0 \to D^- D^{*+} K^0 + D^{*-} D^+ K^0$	$B^+ \rightarrow \bar{D}^0 D^{*0} K^+$
	$B^+ \rightarrow \bar{D}^{*0} D^0 K^+$
$B^0 \to D^{*-} D^{*+} K^0$	$B^+ \rightarrow \bar{D}^{*0} D^{*0} K^+$
$B^0 \to \bar{D}^0 D^0 K^0$	$B^+ \rightarrow D^- D^+ K^+$
$B^0 \to \bar{D}^0 D^{*0} K^0 + \bar{D}^{*0} D^0 K^0$	$B^+ \to D^- D^{*+} K^+$
	$B^+ \to D^{*-}D^+K^+$
$B^0 \rightarrow \bar{D}^{*0} D^{*0} K^0$	$B^+ \rightarrow D^{*-} D^{*+} K^+$

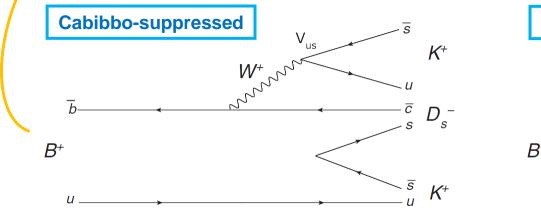
A (very brief) selection of hadronic b-hadron decays

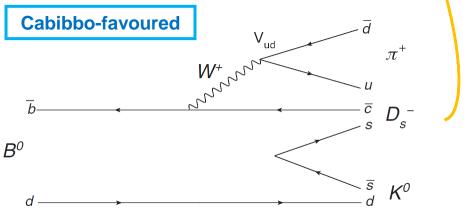
□ New b-hadron decays from LHCb

D meson spectroscopy from B → D X decays

See Markus Roehrken's talk that includes γ from $B \rightarrow D h$

$\rm B^{0} \rightarrow D_{s}^{-} \ K_{S}^{0} \ \pi^{+} \ and \ B^{+} \rightarrow D_{s}^{-} \ K^{+} \ K^{+}$

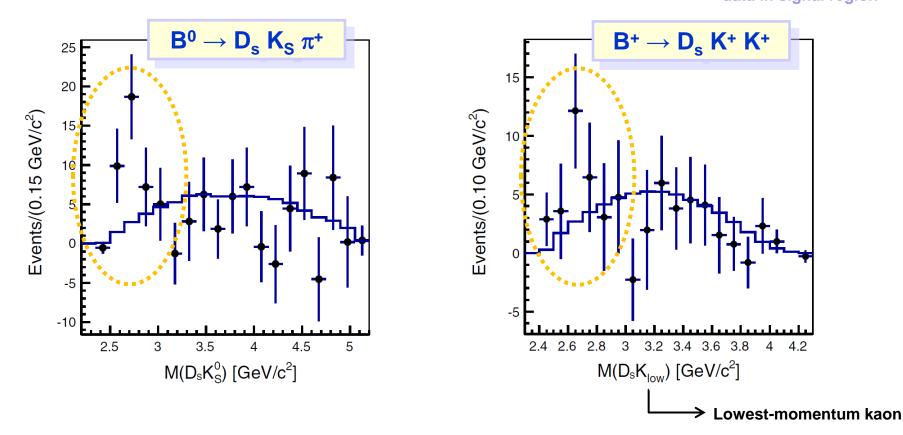

Motivation


- Check validity of theoretical descriptions of 3-body hadronic decays
- □ Spectroscopy studies in D_s K subsystem

Analysis

- □ 657M B B pairs @ Y(4S) resonance
- $\hfill\Box$ D_s reconstructed in final states ϕ $\pi,$ K* K+ and K_S K+

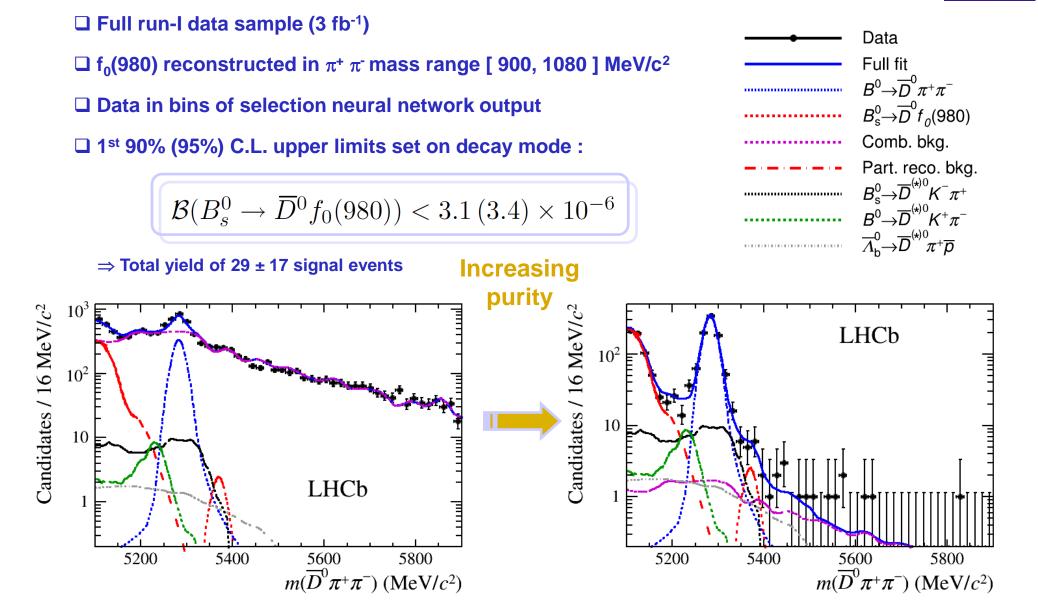
$$\mathcal{B}(B^0 \to D_s^- K_S^0 \pi^+) = [0.47 \pm 0.06(\text{stat}) \pm 0.05(\text{syst})] \times 10^{-4}$$
$$\mathcal{B}(B^+ \to D_s^- K^+ K^+) = [0.93 \pm 0.22(\text{stat}) \pm 0.10(\text{syst})] \times 10^{-5}$$



FPCP 2015, Nagoya, Japan, 26 May 2015

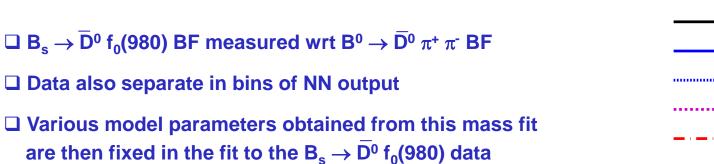
□ Study of 2-body D_s K invariant mass distributions ⇒ surplus of events in low mass region

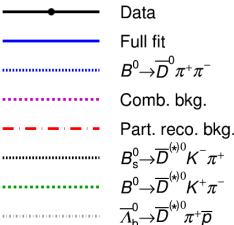
Histogram: phase-space dist. Points: background-subtracted data in signal region

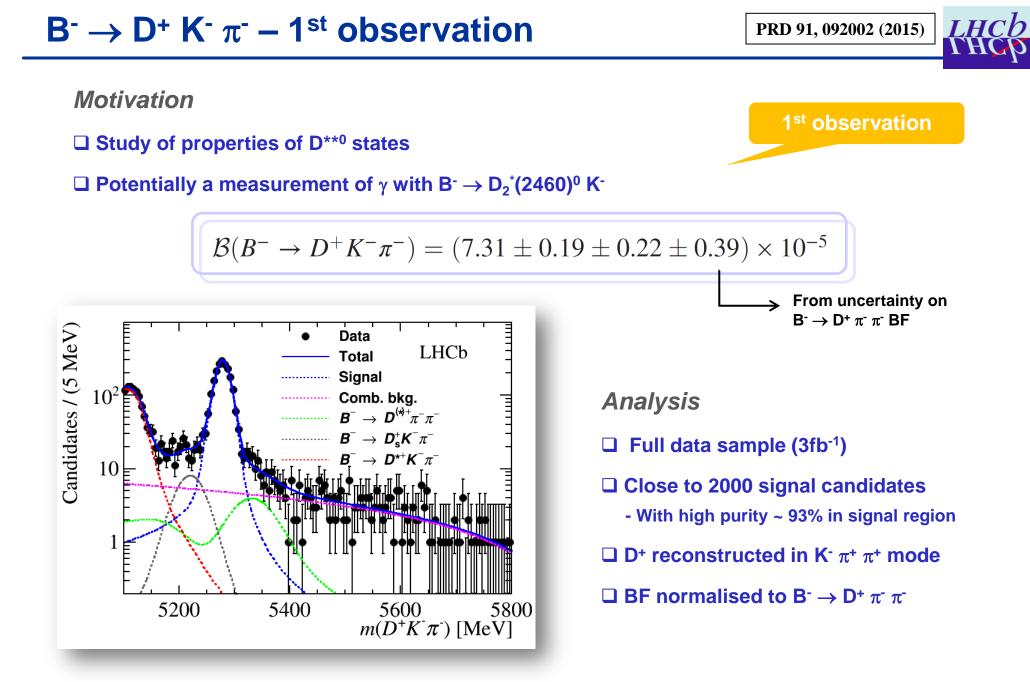


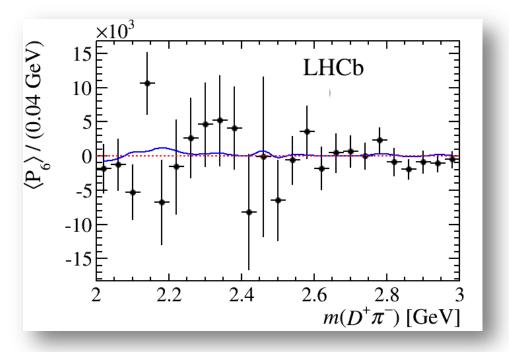
□ Similar patterns observed in other hadronic and semileptonic modes

□ Could be explained by production of resonances below the D_s^(*) K threshold


$B_s \rightarrow \overline{D}{}^0 f_0(980)$ - search



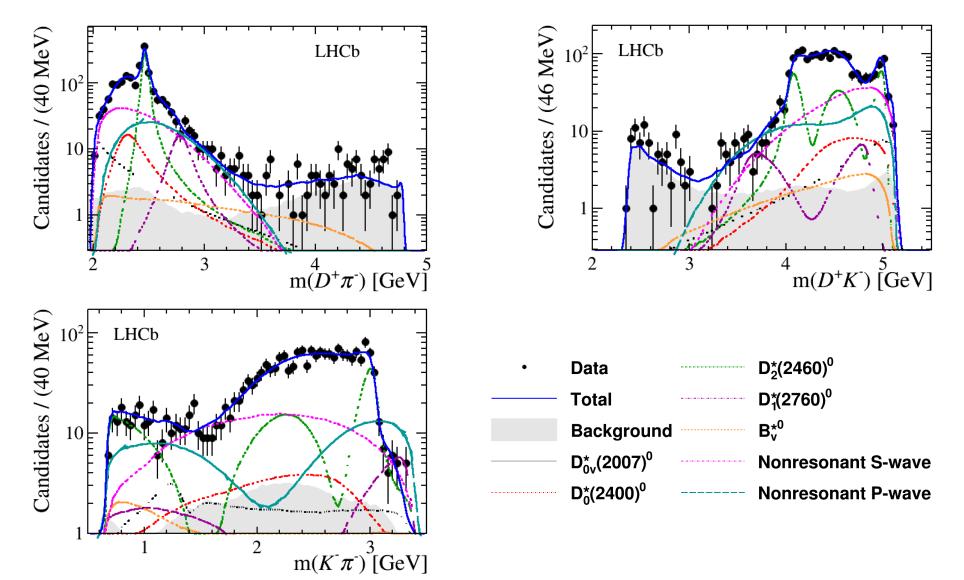

$B_s \rightarrow \overline{D}^0 f_0(980)$ – normalisation mode



PRD 91, 092002 (2015)

Angular moments

- **\Box** Resonances expected in m(D π) only
- ❑ Legendre-polynomial weighted angular moments for background-subtracted and efficiency-corrected D K π data
 ⇒ no evidence for resonances > spin-2


Model

□ Isobar approach

□ Coherent sum of the D₀*(2400)⁰, D₂*(2460)⁰ and D_J*(2760)⁰ resonances and S- and P-wave non-resonant contributions from virtual D_v*(2007)⁰, and B_v*⁰ resonances

\Box Fit projections onto the D π , D K and K π invariant mass distributions

FPCP 2015, Nagoya, Japan, 26 May 2015

□ Masses and widths of D**⁰ resonances

$$m(D_2^*(2460)^0) = (2464.0 \pm 1.4 \pm 0.5 \pm 0.3) \text{ MeV}$$

$$\Gamma(D_2^*(2460)^0) = (43.8 \pm 2.9 \pm 1.7 \pm 0.6) \text{ MeV}$$

$$m(D_1^*(2760)^0) = (2781 \pm 18 \pm 11 \pm 6) \text{ MeV}$$

$$\Gamma(D_1^*(2760)^0) = (177 \pm 32 \pm 20 \pm 7) \text{ MeV}$$

→ From model uncertainties

PRD 91, 092002 (2015)

D₂*(2460)⁰ :

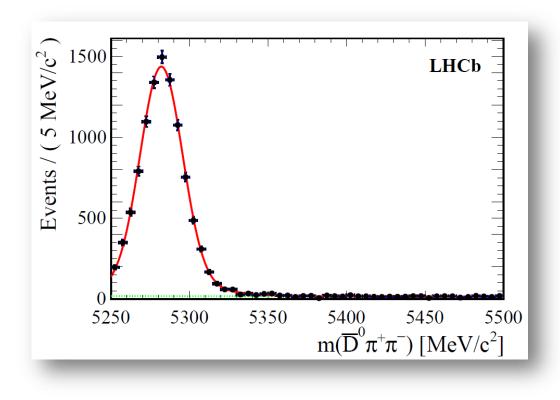
Properties in agreement with world average values

D₁*(2760)⁰ :

- Mass consistent with previous measurements
- Width in tension
- Spin determined to be 1 (other hypotheses rejected with high significance)

1st determination of spin-1 nature of D_J*(2760)⁰ !

□ Full details of DP fits in the paper ...


$B^0 \rightarrow \overline{D}^0 \pi^+ \pi^- - BFs \& Dalitz plot analysis arXiv:1505.01710 [hep-ex]$

LHCb ГНСр

Motivation

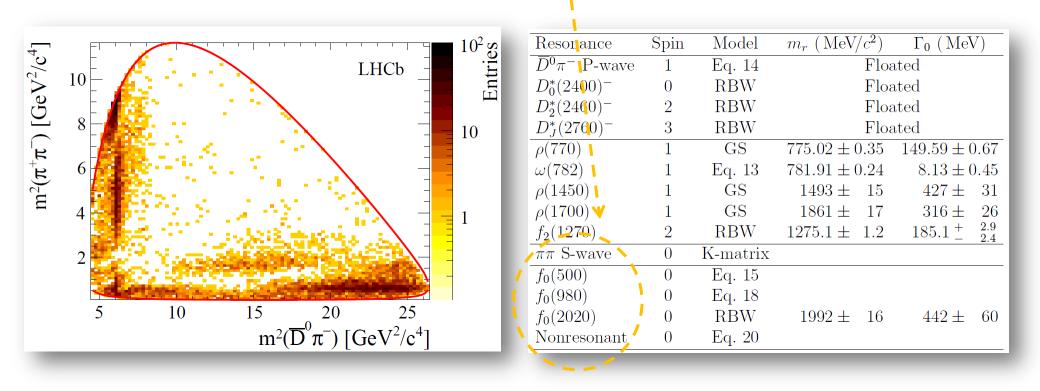
Study of properties of D^{**+} states in m(D⁰ π ⁺) and light resonances in m($\pi \pi$)

 \Box Sensitivity to the β angle

Analysis

- □ Full data sample (3fb⁻¹)
- ~ 10000 signal candidates
 - With high purity ~ 98% in signal region
 - ⇒ larger and more pure sample than B factories

 \Box D⁰ reconstructed in K⁻ π ⁺ mode

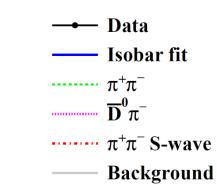

 \Box BFs normalised to B⁰ \rightarrow D*(2010)⁻ π ⁺

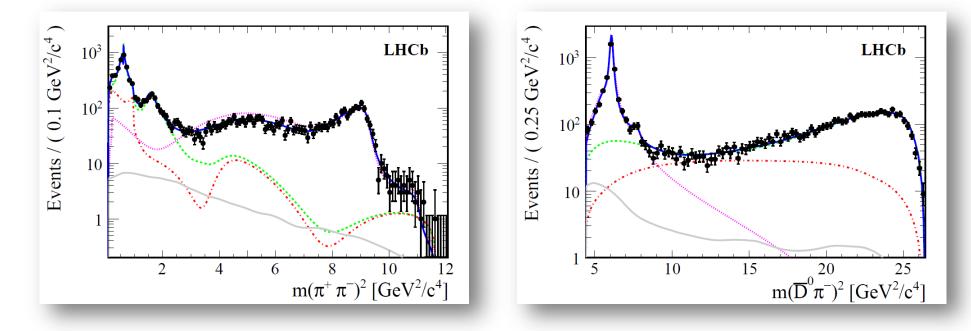
$B^0 \rightarrow \overline{D}^0 \pi^+ \pi^-$ – Dalitz plot analysis

2 models investigated for $\pi\pi$ S-wave

- □ Isobar model
 - Separate amplitudes for the 3 $f_{\rm 0}$ resonances + a non-resonant term
- □ K-matrix formalism
 - All 4 components above globally parameterised by a single amplitude

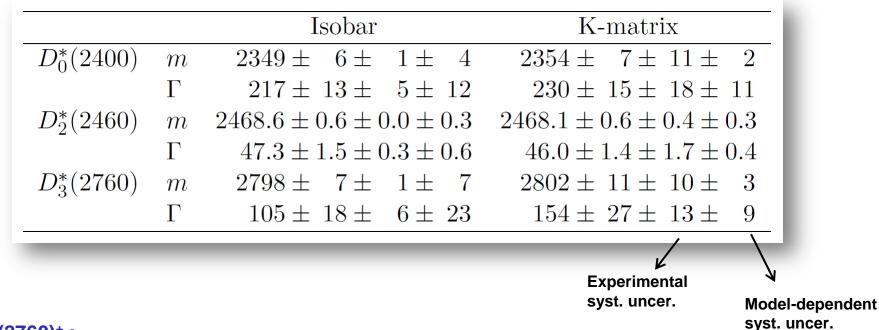
$B^0 \rightarrow \overline{D}{}^0 \pi^+ \pi^-$ – Dalitz plot analysis





\Box Resonance **@ 2760** MeV in m(D π)

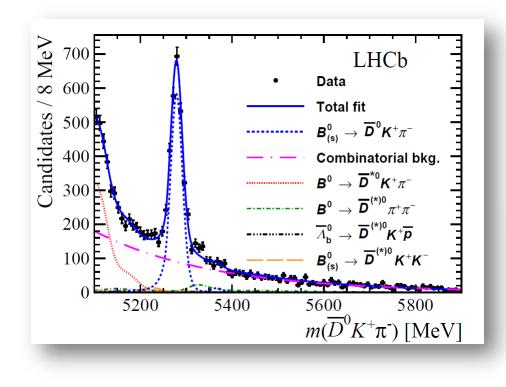
Example results from the fit with the Isobar model


- Good agreement with fit with the K-matrix model

□ Masses and widths of D**+ resonances

□ D_J*(2760)⁺ :

- Spin determined to be 3 (other hypotheses rejected with high significance)


□ No evidence for an additional spin-1 state

□ Full details of DP fits and BF measurements in the paper ...

Motivation

- \Box Study of properties of D^{**+} states in m(D⁰ π ⁺) and light resonances in m(K π)
- \Box Decay has access to same D^{**} resonances as B⁰ $\rightarrow \overline{D}^0 \pi \pi$ analysis, but with lower stats
- \Box Sensitivity to γ from analysis of B⁰ \rightarrow D K⁺ π ⁻ decays

Analysis

- □ Full data sample (3fb⁻¹)
- ~ 2500 signal candidates
 - With high purity ~ 75% in signal region

\Box D⁰ reconstructed in K⁻ π ⁺ mode

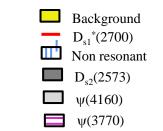
$$\begin{split} m(D_0^*(2400)^-) &= (2360 \pm 15 \pm 12 \pm 28) \,\mathrm{MeV} \\ \Gamma(D_0^*(2400)^-) &= (255 \pm 26 \pm 20 \pm 47) \,\mathrm{MeV} \\ m(D_2^*(2460)^-) &= (2465.6 \pm 1.8 \pm 0.5 \pm 1.2) \,\mathrm{MeV} \\ \Gamma(D_2^*(2460)^-) &= (46.0 \pm 3.4 \pm 1.4 \pm 2.9) \,\mathrm{MeV} \,, \end{split}$$

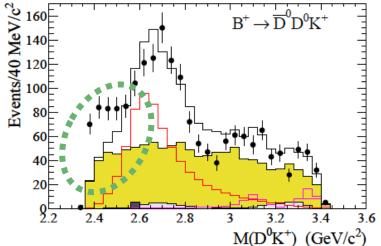
\Box No evidence for the D_J(2760)⁺

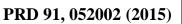
$B^0 \rightarrow D^- D^0 K^+$ and $B^+ \rightarrow \overline{D}{}^0 D^0 K^+$

Motivation

 \Box Study in detail the D_{s1}(2700) with a full Dalitz plot analysis


Analysis


Eduardo Rodrigues


- □ Full data sample (429 fb⁻¹)
- ~ 1500 or 1900 signal candidates in B⁰ and B⁺ modes
 But purity only ~ 42%
- □ Look at 2-body mass distributions D⁰ D⁰, D⁰ K⁺, D⁰ K⁺

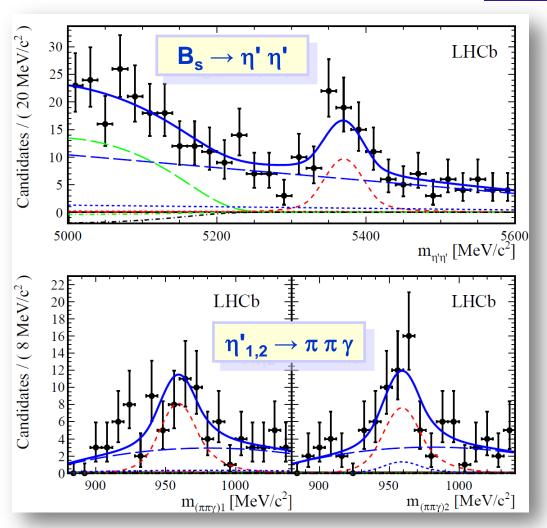
Dalitz plot model

- □ Isobar model containing $D_{s1}^{*}(2700)^{+}$, $D_{s2}^{*}(2573)^{+}$, $\psi(3770)$, $\psi(4160)$ and a dominant component (fit fraction ~ 45%) that remains unidentified !
- □ D_{s1}(2700) observed in both decay modes, spin determined to be 1
- □ Enhancement between 2350 and 2500 MeV remains to be interpreted ...
- \Rightarrow LHCb can/will certainly contribute to such studies ...
 - ... expect a sample of size similar to that of BaBar but with a rather high purity ... stay tuned ...

Hadronic b-hadron decays

See Youngmoon Goh's talk on charmless hadronic B decays See Marcello Rotondo's talk on baryonic B decays See Nicola Neri's talk on production and decay of heavy flavour baryons

$B_s \to \eta^{\prime} \, \eta^{\prime} - 1^{st}$ observation

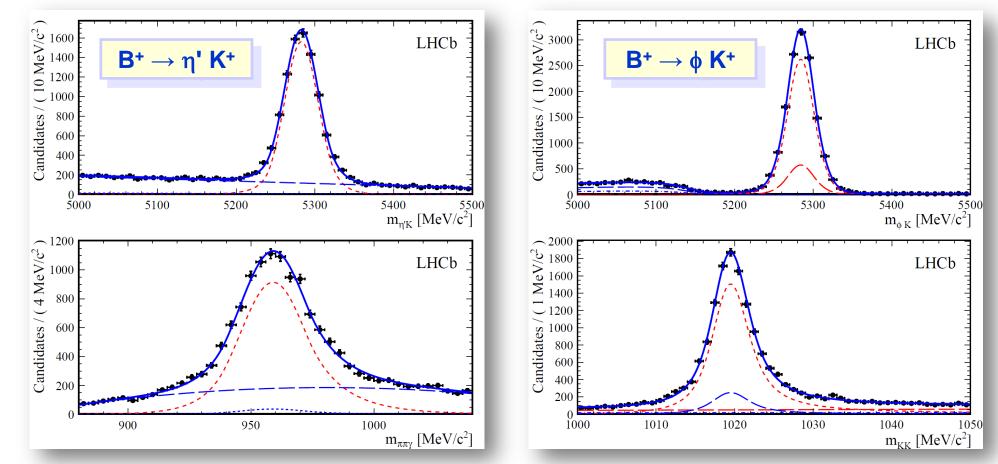


Motivation

- Few B decays with η^(') in final state experimentally known
 - Though the BFs are large
 - Only LHCb can look at the $\rm B_{s}$ modes
- Time-dependent CP analysis possible without angular analysis

Analysis

- □ Full run-I data sample (3 fb⁻¹)
- $\Box \text{ Observed yield N} = 36.4 \pm 7.8 \pm 1.6$
 - Significance: 6.4σ
- □ Measurement of $B_s \rightarrow \eta' \eta' BF$ - And CP asymmetries of control channels B⁺ → η' K⁺ and B⁺ → ϕ K⁺


 $\mathcal{B}(B_s^0 \to \eta' \eta') = [3.31 \pm 0.64 \,(\text{stat}) \pm 0.28 \,(\text{syst}) \pm 0.12 \,(\text{norm})] \times 10^{-5}$

$B_{s} \rightarrow \eta' \eta' - A_{CP} \text{ of normalisation modes } \text{ arXiv:1503.07483 [hep-ex]}$

□ Asymmetries compatible with Standard Model predictions

$$\mathcal{A}^{CP}(B^{\pm} \to \eta' K^{\pm}) = [-0.2 \pm 1.2 \,(\text{stat}) \pm 0.1 \,(\text{syst}) \pm 0.6 \,(\text{norm})] \times 10^{-2} \,\mathcal{A}^{CP}(B^{\pm} \to \phi K^{\pm}) = [+1.7 \pm 1.1 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.6 \,(\text{norm})] \times 10^{-2} \,\mathcal{A}^{CP}(B^{\pm} \to \phi K^{\pm}) = [+1.7 \pm 1.1 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.6 \,(\text{norm})] \times 10^{-2} \,\mathcal{A}^{CP}(B^{\pm} \to \phi K^{\pm}) = [+1.7 \pm 1.1 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.6 \,(\text{norm})] \times 10^{-2} \,\mathcal{A}^{CP}(B^{\pm} \to \phi K^{\pm}) = [+1.7 \pm 1.1 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.6 \,(\text{norm})] \times 10^{-2} \,\mathcal{A}^{CP}(B^{\pm} \to \phi K^{\pm}) = [+1.7 \pm 1.1 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.6 \,(\text{norm})] \times 10^{-2} \,\mathcal{A}^{CP}(B^{\pm} \to \phi K^{\pm}) = [+1.7 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.6 \,(\text{norm})] \times 10^{-2} \,\mathcal{A}^{CP}(B^{\pm} \to \phi K^{\pm}) = [+1.7 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.6 \,(\text{norm})] \times 10^{-2} \,\mathcal{A}^{CP}(B^{\pm} \to \phi K^{\pm}) = [+1.7 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.6 \,(\text{norm})] \times 10^{-2} \,\mathcal{A}^{CP}(B^{\pm} \to \phi K^{\pm}) = [+1.7 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.6 \,(\text{norm})] \times 10^{-2} \,\mathcal{A}^{CP}(B^{\pm} \to \phi K^{\pm}) = [+1.7 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.6 \,(\text{norm})] \times 10^{-2} \,\mathcal{A}^{CP}(B^{\pm} \to \phi K^{\pm}) = [+1.7 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.6 \,(\text{norm})] \times 10^{-2} \,\mathcal{A}^{CP}(B^{\pm} \to \phi K^{\pm}) = [+1.7 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.6 \,(\text{norm})] \times 10^{-2} \,\mathcal{A}^{CP}(B^{\pm} \to \phi K^{\pm}) = [+1.7 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.6 \,(\text{norm})] \times 10^{-2} \,\mathcal{A}^{CP}(B^{\pm} \to \phi K^{\pm}) = [+1.7 \,(\text{stat}) \pm 0.2 \,(\text{syst}) \pm 0.6 \,(\text{norm})] \times 10^{-2} \,\mathcal{A}^{CP}(B^{\pm} \to \phi K^{\pm}) = [+1.7 \,(\text{stat}) \pm 0.2 \,(\text{stat}) \pm 0.2 \,(\text{stat}) \pm 0.2 \,(\text{stat}) + 0.2 \,(\text{stat}) \pm 0.2 \,(\text{stat}) + 0$$

Eduardo Rodrigues

FPCP 2015, Nagoya, Japan, 26 May 2015

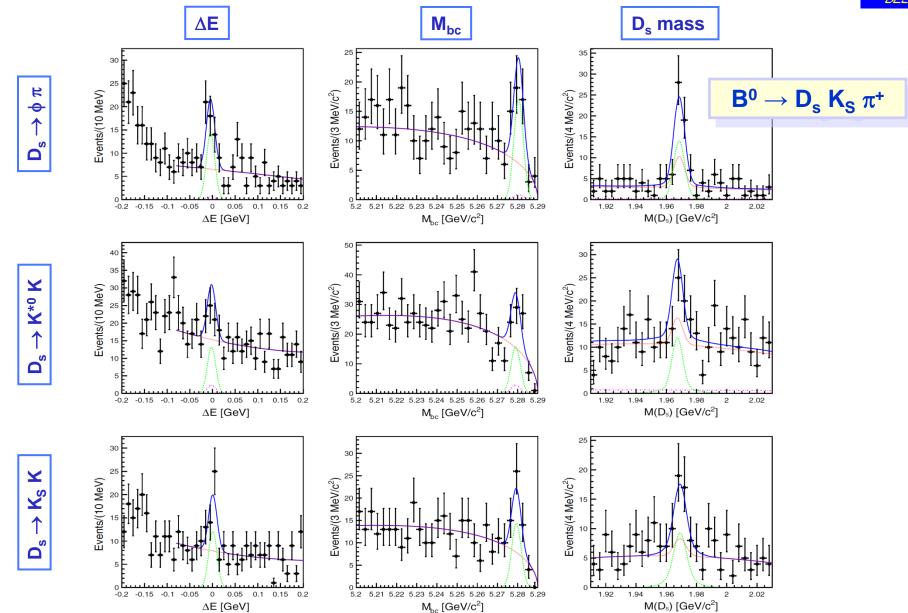
Open charm spectroscopy studies rather popular and diverse

- B decays offer a great environment for such studies

□ Plenty of first observations and determination of resonance properties ! Notably

- 1st observation of $B^- \rightarrow D^+ K^- \pi^-$
- D_J*(2760)⁰ spin determined to be 1
- D_J*(2760)⁺ spin determined to be 3
- D_{sJ}*(2700)⁺ spin determined to be 1

□ A plethora of branching fraction measurements for contributing resonant decays


□ Future prospects for D** spectroscopy are very promising !

$B^0 \rightarrow D_s^{-} K_s^0 \pi^+$ and $B^+ \rightarrow D_s^{-} K^+ K^+$

PRD 91, 032008 (2015)

Eduardo Rodrigues

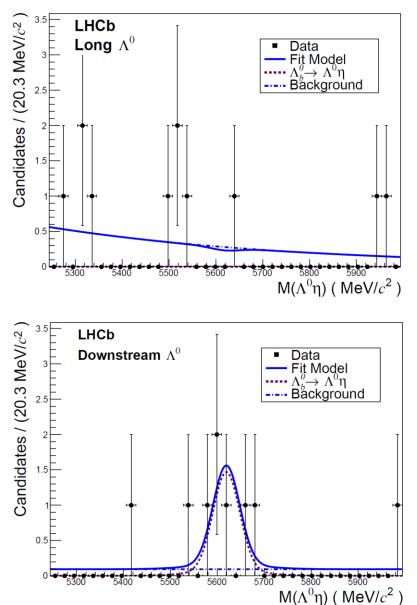
FPCP 2015, Nagoya, Japan, 26 May 2015

Long (Downstream) Λ : Decay products leave hits inside (outside) vertex detector

arXiv:1505.03295 [hep-ex]

Motivation

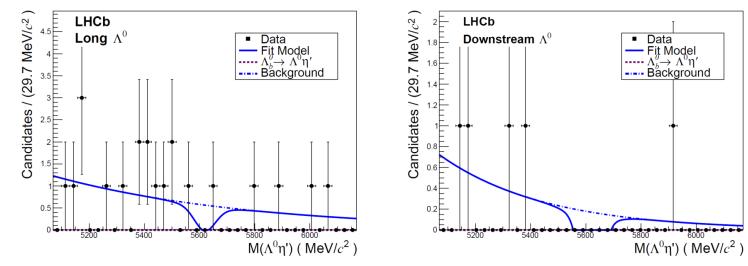
- $\hfill\square$ No known b-baryon decays to final states with a $\eta^{({}^{\mbox{\prime}})}$
 - BFs predicted relatively large, of order 10⁻⁶
 - Only LHCb can look at the b-baryon modes
- $\hfill\square$ Study of $\eta\text{-}\eta\text{'}$ mixing

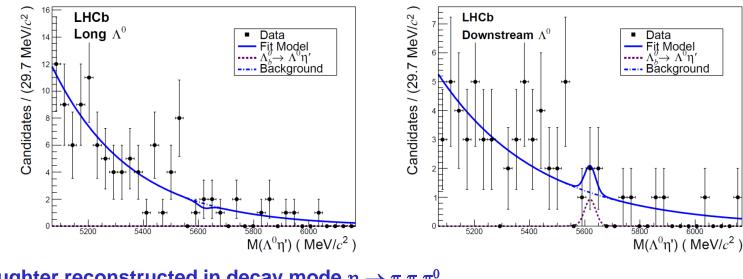

Analysis

- □ Full run-I data sample (3 fb⁻¹)
- \Box Evidence for the $\Lambda_{\mathsf{b}} \mathop{\rightarrow} \Lambda \, \eta$ decay
 - Yield of 5.3 \pm 3.8 events & significance of 3.0 σ

$${\cal B}(\Lambda^0_b\!\to\Lambda\eta)=(9.3^{+7.3}_{-5.3})\times10^{-6}$$

 \Box 90% C.L. upper limit on $\Lambda_b \to \Lambda \, \eta'$


$$\mathcal{B}(\Lambda_b^0\!\to\Lambda\eta')<3.1\times10^{-6}$$



□ η' daughter reconstructed in decay mode $\eta' \rightarrow \pi \pi \eta$, $\eta \rightarrow \gamma \gamma$

 $\Lambda_{\rm b} \rightarrow \Lambda \eta^{(\prime)} - \text{details}$

 \Box η' daughter reconstructed in decay mode $\eta' \rightarrow \pi \, \pi \, \gamma$

 \Box η daughter reconstructed in decay mode η \rightarrow π π π⁰

FPCP 2015, Nagoya, Japan, 26 May 2015