Phenomenological Analysis of High-Energy Heavy-Ion Collisions

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe Department of Physics, Nagoya University Duke University

Chiho NONAKA

January 6, 2017@KMI2017

Quark-Gluon Plasma

RHIC:2000

STAR

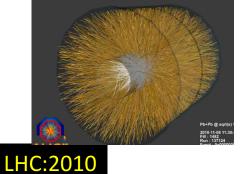
Heavy Ion Collisions:

LHC,RHIC

Т

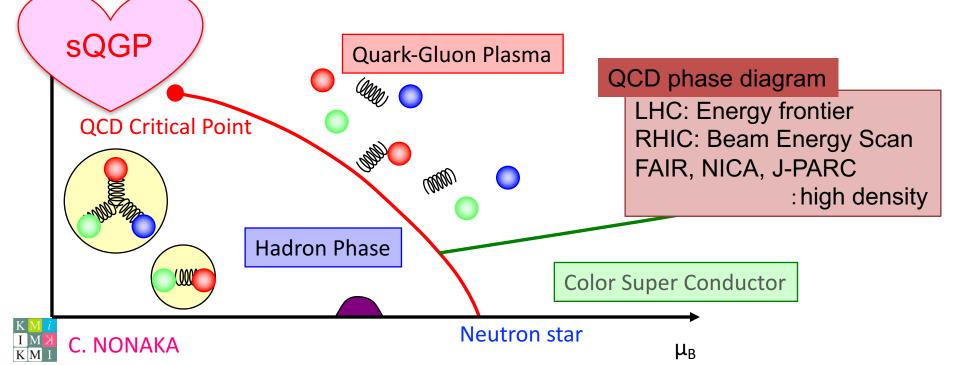
Strongly interacting QGP

- •Relativistic hydrodynamics
- Recombination model
- Jet quenching
- •Color Glass Condensate

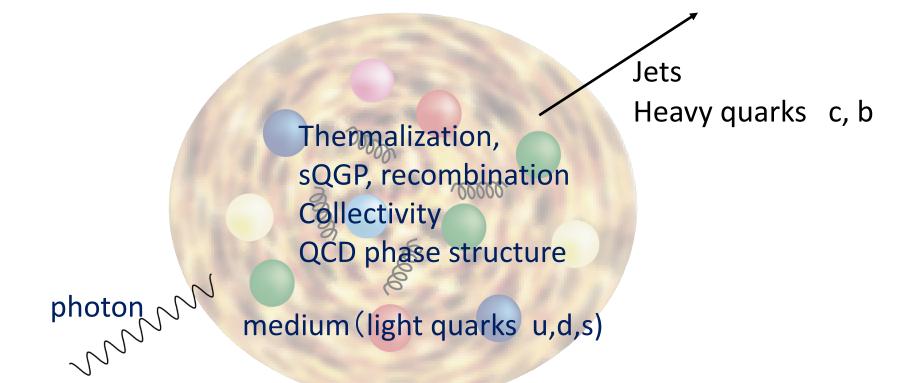


Heavy Ion collisions start!

Hydrodynamics: QGP, medium



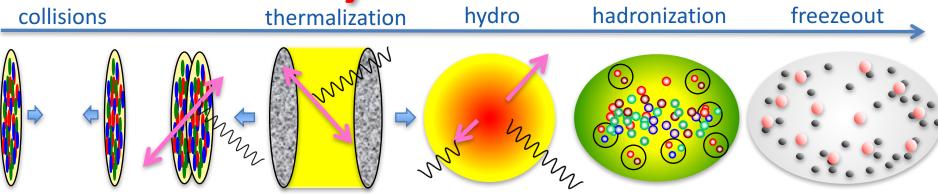
Phenomenology for heavy Ion Collisions



Phenomenological Models

Time evolution of medium + Observables

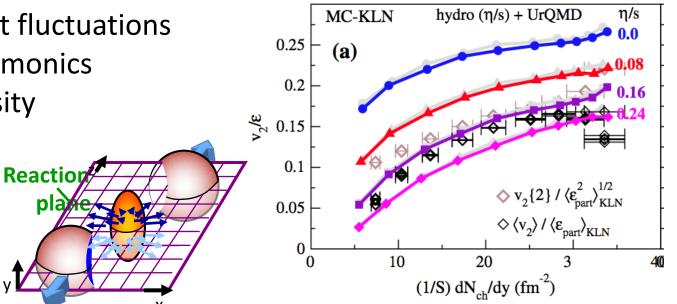
Heavy Ion Collisions



Phenomenological model: Hydrodynamic model

- Strong elliptic flow@RHIC
- Shear viscosity@RHIC & LHC
- Event-by-event fluctuations
 - Higher harmonics
 - Bulk viscosity

➡ strongly interacting QGP



Viscous Hydrodynamic Model

Relativistic viscous hydrodynamic equation for HIC

 $\partial_{\mu}T^{\mu\nu} = 0 \qquad T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} - pg^{\mu\nu} + \Delta T^{\mu\nu}$

- First order in gradient: acausality
- Second order in gradient: which one is suitable for HIC?
 - Israel-Stewart, Ottinger and Grmela, AdS/CFT, Grad's 14momentum expansion, Renormalization group...
- Numerical scheme: small numerical viscosity
 - First order accuracy: large dissipation

physical viscosities

Second order accuracy : numerical oscillation

-> artificial viscosity, flux limiter

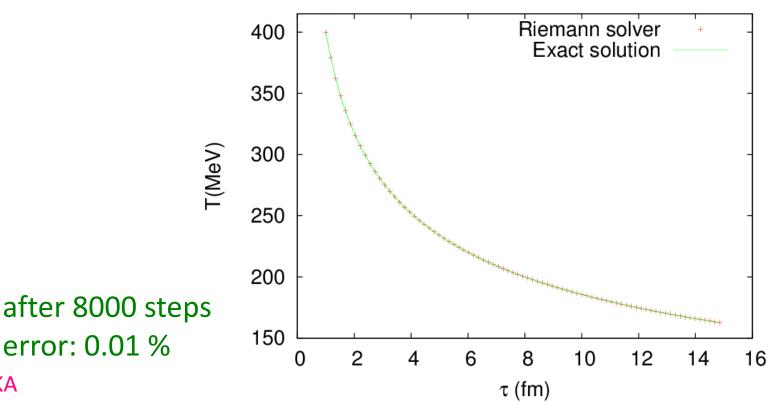
– Heavy Ion Collisions: SHASTA, KT, HLLE

-> Godunov scheme: Riemann solver

Akamatsu, Inutsuka, CN, Takamoto, arXiv:1302.1665、J. Comp. Phys. (2014)34 K. Okamoto, Y. Akamatsu and CN,Eur. Phys. J. C76 (2016)579

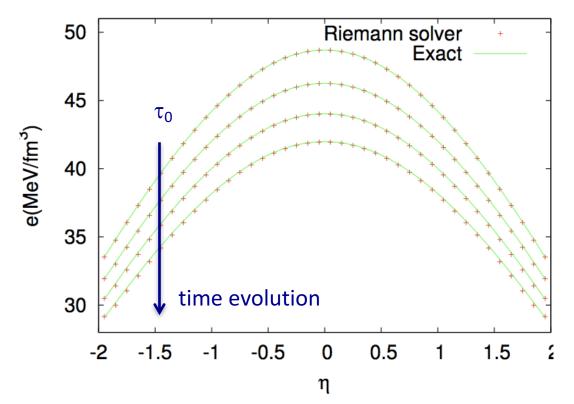
- ✓ Bjorken's scaling solutions
- ✓ Landau-Khalatnikov Solution (1D)
- ✓ Longitudinal fluctuations
- Conservation property

K. Okamoto, Y. Akamatsu and CN, Eur. Phys. J. C76 (2016)579



- ✓ Bjorken's scaling solutions
- ✓ Landau-Khalatnikov Solution (1D)
- ✓ Longitudinal fluctuations
- Conservation property

K. Okamoto, Y. Akamatsu and CN, Eur. Phys. J. C76 (2016)579

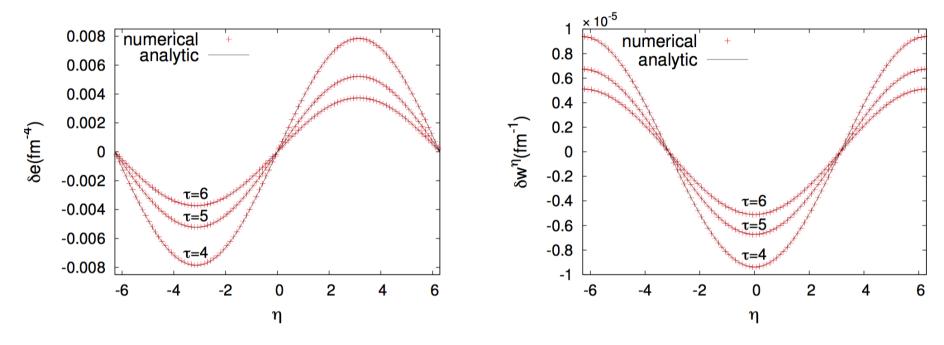


- ✓ Bjorken's scaling solutions
- ✓ Landau-Khalatnikov Solution (1D)

✓ Longitudinal fluctuations

Conservation property

K. Okamoto, Y. Akamatsu and CN, Eur. Phys. J. C76 (2016)579



✓ Bjorken's scaling solutions ✓ Landau-Khalatnikov Solution (1D) ✓ Longitudinal fluctuations ✓ Conservation property 2 conservative form with source term initial $(\times 0.04)$ 1.5 e(GeV/fm³) 1 0.5

-2

0

η

2

4

6

8

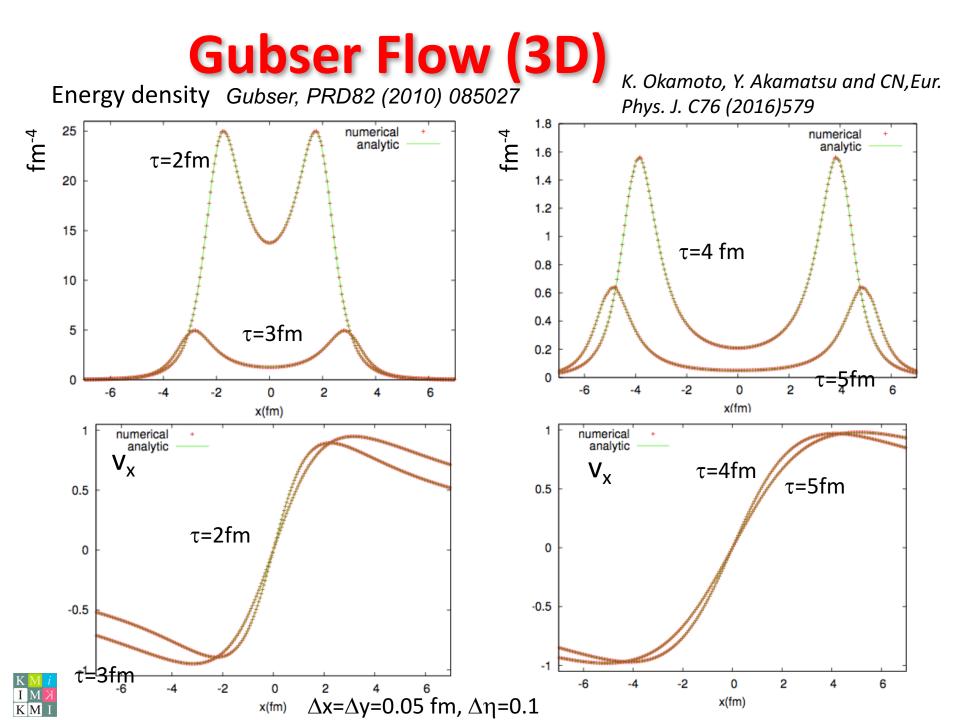
K. Okamoto, Y. Akamatsu and CN, Eur. Phys. J. C76 (2016)579

Sum of violation of conservation

	ϵ_E	\mathcal{E}_M
conservative	1.38E-09	8.59E-09
with souce	1.27E-02	5.61E-02

0

-8



Finite Viscosity

Akamatsu, Inutsuka, CN, Takamoto, Israel-Stewart Theory arXiv:1302.1665, J. Comp. Phys. (2014)34

Okamoto and CN, in preparation

1. Dissipative fluid equation

$$\partial_{\mu} T^{\mu\nu} = 0$$

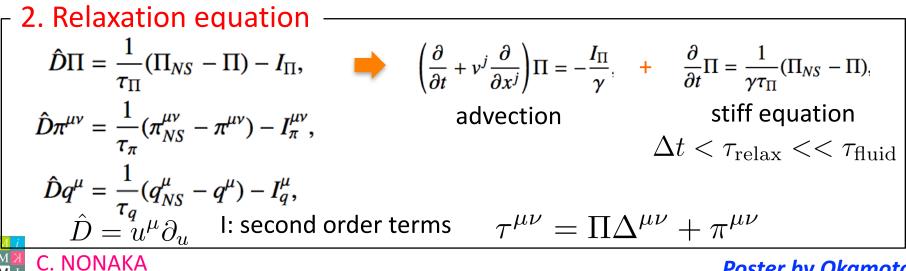
$$T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} - pg^{\mu\nu} + q^{\mu}u^{\nu} + q^{\nu}u^{\mu} + \tau^{\mu\nu}$$

$$= T_{\text{ideal}} + T_{\text{dissip}}$$

Ideal part:

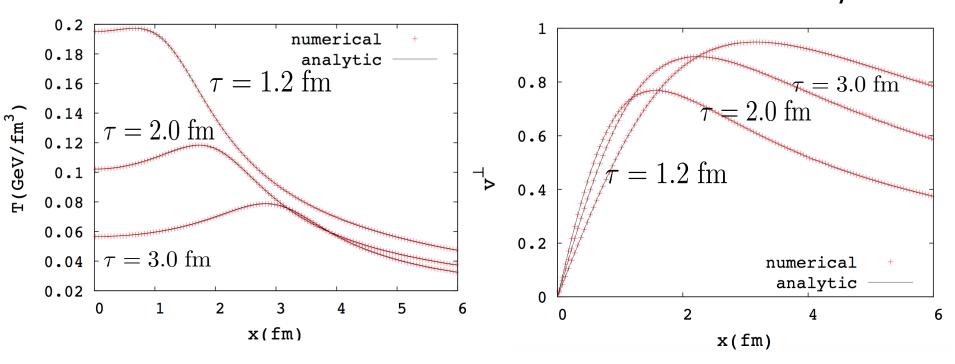
Riemann solver for QGP: Godunov method

Two shock approximation Mignone, Plewa and Bodo, Astrophys. J. S160, 199 (2005)



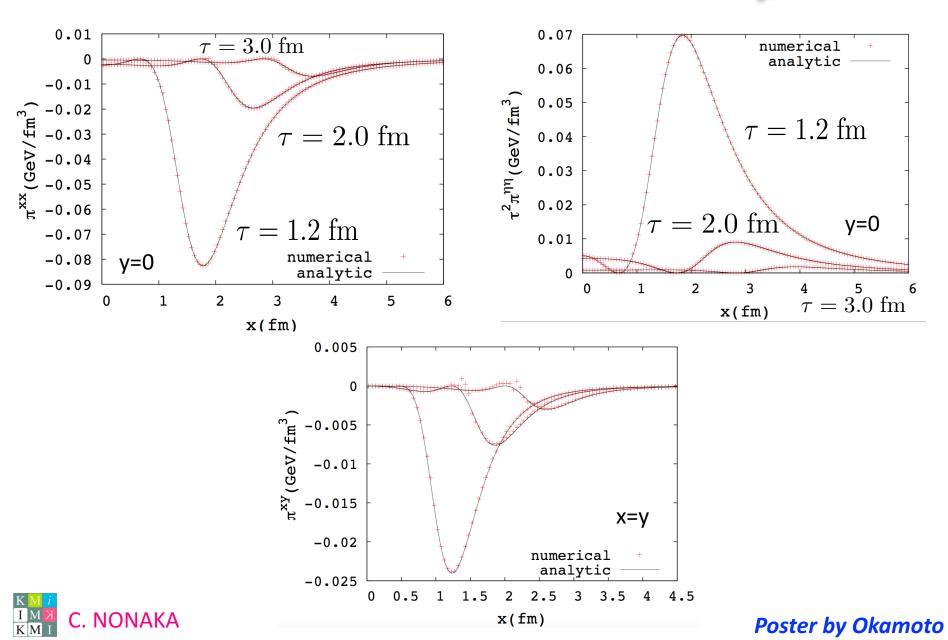
Gubser Flow with Finite η/s

Marrochio et al (MUSIC), PRC91, 014903(2015) $\eta/s \,=\, 0.2, \; au_R \,=\, 5\eta/(Ts)$

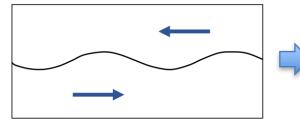


 $dx = dy = 0.05 \mathrm{fm}$

Gubser Flow with Finite η/s

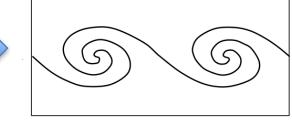


Kelvin-Helmholtz Instability



perturbation

5,5



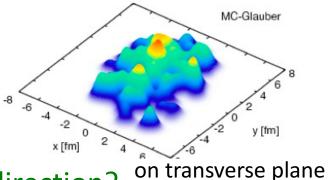
vortexes

Heavy Ion Collsions

Csernai, Strottman, Anderlik, PRC85(2012)054901

higher harmonics

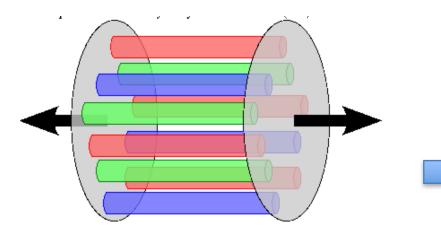
event-by-event fluctuation



- Fluctuation in londitudinal direction?
- KHI occurs in Heavy Ion collisions?
- Effect on collective flow?

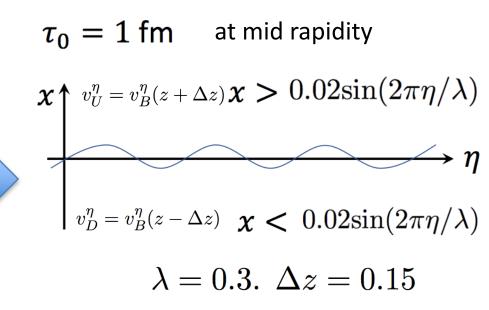
Kelvin-Helmholtz Instability with Bjorken's Flow

Fluctuations in initial conditions ex color flux tubes

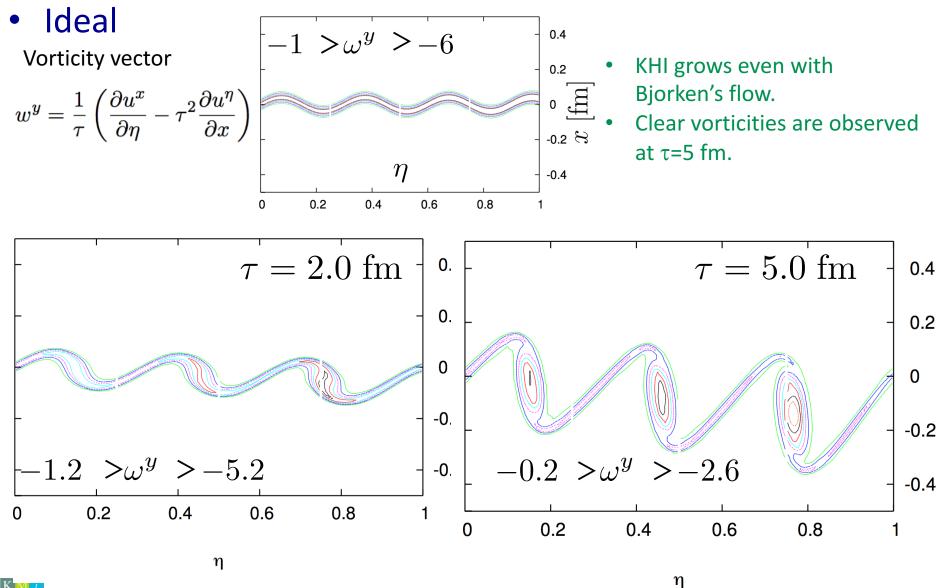


Does KHI happen in an expansion system? What is the effect on physical observables?

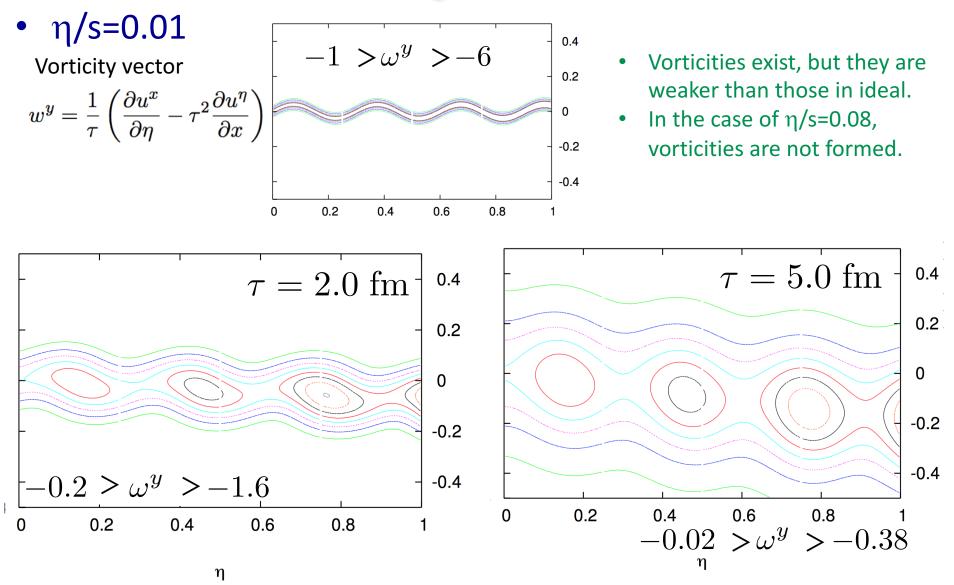
Origin of shear flow and fluctuations around v_{η} =0



Kelvin-Helmholtz Instability with Bjorken's Flow



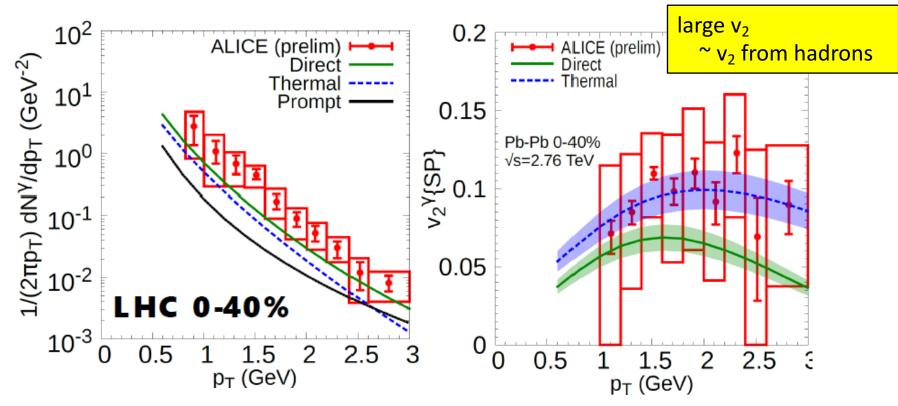
KHI with Bjorken's Flow



Photon Puzzle

Itakura, Fuji and CN in preparation

• LHC Pb+Pb $\sqrt{s_{NN}} = 2760 \text{ GeV}$

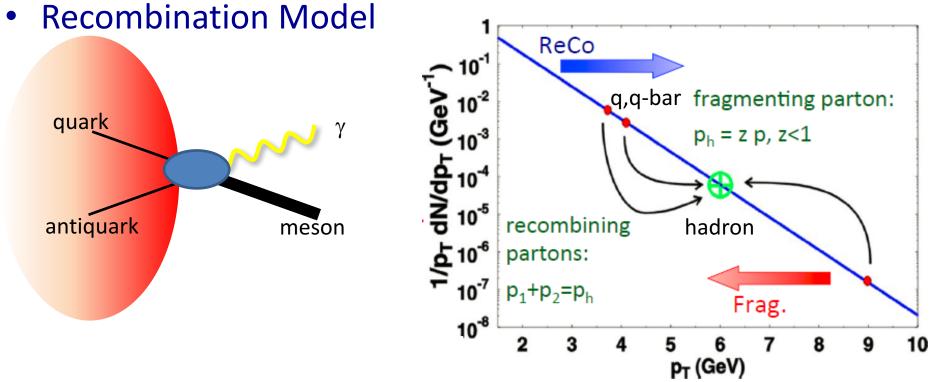


A hydrodynamic model with latest hadronic photon rates can reproduce elliptic flow reasonably, but it fails to explain the yield of photon.

We miss other photon production mechanisms?

Radiative Recombination

Itakura, Fuji and CN in preparation



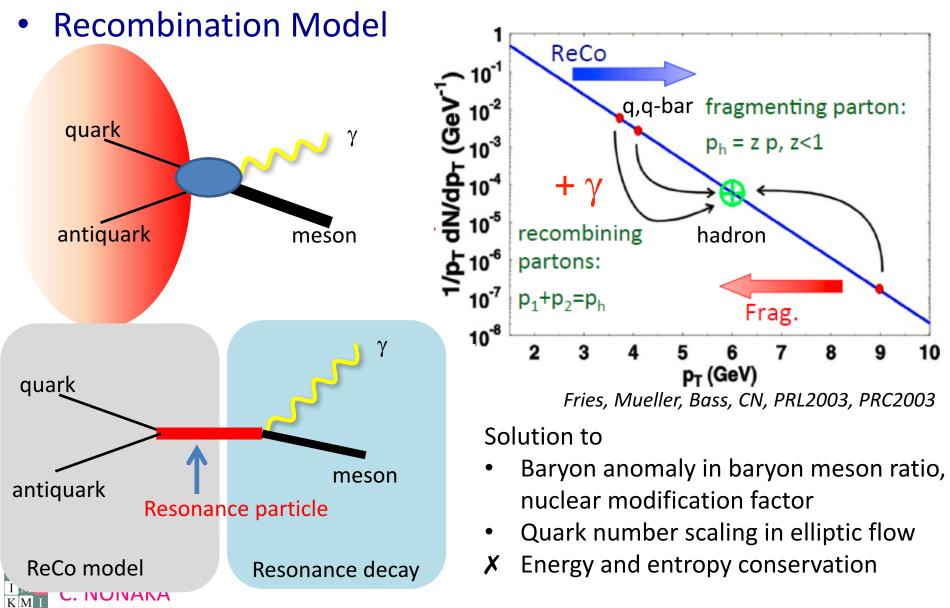
Fries, Mueller, Bass, CN, PRL2003, PRC2003

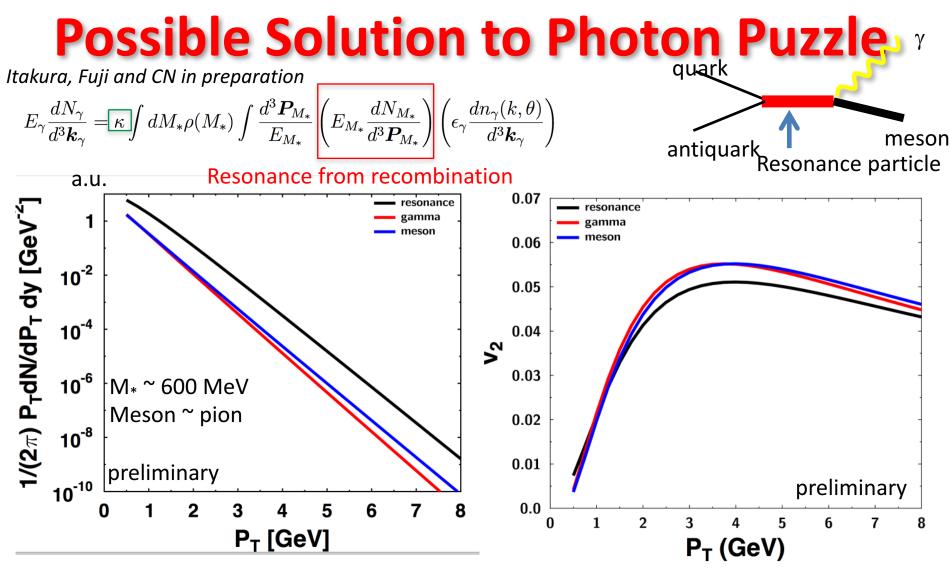
Solution to

- Baryon anomaly in baryon meson ratio, nuclear modification factor
- Quark number scaling in elliptic flow
- **X** Energy and entropy conservation

Radiative Recombination

Itakura, Fuji and CN in preparation





κ=1 (parameter)Large yield of photon

- v2 of photon is as large as that of meson!
- v2 of photon from resonance decay is larger that that of resonance.

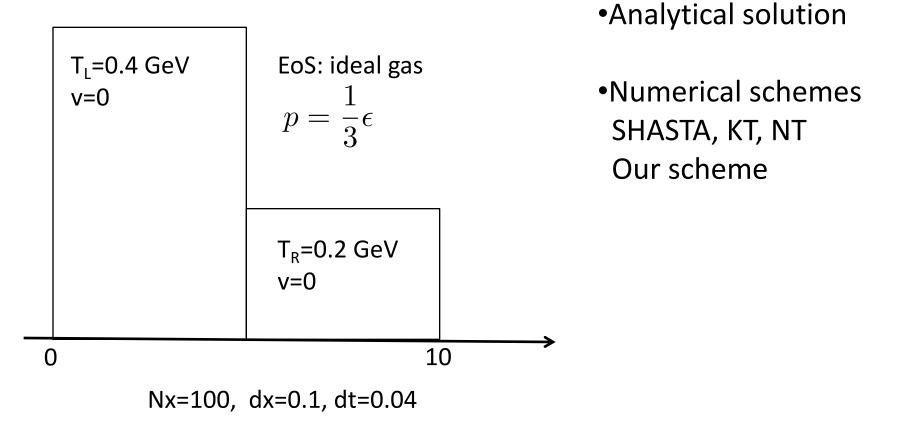
Hydrodynamic model with state-of-the-art algorithm

Our algorithm _____

- Less artificial diffusion: crucial for viscosity analyses
- Stable for strong shock wave
- Test calculations: 1D and 3D
- Kelvin-Helmholtz Instability
- Now we are ready for experimental analyses @ RHIC and LHC !
 Initial condition (TRENTO by Duke), statistical analyses
- Future low collision energy experiments at J-PARC and FAIR
- Photon puzzle: large P_T distribution and elliptic flow
 - Radiative Recombination <- Extension of recombination model Energy conservation, Deviation of quark number scaling @LHC

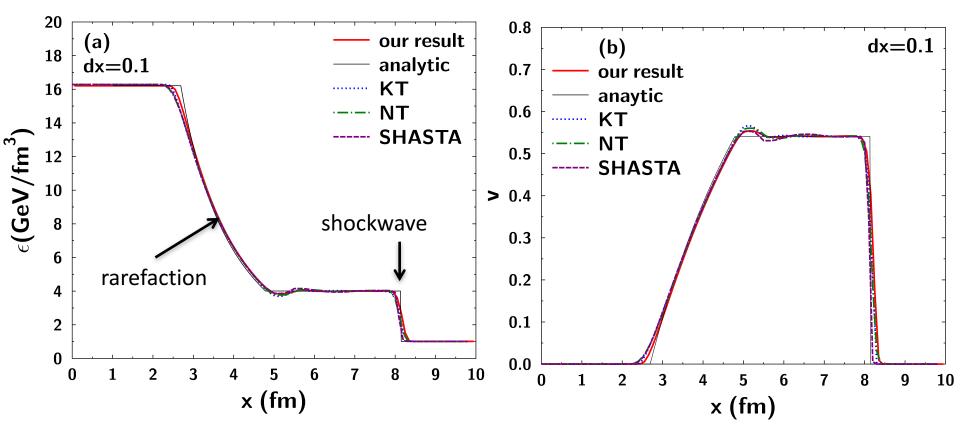
KMI IMX KMI

• Shock Tube Test : Molnar, Niemi, Rischke, Eur. Phys. J. C65, 615 (2010)



Shocktube Problem

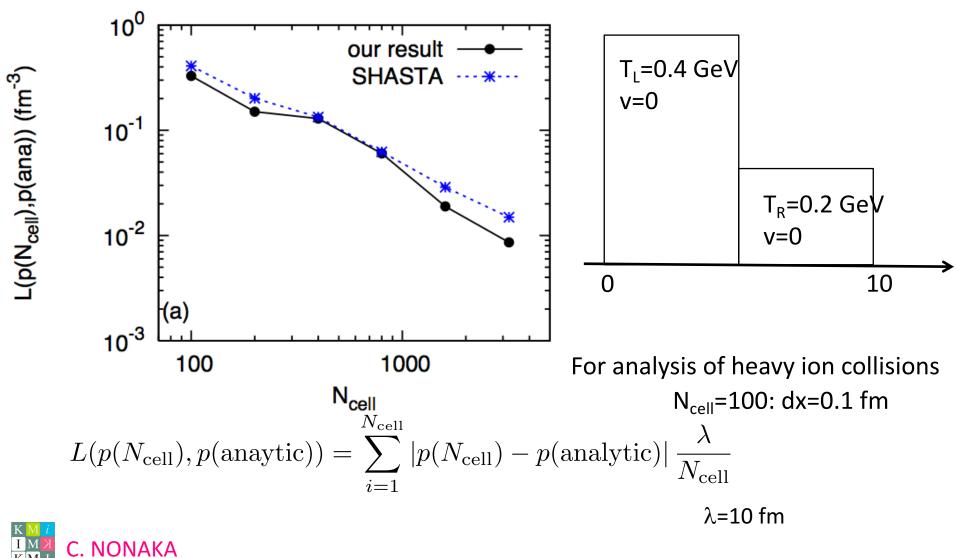
Ideal case



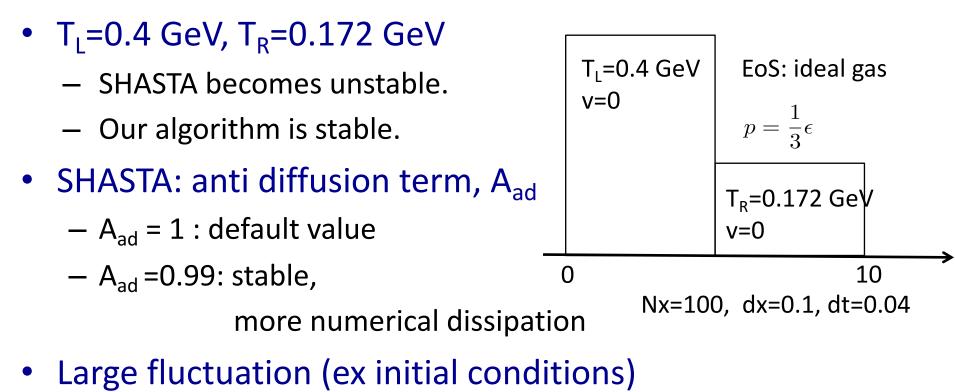
Nx=100, dx=0.1, dt=0.04

L1 Norm

Numerical dissipation: deviation from analytical solution

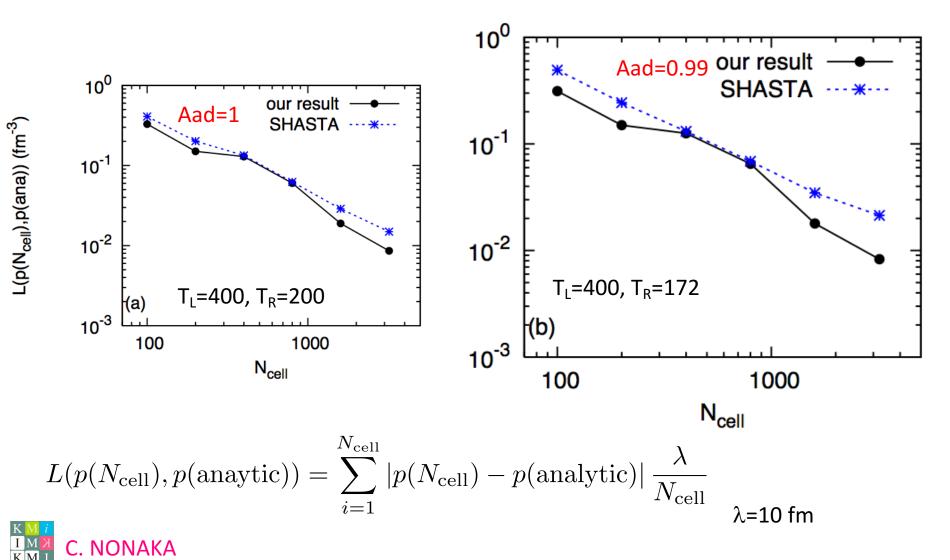


Large ΔT difference



- Our algorithm is stable even with small numerical dissipation.

SHASTA with small A_{ad} has large numerical dissipation



Longitudinal Fluctuations

• Propagation of longitudinal fluctuations around Bjorken's flow $e = e_B + \delta e, \quad w^{\eta} = \delta w^{\eta},$

$$egin{aligned} &\mathcal{E} = \mathcal{E}_B + \mathcal{O}\mathcal{E}, & w^{-1} = \mathcal{O}w^{-1}, \ &\partial_{ au}\delta e + (1+\lambda)e_B\partial_{\eta}\delta w^{\eta} + rac{1+\lambda}{ au}\delta e = 0, \ &\partial_{ au}\delta w^{\eta} + rac{\lambda}{1+\lambda}rac{1}{ au^2 e_B}\partial_{\eta}\delta e + rac{2-\lambda}{ au}\delta w^{\eta} = 0. \end{aligned}$$

λ=1/3

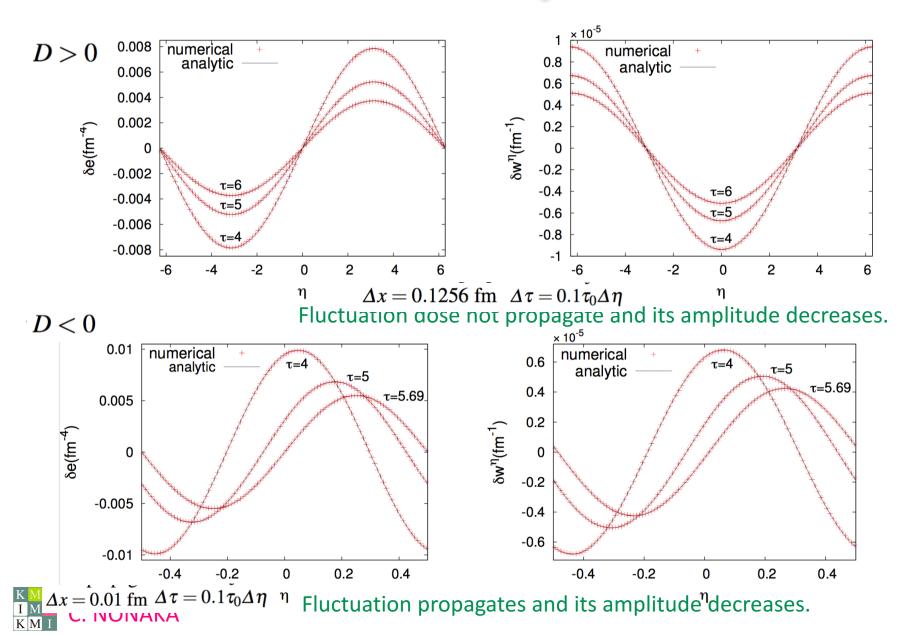
 e_B , ω^{η} =0: Bjorken's solution

 $D\equiv (1-\lambda)^2-4k^2\lambda$:

$$\begin{bmatrix} D > 0 \\ \delta e(\tau, \eta) = A \left(\frac{\tau}{\tau_0}\right)^{(-3-\lambda-\sqrt{D})/2} \sin(k\eta), \\ \delta w^{\eta}(\tau, \eta) = \frac{\lambda - 1 - \sqrt{D}}{2ke_0(1+\lambda)\tau_0} A \left(\frac{\tau}{\tau_0}\right)^{(-3+\lambda-\sqrt{D})/2} \cos(k\eta), \\ \begin{bmatrix} D < 0 \\ \delta e(\tau, \eta) = A \left(\frac{\tau}{\tau_0}\right)^{-(3+\lambda)/2} \sin(k\eta - \theta), \\ \delta w^{\eta}(\tau, \eta) = \frac{A}{2ke_0(1+\lambda)\tau_0} \left(\frac{\tau}{\tau_0}\right)^{(\lambda-3)/2} \\ \times \left[(\lambda - 1)\cos(k\eta - \theta) + \sqrt{-D}\sin(k\eta - \theta)\right], \\ \end{bmatrix}$$

$$heta \equiv rac{1}{2}\sqrt{-D} \mathrm{log}(au/ au_0).$$

Consistent with Analytical Solutions

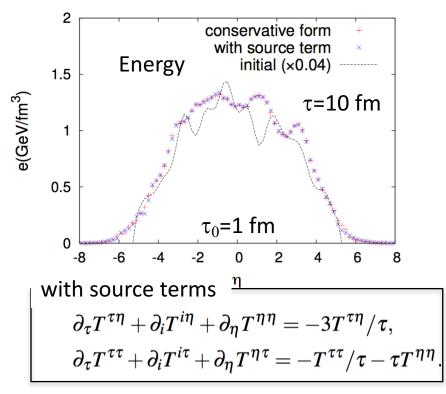


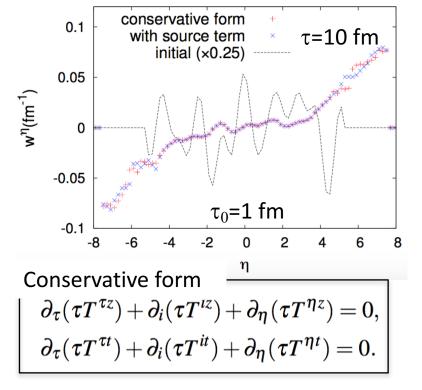
Conservation Property

Fluctuating initial conditions

Okamoto, Akamatsu, CN, arXiv:1607.03630

Flow





Sum of violation of conservation $\Delta \eta = 0.2 \ \Delta \tau = 0.1 \tau_0 \Delta \eta$.

	ϵ_E	\mathcal{E}_M
conservative	1.38E-09	8.59E-09
with souce	1.27E-02	5.61E-02

NONAKA

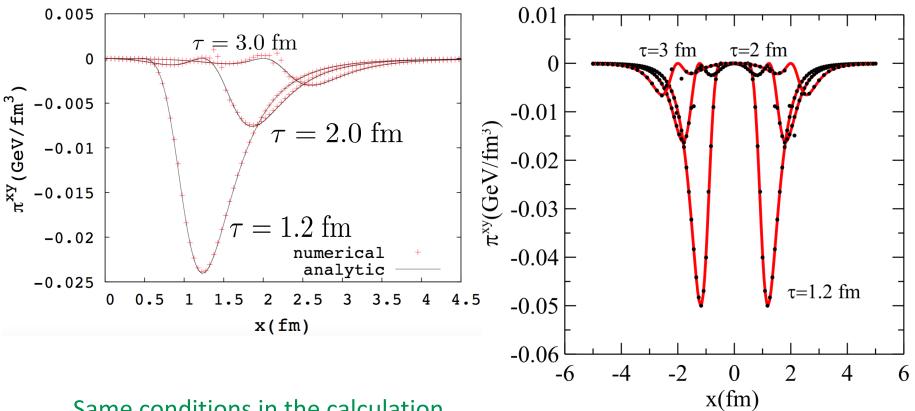
The code based on the conservative form keeps conservation property with high accuracy

Our Approach

Takamoto and Inutsuka, arXiv:1106.1732 Akamatsu, Inutsuka, CN, Takamoto, arXiv:1302.1665 Israel-Stewart Theory (ideal hydro) 1. dissipative fluid dynamics = advection + dissipation exact solution **Riemann solver: Godunov method** Contact discontinuity **Rarefaction** wave Shock wave Two shock approximation R* Mignone, Plewa and Bodo, Astrophys. J. S160, 199 (2005) L* R L Rarefaction wave \longrightarrow shock wave > x

2. relaxation equation = advection + stiff equation

Gubser Flow with Finite η/s

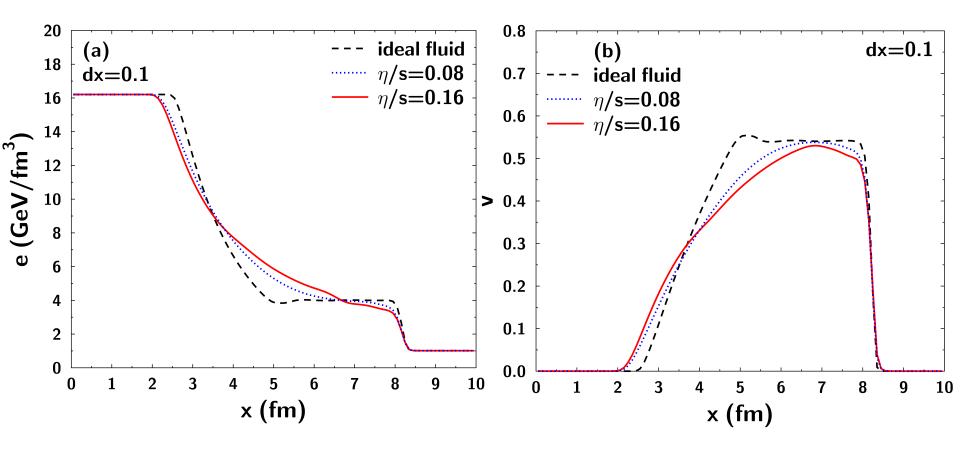


Same conditions in the calculation except for EoS.

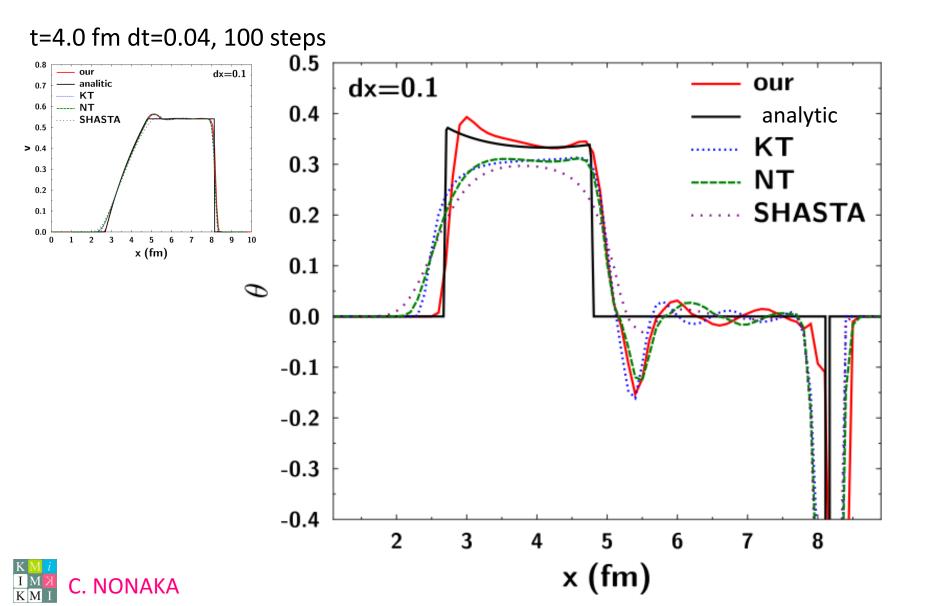
MUSIC, Marrochio et al, PRC91, 014903(2015)

Shocktube problem

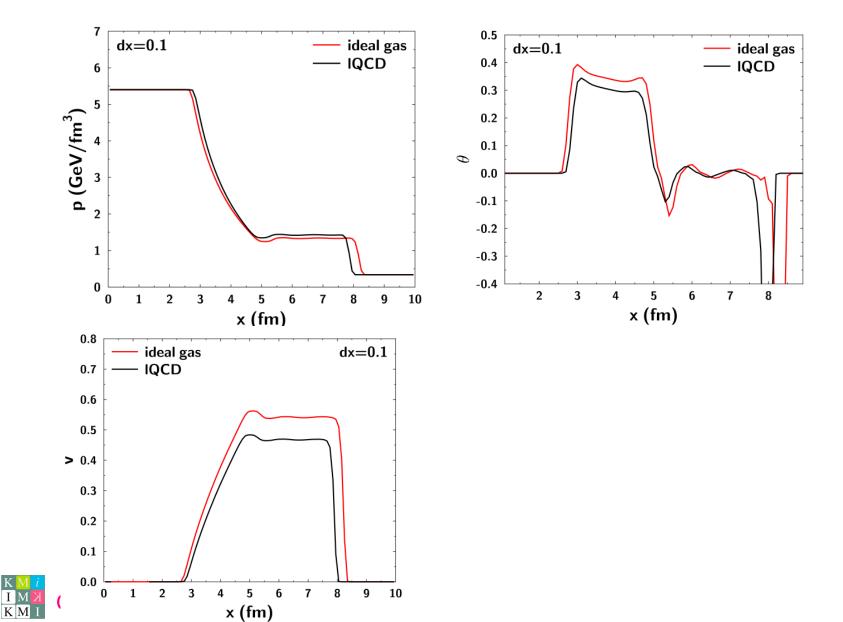
Viscous case



θ

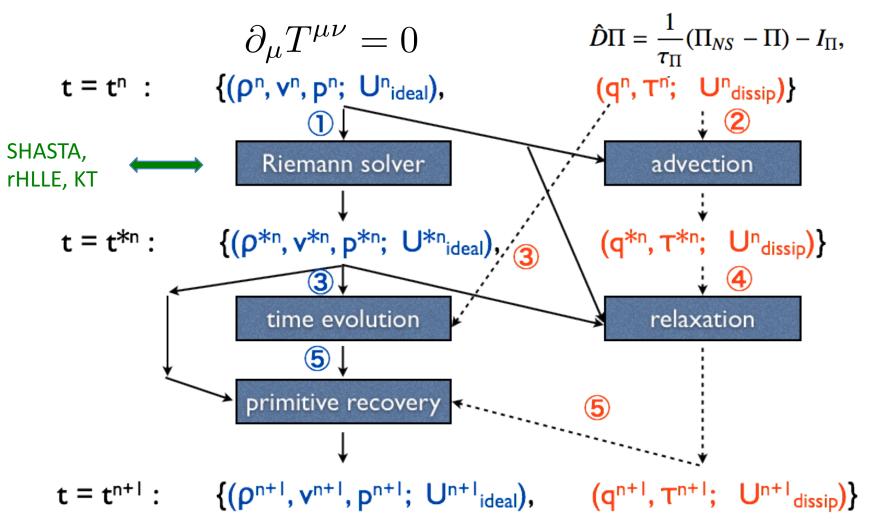


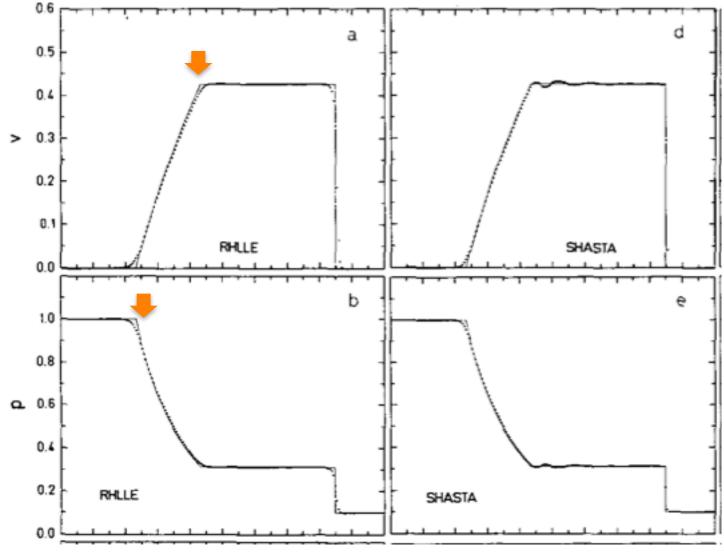
EoS Dependence



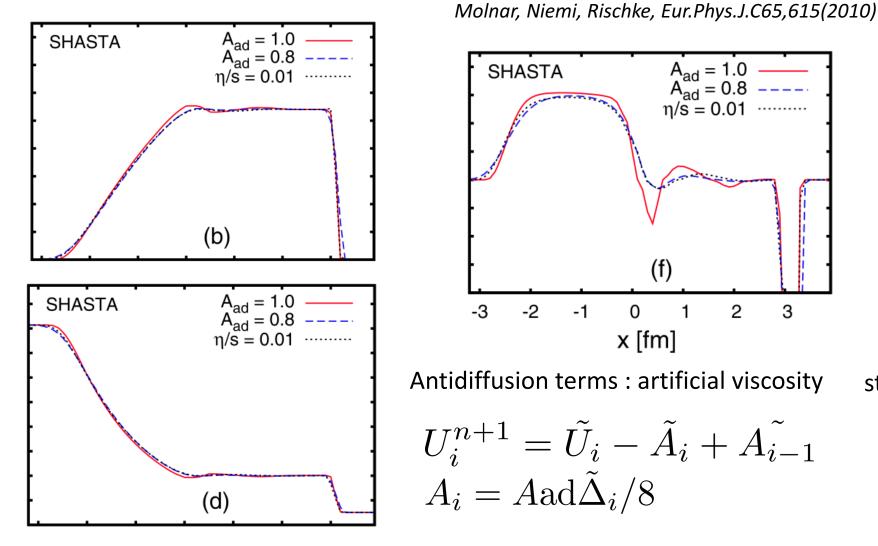
Numerical Method

Takamoto and Inutsuka, arXiv:1106.1732





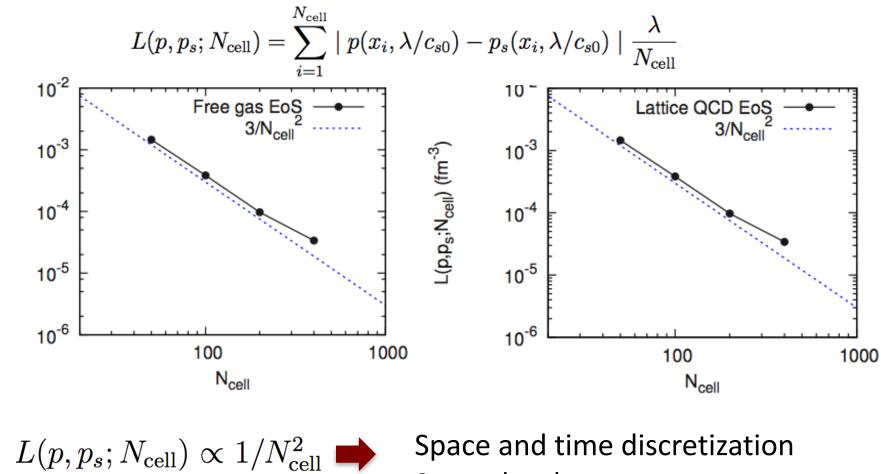
Artificial and Physical Viscosities



stability

KM / IMZ C. NONAKA

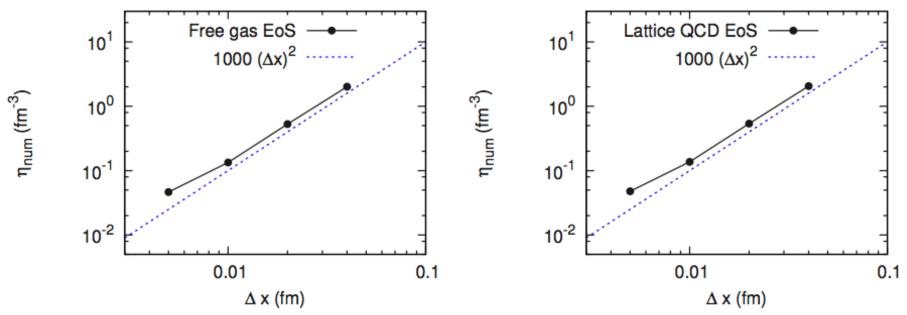
Convergence Speed



Second order accuracy

L(p,p_s;N_{cell}) (fm⁻³)

Numerical Dissipation



$$\eta_{\text{num}} = -\frac{3\lambda}{8\pi^2} c_{s0}(e_0 + p_0) \ln\left[1 - \frac{\pi}{2\lambda\delta p} L(p, p_s; N_{\text{cell}})\right]$$

• from fit of calculated data

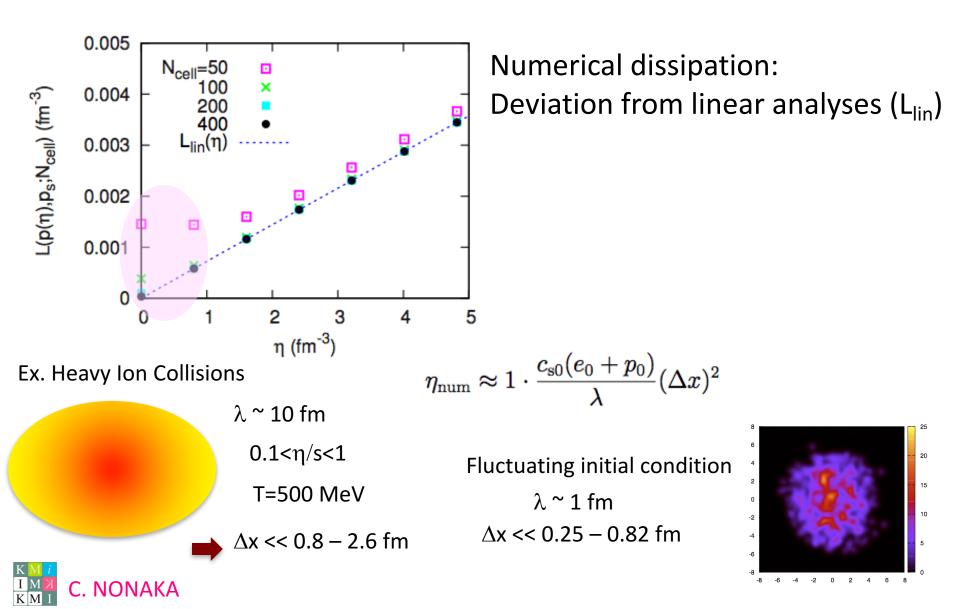
$$\eta_{
m num}pprox$$
 1000 $(\Delta x)^2$

$$\eta_{num} \approx 1$$
.

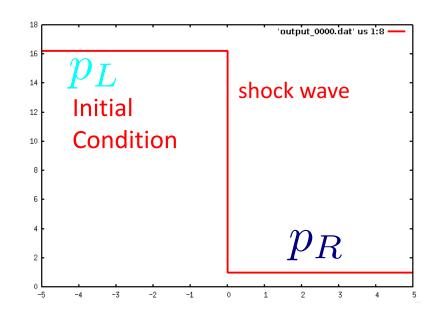
$$rac{c_{
m s0}(e_0+p_0)}{\lambda}(\Delta x)^2$$

$$L(p, p_s; N_{\text{cell}}) \propto \lambda \delta p / N_{\text{cell}}^2 = (\delta p / \lambda) \cdot (\Delta x)^2$$

$\eta_{num} \text{ vs Grid Size}$

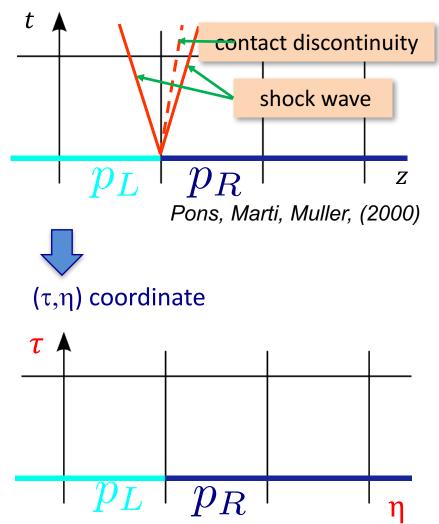


Riemann solution

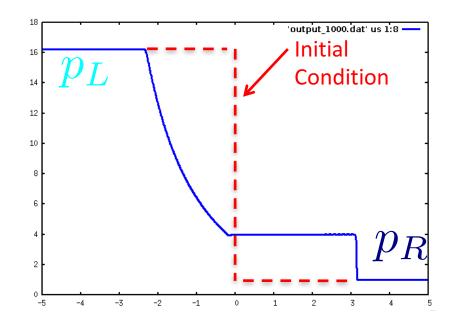


Okamoto, Akamatsu, CN, arXiv:1607.03630

Cartesian

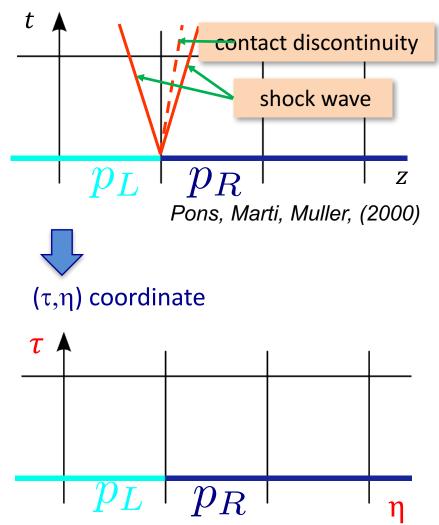


Riemann solution



Okamoto, Akamatsu, CN, arXiv:1607.03630

Cartesian



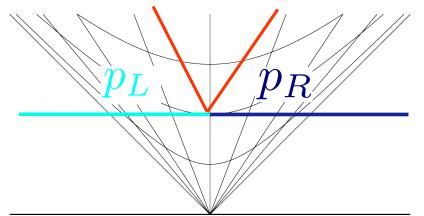
Okamoto, Akamatsu, CN, arXiv:1607.03630

Riemann solution Cartesian shock wave: L t 'output_0000.dat' us 1:8 contact discontinuity discontinuity(initial) 14 shock wave rarefaction wave 10 p_L p_R Ζ shock wave: R Pons, Marti, Muller, (2000) contact p_R discontinuity (τ,η) coordinates -3 -4 -2 -1 -5 Û. τ **Riemann solution:** Outside of the ligh-cone: Hydrodynamic states $(P_1 \text{ and } P_R)$ are constant. p_R

Z

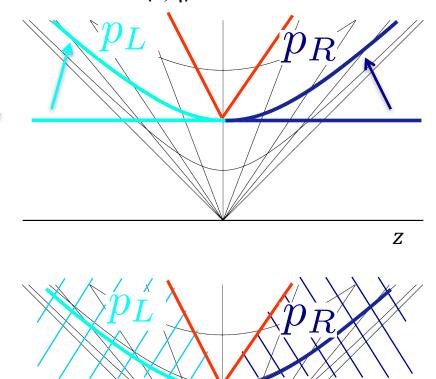
• Riemann solution

Cartesian



 (τ,η) coordinates

Okamoto, Akamatsu, CN, arXiv:1607.03630



Riemann solution: Outside of the ligh-cone: Hydrodynamic states are constant.

We can construct the Riemann solver in (τ,η) coordiates using that in Cartesian coordinates.

