$b \rightarrow c \{e, \mu, \tau\} v at$ Belle II

(Workshop style talk)

Phillip Urquijo B → T Workshop Nagoya March 2017

Outline

- Main aim: discuss key limiting factors to achieving high precision in b→c I v measurements.
- Key Belle II upgrades.
 - Tracking at low pT
 - Particle ID
 - Neutrals & beam background
- Towards a precise and unbiased $B \rightarrow D^{(*)} \tau v$
 - Leading uncertainties in $B \rightarrow D^{(*)} \tau$ v measurements
 - Outlook for $B \rightarrow D^{**} | v$.
 - $B \rightarrow D^{(*)} I v$, Bfs, FFs and LFUV.
- Tension with $B \rightarrow X \tau v$.

Statistical power projections

Track efficiencies

- VXD (Pixel + Strip) & CDC
- VXD-dedicated tracking based on cellular automaton model.
- -<pπ-slow> ~ 100 MeV

Phillip URQUIJO

MELBOURNE

Track Impact parameter

- Approx. 2x improvement to IP resolution.
- Mass resolution on J/ψ→μµ shows a 27% improvement with respect to Belle. Important for reducing fake D decays.
- ΔM resolution also improves by 30%.

5

MELBOURNE

Phillip URQUIJO

 $\sigma(p_t)$

Lepton identification

- e and μ ID.
 - c.f. Belle: track + ECL + ACC + TOF used for e, KLM only for μ .
 - Belle II: TOP, ARICH, dE/dx, ECL-shower depth&Zernike moments → optimisation for low momentum in progress.

Beam background

- Increases occupancy in inner Si layers can degrade tracking.
- Increases off-time energy deposition in the calorimeter.

type	source	rate [MHz]	-	component	background	generic $B\overline{B}$
radiative Bhabha	HER	1320	-	PXD	10000(580)	23
radiative Bhabha	LER	1294		SVD	284 (134)	108
radiative Bhabha (wide angle)	HER	40		CDC	654	810
radiative Bhabha (wide angle)	LER	85			150	010
Touschek scattering	HER	31		TOP	190	205
Touschek scattering	LER	83		ARICH	191	188
beam-gas interactions	HER	1		ECL	3470	510
beam-gas interactions	LER	156		BKLM	484	33
two-photon QED	-	206		EKLM	142	34

K_L ID & ECL

- ECL highly sensitive to beam background tackled with use of wave form sampling.
- K_L will be ID'd with KLM and ECL (use of timing in KLM not done at Belle)

$B \rightarrow D^{(*)} \tau v$

Aims

- R_{D*}, R_D, P(τ), P(D^{*}), dΓ/dq², dΓ/dp_D, dΓ/dp_I
- Challenges
 - M_{miss²} typically exhibits flat background and flat signal.
 - Beam induced background, scaling with luminosity.

Experiment	N _{BB} [10 ⁶]	Tag method	τ mode	Observables	Fit variables
Belle 07	535	Inclusive	evv,πv	B(B ⁰ →D ^{*+} l v)	M _{bc} tag
Belle 10	657	Inclusive	Ινν, πν	$B(B^{\text{-}} \rightarrow D^{(*)0} v)$	M _{bc} tag & p _{D0}
Babar 12	471	Hadronic	lvv	R_D, R_{D^*}, q^2	M _{miss} ² & p _l
Belle 15	772	Hadronic	lvv	$R_D,R_{D^*},q^2,Ip_I{}^*I$	M _{miss} ² & O _{NB} (E _{ECL})
Belle 16	772	Semileptonic	lvv	R _{D*} , Ip _I *I, Ip _D *I	
Belle 17	772	Hadronic	πν,ρν	R_{D^*}, P_{τ}	E _{ECL} & cosθ _{hel}

• q^2 , p_1 and, p_{D^*} are not unfolded

Summary of approaches @ Y(4S)

Experiment	Tag method	τ mode	RD	R _{D*}	ρ
Belle 07*	Inclusive	evv,πv	0.00.0.11	$0.04 \cdot 0.00$	
Belle 10*	Inclusive	Ινν, πν	0.38±0.11	0.34±0.08	-
Babar 12	Hadronic	l v v	0.440±0.058±0.042	0.332±0.024±0.018	-0.27
Belle 15	Hadronic	l v v	0.375±0.064±0.026	0.293±0.038±0.015	-0.32
Belle 16	Semileptonic	l v v	-	0.302±0.030±0.011	-
Belle 17	Hadronic	πν,ρν	-	0.270±0.035±0.027	-
LHCb 16	-	l v v	-	0.336±0.027±0.030	-
Belle ave.	SL+Had	-	0.374±0.061	0.296±0.022	-0.29
HFAG ave.	-	-	0.403±0.040±0.024	0.310±0.015±0.008	-0.23

Belle (private) and HFAG averages take into account correlations. Belle inclusive not in average (cannot accurately account for correlations). I symmetrised some errors for this table.

Belle only (i.e. single B-factory)

- Is there a consistent bias in our measurements? How?
 - Is it NP? Can we accurately test models?

$B \rightarrow D^{(*)} \tau v$ systematics @ Belle Belle PRD 92, 072014 (2015)

• 2017, Hadron tag, $\tau \rightarrow h v$

	Com	oined			
Source	$R(D^*)$	P_{τ}			
$D^{**}l^-\bar{\nu}_l$ + had. B composition	5.2%	0.17			
MC stat. for PDF construction	3.5%	0.16			
Fake D^* yield	2.0%	0.048			
Semileptonic decay model	1.9%	0.015		0 1	• 1
Efficiency corr. for $l^-/\pi^-/\rho^-$	1.8%	0.013	Source	Comb $R(D^*)$	P_{τ}
P_{τ} correction function	0.33%	0.012	$B \to D^{**}l^-\bar{\nu}_l$	0.17%	0.011
Efficiency uncertainty (MC stat.)	0.78%	0.008	$\bar{B} \to D^{**} l^- \bar{\nu}_l \ (100\% \ \text{error})$	0.84%	0.054
$\bar{B} \to D^* \bar{l}^- \bar{\nu}_l$ yield	0.65%	0.027	$B \to D^{**} \tau^- \bar{\nu}_l \ (100\% \ \text{error})$	2.7%	0.016
$M_{\rm miss}^2$ shape for $\bar{B} \to D^* l^- \bar{\nu}_l$	0.41%	0.001	$\bar{B} \to D^* K^- / \pi^- K_L^0$	$0.77\% \\ 0.25\%$	0.020 0.014
Fake D^* PDF shape	0.22%	0.001	Other K_L^0 mode (100% error)	0.28%	0.021
Total	7.1%	0.24	$\begin{array}{ c c } \hline & Other B decays \\ \hline & Other B $	1.4%	0.058
			Uther <i>B</i> decays (100% error)	$\frac{4.1\%}{5.0\%}$	0.14
Expected stat. error	$\parallel \sim 14\%$	~ 0.50	Total	J.270	0.17

$B \rightarrow D^{(*)} \tau v$ systematics @ Belle

Belle ar	'Xiv:	1612.00	529
Belle PRD	94,	072007	(2016)

	R(D)[%]	$R(D^*)$ [%]	Correlation
$D^{(*(*))}\ell\nu$ shapes	4.2	1.5	0.04
D^{**} composition	1.3	3.0	-0.63
Fake D yield	0.5	0.3	0.13
Fake ℓ yield	0.5	0.6	-0.66
D_s yield	0.1	0.1	-0.85
Rest yield	0.1	0.0	-0.70
Efficiency ratio f^{D^+}	2.5	0.7	-0.98
Efficiency ratio f^{D^0}	1.8	0.4	0.86
Efficiency ratio $f_{\text{eff}}^{D^{*+}}$	1.3	2.5	-0.99
Efficiency ratio $f_{\text{eff}}^{D^{*0}}$	0.7	1.1	0.94
CF double ratio g^+	2.2	2.0	-1.00
CF double ratio g^0	1.7	1.0	-1.00
Efficiency ratio $f_{\rm wc}$	0.0	0.0	0.84
$M_{\rm miss}^2$ shape	0.6	1.0	0.00
$o'_{\rm NB}$ shape	3.2	0.8	0.00
Lepton PID efficiency	0.5	0.5	1.00
Total	7.1	5.2	-0.32

- 2015, Hadron tag, $\tau \rightarrow I \vee V$
- Combining over systematics we get: $\rho = -0.40 \text{ B} \rightarrow \text{SL}, \rho = -0.22 \text{ other}$
- The sign on the correlation between R_D and R_{D^*} is opposite to Babar!

2016, Semileptonic tag,
 τ → I v v

	\mathcal{R}	$(D^*) \ [\%]$	
Sources	$\ell^{\rm sig} = e, \mu$	$\ell^{\rm sig} = e$	$\ell^{\rm sig} = \mu$
MC statistics for each PDF shape	2.2%	2.5%	3.9%
PDF shape of the normalization in $\cos \theta_{B-D^*\ell}$	$^{+1.1}_{-0.0}\%$	$^{+2.1}_{-0.0}\%$	$^{+2.8}_{-0.0}\%$
PDF shape of $B \to D^{**} \ell \nu_{\ell}$	$+1.0\ 0\ -1.7\ \%$	$^{+0.7}_{-1.3}\%$	$^{+2.2}_{-3.3}\%$
PDF shape and yields of fake $D^{(*)}$	1.4%	1.6%	1.6%
PDF shape and yields of $B \to X_c D^*$	1.1%	1.2%	1.1%
Reconstruction efficiency ratio $\varepsilon_{\rm norm}/\varepsilon_{\rm sig}$	1.2%	1.5%	1.9%
Modeling of semileptonic decay	0.2%	0.2%	0.3%
$\mathcal{B}(\tau^- o \ell^- \bar{\nu}_\ell \nu_\tau)$	0.2%	0.2%	0.2%
Total systematic uncertainties	$+3.4\ \%$ -3.5%	$^{+4.1}_{-3.7}\%$	$^{+5.9}_{-5.8}\%$

$B \rightarrow D^* \tau^- v$ with hadronic tag, $\tau \rightarrow I v v$

Leading systematic uncertainties (Belle)

	Experiment	Error profile*	SL tag R _{D*}	Had tag R _{D*} , τ→h v	Had tag R _D ∗, τ→I v v	Had tag R _D , τ→I v v
1	MC statistics	Gauss	2.2	3.5		
2	$B \rightarrow D^{**} I v modelling$	Uniform	+1, -1.7	0.7	1.5	4.2
3	$B \rightarrow D^* v$	Gauss	+1.3, -0.2	0.8		
4	D** decay modes	Uniform	(in 2)	(in 2)	1.3	3.0
5	Hadronic B decays	Uniform	1.1	4.4		
6	$B \rightarrow D^{**} \tau v$	Uniform	(in 2)	2.7		
7	Fake D ^(*)	Gauss	1.4	0.2	0.3	0.5
8	Fake lepton	Gauss		-	0.6	0.5
9	Lepton ID	Gauss	1.2	1.8	0.5	0.5
10	τBr	Gauss	0.2			
	Total		3.5	7.1	5.2	7.1

* Gauss = data driven, Uniform = nominal central value is arbitrary

Belle II Projections

- SL & Had tag full sim sensitivity studies in progress.
- SL background modelling will dominate error @ 50 ab⁻¹.

	ΔR(D) [%]			ΔR(D*) [%]		
	Stat	Sys	Total	Stat	Sys	Total
Belle 0.7 ab ⁻¹	14	6	16	6	3	7
Belle II 5 ab ⁻¹	5	3	6	2	2	3
Belle II 50 ab-1	2	3	3	1	2	2

B→τ Nagoya 2017

Limits on Type II 2HDM From Belle

Belle had tag $B \rightarrow D \tau v$, Stat errors only! (same case for Babar).

0.0

0.5

1.0

1.5

p_{D*} [GeV/c]

2.0

MELBOURNE

0.0

LAL Seminar, 2016

 \mathcal{B}

Unsubtracted

 Systematic errors will be large. Belle II must work to improve purity & measure B → D^(*,**) I v background

Figure B.13: Fit projections for q^2 in all four reconstruction samples. The region above $M_{\rm miss}^2 = 0.85 \,{\rm GeV^2 \, c^{-4}}$ is used.

Polarisation (see S.Hirose's talk)

- $P(\tau)$ measured.
 - Strongly stat.
 limited. & only
 done in hadronic
 tag.
- P(D*) possible too.

$$R(D^*) = 0.270 \pm 0.035(\text{stat.}) \stackrel{+0.028}{_{-0.025}}(\text{syst.})$$
$$P_{\tau}(D^*) = -0.38 \pm 0.51(\text{stat.}) \stackrel{+0.21}{_{-0.16}}(\text{syst.})$$

19

$B \rightarrow D^{**} | v$

- 3 problems to cover in Belle II
 - Modelling of $B \rightarrow D^{**} I v$ kinematics
 - Normalisation
 - Unmeasured $D^{**} \rightarrow$ modes, for saturation of $B \rightarrow X I v$
 - $B \rightarrow D(*)n\pi I v + B \rightarrow D(*)\eta I v etc.$

B→τ Nagoya 2017

D** decays

- No absolute Br measurements: using a B → D(*) π I v mode to calibrate all D** I v channels would be biased.
- Charm branching ratios need complementary information from hadronic B decays.

D		J	Observed	Possible
D_0^*	1P	1/2	Dπ	Dη
D_1^{\star}	1P	1/2	D*π	Dππ, Dη
D ₁	1P	3/2	D*π, Dππ	D ₀ *π, D ₀ *ρ, D ₀ *f ₀
D_2^*	1P	3/2	D*π, Dπ	Dππ
D'	2S			D(ρ,ππ), D*(η,π)
D'*	2S			D*(ρ,ππ), D(η,π)

No attempts at neutral modes, or modes with π^0 .

 \mathcal{B}

Decay Mode

 $\overline{B}{}^0 \to D_1^{\prime +} \ell^- \bar{\nu}_\ell \quad 86 \pm 18$

 $\overline{B}^0 \to D_0^{*+} \ell^- \bar{\nu}_\ell \ 142 \pm 26$

→)**

Narrow modes can be studied as q² differentials.

Broad modes and non-resonant contributions potentially overlap.

1.24

1.44

1.13

1.15

0.70

0.91

0.60

0.70

 $0.29 \pm 0.03 \pm 0.03$

 $0.15 \pm 0.02 \pm 0.01$

 $0.27 \pm 0.04 \pm 0.05$

 $0.26 \pm 0.05 \pm 0.04$

 $0.27 \pm 0.04 \pm 0.03$

 $0.31 \pm 0.07 \pm 0.05$

 $0.44 \pm 0.08 \pm 0.06$

Measurements

• $B \rightarrow D^{(*)} \pi I v$

- Normalised with
 DIvorXIv
- Strong model dependence in systematics particularly broad J=1/2 modes.

	Belle tagged J=3/2 & 1/2	Babar tagged J=3/2 & 1/2	Babar untagged J=3/2
N _{BB} [10 ⁶]	657	460	208
Error	%	%	%
Tracking		1.8-2.4	1.0-1.8
Particle ID	2	1.2-1.6	1.6-3.0
π ⁰ & γ Eff.		0.2-4.8	0.3-3.3
MC stats.	in stat.	-	1.8-5.6
Comb.&Cont.	-	0.2-10.4	-
Helicity corr.		1 5 1 2 0	0.1-0.7
Signal model	12-22	4.5-13.0	2040
PDFs		0.2-8.7	2.0-4.0
N _{BB}	-	-	2.7
D(*) Bfs	10	3-4.5	2.1-5.4
Norm	IU	4-6	-
Bkg	6	-	1.7-3.2
total sys	14-25	5.5-17	5.8-9.1
total stat	14-40	10-20	6-17

B→D** I v towards Belle II

- Much more information on differentials of narrow and broad controls signal modelling errors.
- More complete study of D** decay width with m²miss studies & hadronic modes.
- Studies in progress using SL and hadronic tags: expect O(10) improvement on seen modes compared to previous Belle study.

Modes	Width	Dominant decay
Ds	-	ΚΚπ
Ds*	-	$D_s \gamma$
D _{s0} *(2317)	<4 MeV	$D_s \pi^0$
D _{s1} (2460)	<4 MeV	$D_s^* \pi^0$
D _{s1} `(2536)	1 MeV	D*K
D _{s2} *(2573)	17 MeV	D ⁰ K

- The J=1/2 states are not broad.
- $D_{s1} \& D_{s1}$ ' have absolute Br.
- 60M B_s⁰ pairs / 1 ab⁻¹
- Often have >2 neutrals (π⁰ & v)
- Kinematic smearing
 B_s*→B_sγ, Δm_{Bs*}~49 MeV

$B_s \rightarrow D_s^{**} | v$

- Untagged methods can probe D_s^{**} modes.
- Tagging can constrain $B \rightarrow D_s^{(*)} I v$
 - Bs full recon. presented at ICHEP 2016 (F. Breibeck)

Belle PRD 92, 072013 (2015) Belle PRD 87, 072008 (2013)

Tag Method	Tag eff.	N _{Bs} /N _B	Yields in 121 fb ⁻¹ /5 ab ⁻¹										
			XIv	∆stat	∆sys	D	₅Iv	D	s*lv	D	_{s0} *lv	D	_{s2} *Iv
Untagged	2	f _{s/} f _{d,u} ≃0.25	2.7M			72	200	10	900	8	800	1	300
Lepton tag	0.1	f _{s/} f _{d,u} ≃0.25	135k			370	/15000	534	/22000	40	1600	70	/2800
D _s : φπ, K _S K,K*K	0.04	10 · f _{s/} f _{d,u}	27k	3%	7%	140	/6000	200	/8500	16	650	26	/1000
B _s full recon.	0.004	≫10	5400	2%	4%	15	/620	20	/880	2	70	3	/110

$B \rightarrow D^* | v \& B \rightarrow D | v$

- Aims
 - IV_{cb}I
 - LFUV of $B \rightarrow D^{(*)} \mu v / B \rightarrow D^{(*)} e v$.
 - NP current, e.g. right handed current via lepton helicity.
 - Normalisation of $B \rightarrow D^{(*)} \tau v$ (but already precise enough).
- $\bullet B \to D^* I v$
 - Model independent parameterisation of form factors (as of March 2017)
 - Improved low momentum tracking, and improved tracking efficiencies.
 - Use of tagging methods.
- $B \rightarrow D I v$
 - Tagging methods will reach normalisation precision limit.

$B \rightarrow D^* I v untagged$

-Pinc

28

MELBOURNE

PB

- Conservation of momentum: p_B is on a cone around (D*I) axis making an opening angle cosθ_{B,D*I}.
- Taking the sum of momenta of non-signal side of the decay, p_{incl}

$B \rightarrow D^* | v tagged$

Belle arXiv:1702.01521

$$\mathcal{B}(\bar{B}^0 \to D^{*+} e^- \bar{\nu}_e) = (5.04 \pm 0.15 \pm 0.23) \times 10^{-2}$$

$$\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_\mu) = (4.84 \pm 0.15 \pm 0.22) \times 10^{-2}$$

$$R_{e\mu} = \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} e^- \bar{\nu}_e)}{\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_\mu)} = 1.04 \pm 0.05 \pm 0.01$$

Model independent measurements Bigi et al., arXiv:1703.06124

 BGL expansion. More reliable B → D(*) I v differentials & errors for IVcbI and for background modelling in B → D(*) τ v.

$$\begin{aligned} \frac{d\Gamma(\bar{B} \to D^* l \bar{\nu}_l)}{dw \, d \cos \theta_v \, d \cos \theta_l \, d\chi} &= \frac{\eta_{\rm EW}^2 3m_B m_{D^*}^2}{4(4\pi)^4} \sqrt{w^2 - 1} \times & H_{\pm}(w) \\ & (1 - 2wr + r^2) G_F^2 |V_{cb}|^2 \times & f(z) = \\ & \{(1 - c_l)^2 s_v^2 H_+^2 + (1 + c_l)^2 s_v^2 H_-^2 & +4s_l^2 c_v^2 H_0^2 - 2s_l^2 s_v^2 \cos 2\chi H_+ H_- \\ & -4s_l(1 - c_l) s_v c_v \cos \chi H_+ H_0 & (3) & +4s_l(1 + c_l) s_v c_v \cos \chi H_- H_0 \}, \end{aligned}$$

$$H_{0}(w) = \mathcal{F}_{1}(w) / \sqrt{q^{2}},$$

$$H_{\pm}(w) = f(w) \mp m_{B}m_{D^{*}}\sqrt{w^{2} - 1} g(w)$$

$$f(z) = \frac{1}{P_{1+}(z)\phi_{f}(z)} \sum_{n=0}^{N} a_{n}^{f} z^{n},$$

$$\mathcal{F}_{1}(z) = \frac{1}{P_{1+}(z)\phi_{\mathcal{F}_{1}}(z)} \sum_{n=0}^{N} a_{n}^{\mathcal{F}_{1}} z^{n},$$

$$g(z) = \frac{1}{P_{1-}(z)\phi_{g}(z)} \sum_{n=0}^{N} a_{n}^{g} z^{n}.$$

BGL Fit:	Data + lattice	Data + lattice + LCSR	CLN Fit:	Data + lattice	Data + lattice + LCSR
$\chi^2/{ m dof}$	27.9/32	31.4/35	$\chi^2/{ m dof}$	34.3/36	34.8/39
$ V_{cb} $	$0.0417 \left({}^{+20}_{-21} ight)$	$0.0404 \begin{pmatrix} +16\\ -17 \end{pmatrix}$	$ V_{cb} $	0.0382(15)	0.0382(14)
a_0^f	0.01223(18)	0.01224(18)	$ ho_{D^*}^2$	$1.17 \begin{pmatrix} +15\\ -16 \end{pmatrix}$	1.16(14)
a_1^f	$-0.054 \left(^{+58}_{-43}\right)$	$-0.052\left(^{+27}_{-15} ight)$	$R_{1}(1)$	$1.391 \begin{pmatrix} +92\\ -88 \end{pmatrix}$	1.372(36)
a_2^f	$0.2 \begin{pmatrix} +7\\ -12 \end{pmatrix}$	$1.0 \begin{pmatrix} +0\\ -5 \end{pmatrix}$	$R_{2}(1)$	$0.913 \begin{pmatrix} +73\\ -80 \end{pmatrix}$	$0.916 \begin{pmatrix} +65 \\ -70 \end{pmatrix}$
$a_1^{\mathcal{F}_1}$	$-0.0100 \left(^{+61}_{-56}\right)$	$-0.0070\left(^{+54}_{-52} ight)$	$h_{A_1}(1)$	0.906(13)	0.906(13)
$a_2^{\mathcal{F}_1}$	0.12(10)	$0.089 \left(^{+96}_{-100} ight)$			
a_0^g	$0.012 \begin{pmatrix} +11 \\ -8 \end{pmatrix}$	$0.0289 \begin{pmatrix} +57\\ -37 \end{pmatrix}$			
a_1^g	$0.7 \begin{pmatrix} +3 \\ -4 \end{pmatrix}$	$0.08 \begin{pmatrix} +8\\ -22 \end{pmatrix}$			
a_2^g	$0.8 \begin{pmatrix} +2 \\ -17 \end{pmatrix}$	$-1.0(^{+20}_{-0})$			

Can we extend this to generic NP couplings?

Comparison of approaches @ Y(4S)

Tag Method	untagged	tagged
Br [10 ⁻²]	4.58	4.95
Errors	%	%
Track	4.50	1.6
Slow track	1.29	0.1
elD	0 10	0.2 (in tag)
μID	2.10	0.1 (in tag)
fake leptons	0.07	<0.1
B→D**Iv, FF	0.24	<0.1
B→D ^{**} lv, Bfs	0.57	0.2
D ^(*) Bfs	1.48	0.5
PDFs	0.22	0.9
Tag calibration	0.00	3.6
N _{BB}	1.38	1.4
f +0	1.35	1.1
τ _Β	0.59	0
π ⁰ efficiency	0.00	0.5
Total	5.8	4.5
Stat	0.7	2.2

Only Br compared. Untagged measurement predates tracking update in Belle: $\Delta \epsilon_{track}$ reduced by 3.

- Errors on tracking, PID, π⁰ efficiencies are data driven.
 - Slow pion Tracking in Belle II ~2x efficiency < 100 MeV
- Br needs better measure of N_{BB}, f₊₀ limited by precision of integrated luminosity measurement.
- Tag calibration error can be improved by choosing cleaner tags in larger data sets.
- Most errors cancel in LFUV measurement.
 - Belle tagged: stat±5%, sys±1%
 - Belle untagged (est. reanalysis in progress): stat±1%, sys±1%
 - Belle II total ±<< 1%.

B→τ Nagoya 2017

$B \rightarrow D | v$

data

 Best done with B tagging. Tag calibration with $B \rightarrow X I v$

data

 First model independent analysis of $b \rightarrow c | v$

	N O	N 9	
	$N \equiv 2$	$N \equiv 3$	N = 4
$a_{+,0}$	0.0127 ± 0.0001	0.0126 ± 0.0001	0.0126 ± 0.0001
$a_{+,1}$	-0.091 ± 0.002	-0.094 ± 0.003	-0.094 ± 0.003
$a_{+,2}$	0.34 ± 0.03	0.34 ± 0.04	0.34 ± 0.04
$a_{+,3}$	—	-0.1 ± 0.6	-0.1 ± 0.6
$a_{+,4}$	_	_	0.0 ± 1.0
$a_{0,0}$	0.0115 ± 0.0001	0.0115 ± 0.0001	0.0115 ± 0.0001
$a_{0,1}$	-0.058 ± 0.002	-0.057 ± 0.002	-0.057 ± 0.002
$a_{0,2}$	0.22 ± 0.02	0.12 ± 0.04	0.12 ± 0.04
$a_{0,3}$	_	0.4 ± 0.7	0.4 ± 0.7
$a_{0,4}$	_	_	0.0 ± 1.0
$\eta_{\rm EW} V_{cb} $	40.01 ± 1.08	41.10 ± 1.14	41.10 ± 1.14
$\chi^2/n_{ m df}$	24.7/16	11.4/16	11.3/16
Prob.	0.075	0.787	0.787

data

 $B \rightarrow DIv$

$B \rightarrow D | v$

Tag Method	tagged
Br [10 ⁻²]	2.31
Errors	%
Track	1.6
B→D**lv, FF	0.7
B→D**lv, Bfs	0.8
D ^(*) Bfs	1.8
PDFs	0.5
particle ID	1.0
Tag calibration	3.3
Luminosity	1.4
τ _B	0.2
π ⁰ efficiency	0.6
Total	4.6
Stat	1.3

Sample	Signal yield	\mathcal{B} [%]
$B^0 \to D^- e^+ \nu_e$	$2848 \pm 72 \pm 17$	$2.44 \pm 0.06 \pm 0.12$
$B^0 o D^- \mu^+ \nu_\mu$	$2302\pm 63\pm 13$	$2.39 \pm 0.06 \pm 0.11$
$B^+ \to \bar{D}^0 e^+ \nu_e$	$6456 \pm 126 \pm 66$	$2.57 \pm 0.05 \pm 0.13$
$B^+ \to \bar{D}^0 \mu^+ \nu_\mu$	$5386 \pm 110 \pm 51$	$2.58 \pm 0.05 \pm 0.13$
$B^0 \to D^- \ell^+ \nu_\ell$	$5150 \pm 95 \pm 29$	$2.39 \pm 0.04 \pm 0.11$
$B^+ \to \bar{D}^0 \ell^+ \nu_\ell$	$11843 \pm 167 \pm 120$	$2.54 \pm 0.04 \pm 0.13$
$B \to D\ell\nu_\ell$	$16992 \pm 192 \pm 142$	$2.31 \pm 0.03 \pm 0.11$

- Tag correction dominates use cleaner modes at Belle II.
- Ratio not explicitly measured in Belle. Errors should cancel.

R μ e stat±6%, sys±1% (estimated).

In Belle II
 Rµe stat±<1%, sys±<1%. = total±1%

$B \rightarrow X \tau v$

- Very challenging. Relies on modelling of m^{2}_{miss} and $B \rightarrow$ X I v kinematics.
- Dubious errors quoted by ALEPH (no error on $B \rightarrow D^{**} | v!$)
- Work in progress...

Summary

- B \rightarrow D* τ v @ 2%
- $B \rightarrow D \tau v @ 3\%$
- B \rightarrow D* I v LFUV << 1%
- B \rightarrow D I v LFUV @ 1%
- $B \rightarrow D^{**} I v$: never done comprehensively at B-factories. A long way to go to eliminate this as bias on $B \rightarrow D^{(*)} \tau v$.
- $B \rightarrow D^{**} \tau v$ Florian will discuss this tomorrow

