Muon g-2: a new data-based analysis

D. Nomura (KEK)

talk at 2018 WPI-next Mini-workshop "Hints for New Physics in Heavy Flavors" @ Nagoya U.

November 16, 2018

Ref: A. Keshavarzi, DN and T. Teubner (KNT) Phys. Rev. D97 (2018) 114025 [arXiv:1802.02995]

D. Nomura (KEK)

SM prediction for muon g-2

Muon g-2: introduction

Lepton magnetic moment $\vec{\mu}$:

$$\vec{\mu} = -g \frac{e}{2m} \vec{s}$$
, $(\vec{s} = \frac{1}{2} \vec{\sigma}$ (spin), $g = 2 + 2F_2(0)$)

where

$$\overline{u}(p+q)\Gamma^{\mu}u(p) = \overline{u}(p+q)\left(\gamma^{\mu}F_{1}(q^{2}) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m}F_{2}(q^{2})\right)u(p)$$

Anomalous magnetic moment: $a \equiv (g-2)/2 \ (=F_2(0))$

Historically,

★ g = 2 (tree level, Dirac) ★ $a = \alpha/(2\pi)$ (1-loop QED, Schwinger)

Today, still important, since...

★ One of the most precisely measured quantities:

 $a_{\mu}^{\exp} = 11\ 659\ 208.9(6.3) \times 10^{-10}$ [0.5ppm]

★ Extremely useful in probing/constraining physics beyond the SM

SM prediction for muon g-2

(Bennett et al)

Muon g-2: previous exp. (after 1960)

Experiment	Years	Polarity	$a_{\mu} \times 10^{10}$	Precision [ppm]	Sensitivity
CERN I	1961	μ^+	11450000(220000)	4300	2-lo	op QED contrib. (3600 ppm)
CERN II	1962-1968	μ^+	11661600(3100)	270	3-lo	op QED contrib. (260 ppm)
CERN III	1974-1976	μ^+	11659100(110)	10	had	ronic vacuum polarization
CERN III	1975-1976	μ^{-}	11659360(120)	10	Com	(60 ppm)
BNL	1997	μ^+	11659251(150)	13		
BNL	1998	μ^+	11659191(59)	5	4-lo	op QED contrib. (3.3 ppm)
BNL	1999	μ^+	11659202(15)	1.3	elec	troweak contrib. (1.3 ppm)
BNL	2000	μ^+	11659204(9)	0.73	had	ronic light-by-light contrib.
BNL	2001	μ^{-}	11659214(9)	0.72	had	ronic NLO vacuum pol.
Average			11659208.0(6.3)	0.54	contrib. (-0.85 ppm)	

Table from BNL-E821 final report, Phys. Rev. D 73 (2006) 072003

Testing the SM for more than 50 years! 2 more exp. to come: those from Fermilab and J-PARC

D. Nomura (KEK)

SM prediction for muon g-2

Breakdown of SM prediction for muon g-2

	<u>2011</u>		<u>2018</u>		
QED	11658471.81 (0.02)	\longrightarrow	11658471.90(0.01) [arXiv:1712.06060]		
EW	15.40 (0.20)	\longrightarrow	15.36 (0.10) [Phys. Rev. D 88 (2013) 053005]		
LO HLbL	10.50 (2.60)	\longrightarrow	9.80 (2.60) [EPJ Web Conf. 118 (2016) 01016]		
NLO HLbL			0.30 (0.20) [Phys. Lett. B 735 (2014) 90]		
	HLMNT11		<u>KNT18</u>		
LO HVP	694.91 (4.27)	\longrightarrow	693.27 (2.46) this work		
NLO HVP	-9.84 (0.07)	\longrightarrow	-9.82 (0.04) this work		
NNLO HVP			1.24 (0.01) [Phys. Lett. B 734 (2014) 144]		
Theory total	11659182.80 <mark>(4.94)</mark>	\longrightarrow	11659182.05 (3.56) this work		
Experiment			11659209.10 (6.33) world avg		
Exp - Theory	26.1 (8.0)	\longrightarrow	27.1 (7.3) this work		
Δa_{μ}	3.3σ	\rightarrow	3.7 σ this work		
(HVP: Hadronic Vacuum Polarization) (HLbL: Hadronic Light-by-Light) Slide by A. Keshavarzi (Liverpool) at 'Muon $g - 2$ Workshop' at Mainz, June 18-22, 2018					
D. Nomura (KEK)	SM predicti	on for mu	on g-2 November 16, 2018 4 / 28		

Hadronic Contributions

There are several hadronic contributions:

LO: Leading Order (or Vacuum Polarization) Hadronic Contribution NLO: Next-to-Leading Order Hadronic Contribution I-by-I: Hadronic light-by-light Contribution

The diagram to be evaluated:

pQCD not useful. Use the dispersion relation and the optical theorem.

$$a_{\mu}^{\rm had,LO} = \frac{m_{\mu}^2}{12\pi^3} \int_{s_{\rm th}}^{\infty} ds \ \frac{1}{s} \hat{K}(s) \sigma_{\rm had}(s)$$

• Weight function $\hat{K}(s)/s = \mathcal{O}(1)/s$ \implies Lower energies more important $\implies \pi^{+}\pi^{-}$ channel: 73% of total $a_{\mu}^{\text{had,LO}}$

- Lots of new input $\sigma(e^+e^-
 ightarrow$ hadrons) data
- Improvements in the estimates of uncertainties due to radiative corrections (Vacuum Polarization Radiative Corrections & Final State Radiations)
- Improvements in data-combination method

• Lots of new input $\sigma(e^+e^- ightarrow$ hadrons) data

- Improvements in the estimates of uncertainties due to radiative corrections (Vacuum Polarization Radiative Corrections & Final State Radiations)
- Improvements in data-combination method

Channel	Energy range [GeV]	$a_{\mu}^{\rm had,LOVP} \times 10^{10}$	$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \times 10^4$	New data	
	Chiral perturbation the	eory (ChPT) threshold contr	ibutions		Breakdown of contributions
$\pi^0 \gamma$	$m_x \le \sqrt{s} \le 0.600$	0.12 ± 0.01	0.00 ± 0.00		to a (had $IO VD$) from
$\pi^{+}\pi^{-}$	$2m_{\pi} \le \sqrt{s} \le 0.305$	0.87 ± 0.02	0.01 ± 0.00		$u_{\mu}(hau, LOVP)$ from
$\pi^{+}\pi^{-}\pi^{0}$	$3m_{\pi} \le \sqrt{s} \le 0.660$	0.01 ± 0.00	0.00 ± 0.00		various hadronic final states
117	$m_{\eta} \le \sqrt{s} \le 0.660$	0.00 ± 0.00	0.00 ± 0.00		various nauronic final states
	Data based c	hannels ($\sqrt{s} \le 1.937$ GeV)			
$\pi^{0}\gamma$	$0.600 \le \sqrt{s} \le 1.350$	4.46 ± 0.10	0.36 ± 0.01	[65]	
<i>π</i> ⁻ <i>π</i> ⁻	$0.305 \le \sqrt{s} \le 1.937$	502.97 ± 1.97	34.26 ± 0.12	[34,35]	
<i>π</i> ⁻ <i>π</i> ⁻ <i>π</i> ⁰	$0.660 \le \sqrt{s} \le 1.937$	47.79 ± 0.89	4.77 ± 0.08	[36]	
<i>π π π π</i>	$0.613 \le \sqrt{s} \le 1.937$	14.87 ± 0.20	4.02 ± 0.05	[40,42]	
$\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}$	$0.850 \le \sqrt{s} \le 1.937$	19.39 ± 0.78 0.00 ± 0.00	5.00 ± 0.20 0.33 ± 0.03	[44]	
$(2\pi^{+}2\pi^{-}\pi^{0})_{noy}$	$1.013 \le \sqrt{s} \le 1.937$	0.99 ± 0.09	0.33 ± 0.03		We have included new data sets
$3\pi^{-}3\pi^{-}$	$1.313 \le \sqrt{s} \le 1.937$	0.23 ± 0.01	0.09 ± 0.01	[00]	
$(2\pi^{+}2\pi^{-}2\pi^{''})_{nayo}$	$1.322 \le \sqrt{s} \le 1.937$	1.35 ± 0.17	0.51 ± 0.06		from ~ 30 papers,
K * K *	$0.988 \le \sqrt{s} \le 1.937$	23.03 ± 0.22	3.37 ± 0.03	[45,46,49]	
K ^o _S K ^o _L	$1.004 \le \sqrt{s} \le 1.937$	13.04 ± 0.19	1.77 ± 0.03	[50,51]	in addition to those included
КК л	$1.260 \le \sqrt{s} \le 1.937$	2.71 ± 0.12 1.02 ± 0.00	0.89 ± 0.04	[53,54]	
KK2π	$1.350 \le \sqrt{s} \le 1.957$	1.93 ± 0.08 0.70 ± 0.02	0.75 ± 0.03 0.00 ± 0.00	[50,53,55]	in the HLMNT11 analysis
ηγ w= ⁺ = ⁻	$1.001 \le \sqrt{3} \le 1.700$	1.20 ± 0.02	0.09 ± 0.00 0.30 ± 0.02	[67]	
$(n\pi^{+}\pi^{-}\pi^{0})$	$1.091 \le \sqrt{3} \le 1.937$ $1.333 \le \sqrt{5} \le 1.937$	1.29 ± 0.00 0.60 ± 0.15	0.39 ± 0.02 0.21 ± 0.05	[08,09]	
"2"+2"-	$1.338 \le \sqrt{s} \le 1.937$	0.08 ± 0.01	0.03 ± 0.00	[70]	
100	$1.333 \le \sqrt{s} \le 1.937$	0.31 ± 0.03	0.00 ± 0.00 0.10 ± 0.01	[70.71]	We have included \sim 30 hadronic
$\alpha(\rightarrow \pi^0 \gamma) \pi^0$	$0.920 \le \sqrt{s} \le 1.937$	0.88 ± 0.02	0.19 ± 0.00	[72,73]	C
nd	$1.569 \le \sqrt{s} \le 1.937$	0.42 ± 0.03	0.15 ± 0.01		final states
$\phi \rightarrow$ unaccounted	$0.988 \le \sqrt{s} \le 1.029$	0.04 ± 0.04	0.01 ± 0.01		
$\eta \omega \pi^0$	$1.550 \le \sqrt{s} \le 1.937$	0.35 ± 0.09	0.14 ± 0.04	[74]	
$\eta \rightarrow npp K \bar{K}_{roden K\bar{K}}$	$1.569 \le \sqrt{s} \le 1.937$	0.01 ± 0.02	0.00 ± 0.01	[53,75]	
pp	$1.890 \le \sqrt{s} \le 1.937$	0.03 ± 0.00	0.01 ± 0.00	[76]	At $2 \lesssim \sqrt{s} \lesssim 11$ GeV,
nñ	$1.912 \le \sqrt{s} \le 1.937$	0.03 ± 0.01	0.01 ± 0.00	[77]	we use inclusively measured data
	Estimated cont	ributions ($\sqrt{s} \le 1.937$ GeV)			we use inclusively measured data
$(\pi^{+}\pi^{-}3\pi^{0})_{ma}$	$1.013 \le \sqrt{s} \le 1.937$	0.50 ± 0.04	0.16 ± 0.01		
$(\pi^+\pi^-4\pi^0)_{max}$	$1.313 \le \sqrt{s} \le 1.937$	0.21 ± 0.21	0.08 ± 0.08		
ККЗл	$1.569 \le \sqrt{s} \le 1.937$	0.03 ± 0.02	0.02 ± 0.01		At higher energies > 11 GeV
$\omega(\rightarrow npp)2\pi$	$1.285 \le \sqrt{s} \le 1.937$	0.10 ± 0.02	0.03 ± 0.01		At higher energies \gtrsim 11 GeV,
$\omega(\rightarrow npp)3\pi$	$1.322 \le \sqrt{s} \le 1.937$	0.17 ± 0.03	0.06 ± 0.01		
$\omega(\rightarrow npp)KK$	$1.569 \le \sqrt{s} \le 1.937$	0.00 ± 0.00	0.00 ± 0.00		we use pool
$\eta \pi^{+} \pi^{-} 2 \pi^{0}$	$1.338 \le \sqrt{s} \le 1.937$	0.08 ± 0.04	0.03 ± 0.02		
	Other contril	putions ($\sqrt{s} > 1.937$ GeV)			
Inclusive channel	$1.937 \le \sqrt{s} \le 11.199$	43.67 ± 0.67	82.82 ± 1.05	[56,62,63]	
J/ψ		6.26 ± 0.19	7.07 ± 0.22		
ψ'		1.58 ± 0.04	2.51 ± 0.06		
$\Upsilon(1S - 4S)$		0.09 ± 0.00	1.06 ± 0.02		
pQCD	$11.199 \le \sqrt{s} \le \infty$	2.07 ± 0.00	124.79 ± 0.10		
		(02.26) 2.46	076111111		

Table from KNT18, Phys. Rev. D97 (2018) 114025

D. Nomura (KEK)

November 16, 2018 9 / 28

• Lots of new input $\sigma(e^+e^- ightarrow$ hadrons) data

- Improvements in the estimates of uncertainties due to radiative corrections (Vacuum Polarization Radiative Corrections & Final State Radiations)
- Improvements in data-combination method

$\sigma^0_{\mathrm{had},\gamma}:$ vacuum polarisation corrections

 \Rightarrow Photon VP corresponds to higher order contributions to $a_{\mu}^{\rm had,\,VP}$

- \Rightarrow Fully updated, self-consistent VP routine: [vp_knt_v3_0], available for distribution
 - \rightarrow Cross sections undressed with full photon propagator (must include imaginary part), $\sigma_{\rm had}^0(s) = \sigma_{\rm had}(s) |1 \Pi(s)|^2$
- $\Rightarrow \text{ If correcting data, apply corresponding radiative correction uncertainty} \\ \rightarrow \text{Take } \frac{1}{3} \text{ of total correction per channel as conservative extra uncertainty}$

Slide by A. Keshavarzi (Liverpool) at 'Muon g-2 Workshop' at Mainz, June 18-22, 2018

D. Nomura (KEK)

SM prediction for muon g-2

11/28

$\sigma_{\rm had \ \gamma}^0$: final state radiation corrections

 \Rightarrow Photon FSR formally higher order corrections to $a_u^{\rm had,\,VP}$

- \Rightarrow Cannot be unambiguously separated, not accounted for in HO contributions
 - \rightarrow Must be included as part of 1PI hadronic blobs
- \Rightarrow Experiment may cut/miss photon FSR \rightarrow Must be added back
- \Rightarrow For $\pi^+\pi^-$, sQED approximation [Eur. Phys. J. C 24 (2002) 51, Eur. Phys. J. C 28 (2003) 261]
- \Rightarrow For higher multiplicity states, Need new, more developed tools to increase difficult to estimate correction precision here
 - (e.g. CARLOMAT 3.1 [Eur.Phys.J. C77 (2017) no.4, 254]?) . Apply conservative uncertainty

Slide by A. Keshavarzi (Liverpool) at 'Muon g = 2 Workshop' at Mainz, June 18-22, 2018

- Lots of new input $\sigma(e^+e^-
 ightarrow$ hadrons) data
- Improvements in the estimates of uncertainties due to radiative corrections (Vacuum Polarization Radiative Corrections & Final State Radiations)
- Improvements in data-combination method

Data Combination

To evaluate the vacuum polarization contribution, we have to combine lots of experimental data.

To do so, we usually construct a χ^2 function and find the value of R(s) at each bin which minimizes χ^2 .

Naively, the χ^2 function defined as

$$\chi^2(\{\overline{R}_i\}) \equiv \sum_{n=1}^{N_{ ext{exp}}} \sum_{i=1}^{N_{ ext{bin}}} \sum_{j=1}^{N_{ ext{bin}}} (R_i^{(n)} - \overline{R}_i) (V_n^{-1})_{ij} (R_j^{(n)} - \overline{R}_j) \;,$$

where V_n is the cov. matrix of the *n*-th exp.,

$$V_{n,ij} = \begin{cases} (\delta R_{i,\text{stat}}^{(n)})^2 + (\delta R_{i,\text{sys}}^{(n)})^2 & (\text{for } i = j) \\ (\delta R_{i,\text{sys}}^{(n)})(\delta R_{j,\text{sys}}^{(n)}) & (\text{for } i \neq j) \end{cases}$$

may seem OK, but when there are non-negligible normalization uncertainties in the data, we have to be more careful.

D. Nomura (KEK)

SM prediction for muon g-2

χ^2 vs normalization error: d'Agostini bias

G. D'Agostini, Nucl. Instrum. Meth. A346 (1994) 306 We first consider an observable x whose true value is 1. Suppose that there is an experiment which measures xand whose normalization uncertainty is 10%. Now, assume that this experiment measured x twice:

$$\begin{array}{ll} \mbox{1st result:} & 0.9\pm 0.1_{\rm stat}\pm 10\%_{\rm syst} \;, \\ \mbox{2nd result:} & 1.1\pm 0.1_{\rm stat}\pm 10\%_{\rm syst} \;. \end{array}$$

Taking the systematic errors 0.09 and 0.11, respectively, the covariance matrix and the χ^2 function are

$$egin{aligned} (\mathsf{cov.}) &= egin{pmatrix} 0.1^2 + 0.09^2 & 0.09 \cdot 0.11 \ 0.09 \cdot 0.11 & 0.1^2 + 0.11^2 \end{pmatrix} \ , \ \chi^2 &= egin{pmatrix} x - 0.9 & x - 1.1 \end{pmatrix} (\mathsf{cov.})^{-1} egin{pmatrix} x - 0.9 \ x - 1.1 \end{pmatrix} \ . \end{aligned}$$

 χ^2 takes its minimum at x=0.98: Biased downwards!

d'Agostini bias (2): improvement by iterations

What was wrong? In the previous page,

$$\begin{array}{ll} \mbox{1st result:} & 0.9\pm 0.1_{\rm stat}\pm 10\%_{\rm syst} \ , \\ \mbox{2nd result:} & 1.1\pm 0.1_{\rm stat}\pm 10\%_{\rm syst} \ . \end{array}$$

we took the syst. errors 0.09 and 0.11, respectively, which made the downward bias. Instead, we should take 10% of some estimator \bar{x} as the syst. errors. Then,

$$(ext{cov.}) = egin{pmatrix} 0.1^2 + (0.1ar{x})^2 & (0.1ar{x})^2 \ (0.1ar{x})^2 & 0.1^2 + (0.1ar{x})^2 \end{pmatrix} \,, \ \chi^2 = egin{pmatrix} x - 0.9 & x - 1.1 \end{pmatrix} (ext{cov.})^{-1} egin{pmatrix} x - 0.9 \ x - 1.1 \end{pmatrix} \,.$$

 χ^2 takes its minimum at x = 1.00: Unbiased! In more general cases, we use iterations: we find an estimator for the next round of iteration by χ^2 -minimization. R.D.Ball et al, JHEP 1005 (2010) 075.

D. Nomura (KEK)

SM prediction for muon g-2

 $\sigma(e^+e^-
ightarrow \pi^+\pi^-)$ data

D. Nomura (KEK)

SM prediction for muon g-2

$\sigma(e^+e^- ightarrow \pi^+\pi^-)$: relative differences

Contribution to $(g-2)_{\mu}$ from $\pi^+\pi^-$ channel

Fig. from KNT18, Phys. Rev. D97 (2018) 114025

Other notable exclusive channels [KNT18: arXiv:1802.02995, PRD (in press)]

Slide by A. Keshavarzi (Liverpool) at 'Muon g - 2 Workshop' at Mainz, June 18-22, 2018

KNT18 $a_{\mu}^{had, VP}$ update

Slide by A. Keshavarzi (Liverpool) at 'Muon g - 2 HVP Workshop' at KEK, Feb. 12-14, 2018

D. Nomura (KEK)

SM prediction for muon g-2

November 16, 2018 22 / 28

Breakdown of SM prediction for muon g-2

	<u>2011</u>		<u>2018</u>			
QED	11658471.81 <mark>(0.02)</mark>	\longrightarrow	11658471.90 (0.01) [arXiv:1712.06060]			
EW	15.40 (0.20)	\longrightarrow	15.36 (0.10) [Phys. Rev. D 88 (2013) 053005]			
LO HLbL	10.50 (2.60)	\longrightarrow	9.80 (2.60) [EPJ Web Conf. 118 (2016) 01016]			
NLO HLbL			0.30 (0.20) [Phys. Lett. B 735 (2014) 90]			
	HLMNT11		<u>KNT18</u>			
LO HVP	694.91 (4.27)	\longrightarrow	693.27 (2.46) this work			
NLO HVP	-9.84 (0.07)	\longrightarrow	-9.82 (0.04) this work			
NNLO HVP			1.24 (0.01) [Phys. Lett. B 734 (2014) 144]			
Theory total	11659182.80 (4.94)	\longrightarrow	11659182.05 (3.56) this work			
Experiment			11659209.10 (6.33) world avg			
Exp - Theory	26.1 (8.0)	\longrightarrow	27.1 (7.3) this work			
Δa_{μ}	3.3σ	\rightarrow	3.7 σ this work			
/ <mark>P: Hadronic Vacuum Polarization)</mark> . <mark>bL: Hadronic Light-by-Light)</mark> de by A. Keshavarzi (Liverpool) at 'Muon <i>g</i> — 2 Workshop' at Mainz, June 18-22, 2018						
D. Nomura (KEK)	SM predicti	on for mu	ion g-2 November 16, 2018 23 / 28			

(H' (H Sli

Exp. value of muon g-2 vs SM prediction

KNT18 update

Comparison with HLMNT11

Channel	This work (KNT18)	HLMNT11	Difference
$\pi^+\pi^-$	502.99 ± 1.97	505.77 ± 3.09	-2.78 ± 3.66
$\pi^{+}\pi^{-}\pi^{0}$	47.82 ± 0.89	47.51 ± 0.99	0.31 ± 1.33
$\pi^+\pi^-\pi^+\pi^-$	15.17 ± 0.21	14.65 ± 0.47	0.52 ± 0.51
$\pi^+\pi^-\pi^0\pi^0$	19.80 ± 0.79	20.37 ± 1.26	-0.57 ± 1.49
K^+K^-	23.05 ± 0.22	22.15 ± 0.46	0.90 ± 0.51
$K_{S}^{0}K_{L}^{0}$	13.05 ± 0.19	13.33 ± 0.16	-0.28 ± 0.25
Inclusive channel	41.27 ± 0.62	41.40 ± 0.87	-0.13 ± 1.07
Total	693.27 ± 2.46	694.91 ± 4.27	-1.64 ± 4.93

- $\Rightarrow \text{Biggest difference in } 2\pi \text{ channel} \\ \rightarrow \text{ large reduction in mean} \\ \text{ and uncertainty} \end{cases}$
- ⇒ Tensions with HLMNT11 analysis for both two-kaon channels
- \Rightarrow Overall agreement with HLMNT11
- ⇒ Notable improvement of about one third in uncertainty

Slide by A. Keshavarzi (Liverpool) at 'Muon g = 2 HVP Workshop' at KEK, Feb. 12-14, 2018

Comparison with other similar works

Channel	This work (KNT18)	DHMZ17	Difference
$\pi^+\pi^-$	503.74 ± 1.96	507.14 ± 2.58	-3.40 ± 3.24
$\pi^{+}\pi^{-}\pi^{0}$	47.70 ± 0.89	46.20 ± 1.45	1.50 ± 1.70
$\pi^+\pi^-\pi^+\pi^-$	13.99 ± 0.19	13.68 ± 0.31	0.31 ± 0.36
$\pi^+\pi^-\pi^0\pi^0$	18.15 ± 0.74	18.03 ± 0.54	0.12 ± 0.92
K^+K^-	23.00 ± 0.22	22.81 ± 0.41	0.19 ± 0.47
$K_{S}^{0}K_{L}^{0}$	13.04 ± 0.19	12.82 ± 0.24	0.22 ± 0.31
$1.8 \leq \sqrt{s} \leq 3.7~{ m GeV}$	$34.54\pm0.56~\mathrm{(data)}$	$33.45 \pm 0.65 \text{ (pQCD)}$	1.09 ± 0.86
Total	693.3 ± 2.5	693.1 ± 3.4	0.2 ± 4.2

- \Rightarrow Total estimates from two analyses in very good agreement
- \Rightarrow Masks much larger differences in the estimates from individual channels
- \Rightarrow Unexpected tension for 2π considering the data input likely to be similar
 - \rightarrow Points to marked differences in way data are combined
 - \rightarrow From 2π discussion: $a_{\mu}^{\pi^+\pi^-}$ (Weighted average) = 509.1 \pm 2.9
- \Rightarrow Compensated by lower estimates in other channels

 \rightarrow For example, the choice to use pQCD instead of data above 1.8 GeV

 \Rightarrow FJ17: $a_{\mu, \text{FJ17}}^{\text{had, LO VP}} = 688.07 \pm 41.4$

 \rightarrow Much lower mean value, but in agreement within errors

Slide by A. Keshavarzi (Liverpool) at 'Muon g = 2 HVP Workshop' at KEK, Feb. 12-14, 2018

Comparison with Lattice Results

• Lattice errors $\sim 2\%$ vs phenomenology errors $\sim 0.4\%$

• Some lattice results suggest new physics others not but all compatible with phenomenology

 Slide by L. Lellouch (Marseille) at 'Muon g-2 Workshop' at Mainz, June 18-22, 2018

 D. Nomura (KEK)
 SM prediction for muon g-2
 November 16, 2018
 27/28

Summary

- Standard Model prediction for $(g-2)_{\mu}$: $\gtrsim 3.5\sigma$ deviation from measured value \implies New Physics?
- Recent data-driven evaluations of hadronic vacuum polarization contributions seem convergent (Similar mean values from KNT18 and Davier et al with slightly smaller uncertainty from KNT18.)
- To better establish the g-2 anomaly, better data for $e^+e^- \rightarrow \pi^+\pi^-$ welcome (from Belle II, CMD-3, SND, . . .)
- Lattice calculations still suffer from large uncertainties (but a hybrid approach gives a slight improvement)
- New exp. at Fermilab and J-PARC expected to reduce the uncertainty of $(g-2)_{\mu}$ by a factor of 4