
Improvement of analysis job efficiency at Belle II distributed computing system
Hikari Hirata, Nagoya University

Belle II experiment

6.0 × 1035 cm−2s−12.1 × 1034 cm−2s−1

50 ab−11 ab−1
× 30
× 50

(designed)Peak luminosity
Integrated lumi.

Belle (Predecessor) Belle II

Goal of my study
✴ Reduce failed jobs coming from problematic scripts 
→ Firstly, implement following 2 features for analysis jobs

For all jobs,

Python Syntax Check
at local environment

Summary
The Belle II experiment introduce a distributed computing system, but job execution efficiency was 94% in 2019. The main cause was problematic analysis
scripts. We implemented a python syntax checker and execution of scout jobs so as to reduce the failed jobs. We introduced them experimentally. They will
provide us efficient analysis on the system.

✴ Method: Compile scripts at local

-- Use a existing python module (py_compile) 
→ Can detect simple syntax error without  
 file execution. (e.g. open (), “”)

✴ Advantage of user: Realized a careless  
mistake quickly

✴ Prescription for different Python version:

• basf2: python version 3.6

• gbasf2: python version 2.7 
→ Possibly kick out python3 features  
 incompatible to python2 (e.g. fstring)

✴ Use python3 under CVMFS 
If not, use python3 under local environment

✴ Status: Complete deploying at production env.

✴ A system to distribute calculating/saving data to world-wide computing resource 
(cf. The predecessor used only 1 big computing site at KEK)

✴ Operate with following software

-- Processes are executed by Belle II Analysis Software Framework (basf2) 
→ Distribute it to computing resources by Cern VM File System (CVMFS)

-- Software to interconnect among users and heterogeneous computing resources () 
→ Extend it according to our requirement (called by BelleDIRAC)

• Manage jobs and files on DC system

• Submit jobs using basf2 to DC system

✴ Job execution workflow

Job efficiency in 2019

✴ Next-generation B factory experiment  
with an electron-positron collider at Tsukuba

-- Search CP violation from B decay, Lepton Flavor Violation,  

Hadron spectroscopy etc… (Competitive topics with LHCb) 
→ Efficient physics analysis is important 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-- Need huge computing resources to process and save data,  
produce massive simulation samples, execute analysis jobs and so on. 
→ Computing requirement:  
 O(105) CPU cores, O(100 PB) storage, O(1000) collaborators

γ*e+

e-

b
b
—

—u

u

b

b
—

Υ(4S)
B-

B+

Output

import basf2 as b2 
test = ‘Hello World' 
print(f‘string value: {test}’)  
new feature incompatible python2

print(‘test) # should detect by this feature

testSteering.py

Belle II distributed computing (DC) system

For huge job submissions,

Execution of Scout Jobs
on Belle II DC system

✴ 32M jobs were submitted to our DC system, and 6% were failed 
→ Main cause was problematic analysis script 
→ Ratio of analysis jobs was the highest

✴ If huge problematic jobs are submitted to DC system simultaneously, 
this makes job efficiency worse

-- It occupies worker nodes for a few minutes per 1 job to authenticate  
and load input data etc…

-- It triggers system trouble, and reduce available time of computing resources

Start

CVMFS exists?

Test of py_compile  
under CVMFS

Compile analysis scripts  
with python3

Test succeeds?

Compile analysis scripts  
with python2

No

No

Yes

Yes

✴ Method: Automatically submit test jobs (scout jobs), main jobs are submitted if the test succeeds.

• Scout jobs: copied from main jobs

-- Has the same analysis script and the same input data → Can test under more realistic condition

-- Reduce processing events → Can reduce execution time for test

-- Information of scout jobs are registered as job parameters for main jobs

✴ New DIRAC module to develop

• (Task for Job scheduling):

-- Stop to register main jobs to TaskQueueDB

•  
(Component to perform actions periodically):

-- Monitor status of scout jobs

-- Change status of main jobs  

according to final status of scout jobs

✴ Workflow:

1. Copy a part of main jobs as scout jobs, and Register all the jobs into JobDB

2. The new executor filters out main jobs, while only scout jobs go through into TaskQueueDB

3. Submit scout jobs to computing sites

4. The new agent monitors status of scout jobs

5. If scout is failed, change status of all main jobs by “Failed”, and do nothing any more 

If scout succeeds, submit main jobs to computing sites

✴ Status:

□Develop all the new component at development  

server with single computing sites

□ Implement basic structure of the framework  
at certification server with multiple computing sites

□ Expose problems under certification server with  
multiple computing sites and solve them

□ Implement this framework to production environment

• Step1: This framework is used only when user specify  

 an option “--scout”

• Step2: This framework is used by default

New Executor

New Agent

Test at production environment

Failure reasonsCumulative executed jobs in 2019

32M jobs
Done

Failed
Rescheduled

(g)basf2 termination

(76%)

Examples)

Stalled (18%)
Killed (3%)
Others (3%)

• Syntax error

• basf2 error

• Execution time is too long

