Quest for the Origin of Cosmic Rays with Gamma-Ray Observations

Hiroyasu Tajima Institute for Space-Earth Environmental Research, Nagoya University

January 5–7, 2017 The 3rd International Symposium on "Quest for the Origin of Particles and the Universe" Nagoya University, Japan

G. Pérez, IAC, SMM

- * At least two CR accelerators may exist
 - * Galactic accelerator
 - Knee implies acceleration limit: $P_{max} \propto B \times (size \ of \ accelerator)$
 - Supernova remnants are the leading candidate
 - Energetics
 - Acceleration mechanism
 - *** Extragalactic accelerator**
 - Milky way cannot hold cosmic rays above P ≈ 10¹⁷ eV
 - Cosmic rays above Ankle are considered to be extragalactic
- Gamma ray is an excellent messenger to study cosmic-ray accelerators
 - * Neutral (not bent by magnetic field)
 - Produced by CRs interacting with interstellar matter
 - Electrons can also produce gamma rays via Compton up-scattering or Bremsstrahlung

X-rays

Infra-red

Radio

y-rays log(Energy)

	Satellite based pair conversion telescope	Air shower array	Atmospheric Cherenkov telescope	
Experiments	EGRET, Fermi	Milagro, HAWC	HESS, VERITAS, MAGIC, CTA	
Energy range	0.02 – 300 GeV	1 – 100 TeV	0.1 – 100 TeV	
Energy resolution	5 – 15%	~100%	~10%	
Angular resolution	0.1 – 10 deg	~1 deg	~0.1 deg	
Collection area	~1 m²	10 ³ – 10 ⁴ m ²	10 ⁵ – 10 ⁶ m ²	
Field of view	2.4 sr	2 sr	10 ⁻² sr	
Duty cycle	~95%	>90%	<10%	

4/26

* LAT (Large Area Telescope) on board Fermi Observatory

* Satellite experiment to observe cosmic gamma rays

- * Wide energy range: 20 MeV to >300 GeV
- * Large effective area: > 8000 cm² (~6×EGRET)
- * Wide field of view: > 2.4 sr (~5×EGRET)
- * Total mass: 3000 kg
- * Size: ~1.5 m (W) × 0.6 m (H)
- * Total Power: 650 W

* Pair conversion

- * "Clear" signature
- * Background rejection

Anti-coincidence Detector -Segmented scintillator tiles 99.97% efficiency

J. McEnery 5th Fermi Symposium

J. McEnery 5th Fermi Symposium

Air Shower Array

Air Shower Array

Cherenkov Light 50 photons/m² (5 pe/m²) at 1 TeV

Typical parameters

Energy range50GeV ~ 10TeVCR rejection power >99%Angular resolution~0.1 degreesEnergy resolution~20%Detection area~105m²Sensitivity ~1% Crab Flux (10-13 erg/cm²s)

Cherenkov Light 50 photons/m² (5 pe/m²) at 1 TeV

Typical parameters

Energy range50GeV ~ 10TeVCR rejection power >99%Angular resolution~0.1 degreesEnergy resolution~20%Detection area~105m²Sensitivity ~1% Crab Flux (10-13 erg/cm²s)

Quest for the Origin of Cosmic Rays with Gamma-Ray Observations KMI2017, JAN 5–7 2017, Nagoya University

Cherenkov Light 50 photons/m² (5 pe/m²) at 1 TeV

Typical parameters

Energy range50GeV ~ 10TeVCR rejection power >99%Angular resolution~0.1 degreesEnergy resolution~20%Detection area~105m²Sensitivity ~1% Crab Flux (10-13 erg/cm²s)

- * Fermi, HAWC and IACTs are complimentary
 - Fermi and HAWC provide survey of unknown sources and longterm temporal monitoring
 - * Fermi and IACTs provide good spectral information
 - * IACTs provide better imaging and short variability measurements

- * Young shell-type supernova remnant: SN1006
 - Power law spectrum from rim is best described by synchrotron emission by ultra-relativistic electrons
 - * First evidence of particles accelerated to > 10¹⁴ eV

* Young shell-type supernova remnant: SN1006

KMI2017, JAN 5-7 2017, Nagoya University

- Power law spectrum from rim is best described by synchrotron emission by ultra-relativistic electrons
- * First evidence of particles accelerated to > 10¹⁴ eV

- H.E.S.S. observation of TeV gamma rays from RX J1713.7-3946
 Evidence for "particle" acceleration > 10¹⁴ eV
 - * Morphological similarity with X-ray observation
 - Spectral feature can not conclusively distinguish leptonic or hadronic origin of gamma rays

KMI2017, JAN 5–7 2017, Nagoya University

- * H.E.S.S. observation of TeV gamma rays from RX J1713.7-3946
 * Evidence for "particle" acceleration > 10¹⁴ eV
 - * Morphological similarity with X-ray observation
 - Spectral feature can not conclusively distinguish leptonic or hadronic origin of gamma rays

- Both models have issues describing Fermi and H.E.S.S. spectra at the same time
 - Requires further investigations to distinguish hadronic or leptonic nature of gamma-ray emissions

- "Hard" gamma-ray can be explained by higher target density for higher energy particles
 - * Highly inhomogeneous molecular clouds interacting with SNR
 - * Higher energy protons can penetrate into the cloud core where target gas density is high
 wind bubble
 wind bubble

- * Sub-GeV spectra of IC443/W44 agree well with π⁰-decay spectra
- * Other models cannot describe the spectrum very well
 - * Compton up-scattering
 - Energetically completely disfavored (×100 higher radiation fields)
 - Shape not consistent with Compton up-scattering
 - * Best-fit Bremsstrahlung model shows less steep decline
 - Even with abrupt cutoff at 300 MeV in electron spectrum

Quest for the Origin of Cosmic Rays with Gamma-Ray Observations KMI2017, JAN 5–7 2017, Nagoya University

- * Sub-GeV spectra of IC443/W44 agree well with π⁰-decay spectra
- * Other models cannot describe the spectrum very well
 - * Compton up-scattering
 - Energetically completely disfavored (×100 higher radiation fields)
 - Shape not consistent with Compton up-scattering
 - * Best-fit Bremsstrahlung model shows less steep decline
 - Even with abrupt cutoff at 300 MeV in electron spectrum

- * We have not found SNRs which can accelerate CRs up to Knee energies (gamma-ray energy > 100 TeV): PeVatrons
 - Evolution with SNR age Escape of CR from SNRs
- * We need to find more multi-TeV gamma-ray sources

- * H.E.S.S. found a PeVatron candidate, HESS J1641–463 within a boundary of SNR G338.5+0.1
 - * Estimated age of 1.1 1.7 kyr, estimated distance of ~11 kpc
 - * No X-ray counterpart found by Chandra/XMM-Newton
 - * Fermi-LAT found both sources
- * Spectrum implies hadronic origin with E_{max} > 1 PeV

doi:10.1038/nature17147

- * H.E.S.S. found a PeVatron candidate in the Galactic center region
 - * Diffuse gamma-ray emission correlate with interstellar matter
 - TeV electrons cannot propagate long distance
 - * CR density shows 1/r dependence
 - Implies continuous injection from a source and propagation by diffusion
 - * CR source can be Sgr A* (supermassive blackhole in GC) or SNR G359.95–0.04
 - Both can explain total proton energy of 1.0 × 10⁴⁹ erg
- * Spectrum implies hadronic origin with *E*max > 3 PeV

KMI2017, JAN 5–7 2017, Nagoya University

- * H.E.S.S. found a PeVatron candidate in the Galactic center region
 - * Diffuse gamma-ray emission correlate with interstellar matter
 - TeV electrons cannot propagate long distance
 - * CR density shows 1/r dependence
 - Implies continuous injection from a source and propagation by diffusion
 - * CR source can be Sgr A* (supermassive blackhole in GC) or SNR G359.95–0.04
 - Both can explain total proton energy of 1.0 × 10⁴⁹ erg

* Spectrum implies hadronic origin with Emax > 3 PeV

- * H.E.S.S. found a PeVatron candidate in the Galactic center region
 - * Diffuse gamma-ray emission correlate with interstellar matter
 - TeV electrons cannot propagate long distance
 - * CR density shows 1/r dependence
 - Implies continuous injection from a source and propagation by diffusion
 - * CR source can be Sgr A* (supermassive blackhole in GC) or SNR G359.95–0.04
 - Both can explain total proton energy of 1.0 × 10⁴⁹ erg

* Spectrum implies hadronic origin with *E*_{max} > 3 PeV

 HAWC found many multi-TeV gamma-ray sources along Galactic plane in the first year of operation with partial array

http://www.hawc-observatory.org

Significance Map of Galactic Plane

KMI2017, JAN 5–7 2017, Nagoya University

HAWC Galactic Source Candidates

Source	/ (deg)	<i>b</i> (deg)	Flux (10 ⁻¹⁴ TeV/cm²/s)	Post-trial significance	Counterpart
1HWC J1907+062	40.2±0.2	-0.7±0.2	22.0±4.6 @4 TeV	4.6σ	HESS
1HWC J1904+080	41.5±0.2	0.8±0.2	19.0±4.4 @4 TeV	3.9σ	
_	38.5±0.4	-0.9±0.4	—	2.5σ	
1HWC J1857+023	35.6±0.2	-0.2±0.2	18.0±3.0 @5 TeV	6.2σ	HESS, MAGIC
1HWC J1838–060	26.1±0.3	0.2±0.3	11.3±1.2 @7 TeV	6.1σ	HESS
1HWC J1844–031	29.3±0.2	0.2±0.2	11.8±2.4 @6 TeV	4.7σ	HESS
1HWC J1849–017	31.2±0.3	-0.3±0.3	9.1±2.2 @6 TeV	3.7σ	HESS
1HWC J1842–046	27.8±0.3	0.0±0.3	7.0±1.6 @7 TeV	3.4σ	HESS
1HWC J1836–090	23.1±0.3	-0.6±0.3	5.8±1.3 @8 TeV	3.2σ	HESS
1HWC J1836–074	24.6±0.3	0.0±0.3	6.9±1.4 @7 TeV	3.2σ	HESS
1HWC J1825–133	18.1±0.2	-0.3±0.2	7.3±1.4 @9 TeV	5.4σ	HESS

2016ApJ...817....3A

Future Gamma-ray Observatory

- * Cherenkov Telescope Array (CTA)
 - * Large number of telescopes
 - Large collection area (x~30)
 - Better angular resolution (0.03°)
 - * Optimized telescope configuration
 - LST: ~23 m φ × 4, ~20 GeV 200 GeV
 - MST: ~12 m ϕ × 20, ~100 GeV 10 TeV
 - SST: ~4 m φ × 70, ~5 TeV 300 TeV
 - * ~1000 of TeV gamma-ray sources

G. Pérez, IAC, SMM

CTA will provide precise spectral measurements up to 100 TeV CTA will provide better imaging of TeV gamma-ray sources

CTA will provide precise spectral measurements up to 100 TeV CTA will provide better imaging of TeV gamma-ray sources

Nagoya Involvements with CTA

Silicon photomultiplier (SiPM) camera for dual-mirror telescopes * SiPM: low cost, durable, high photon detection efficiency (GCT) * High-density front-end electronics (GCT, SCT) * Camera software (GCT) * Schwarzschild-Couder (SC) optics is required to achieve short focal length (and small camera) * SC optics also realize large field of view **0** m Sparse telescope spacing (Larger collection area) **Gamma-ray Cherenkov Telescope (GCT)** 5 – 300 TeV camera camera AU, FR, DE, JP, NL, UK ~4 m Schwarzschild-Couder **Telescop (SCT)** 0.1 – 10 TeV US, DE, IT, JP **CTA** collaboration

- * "First light" of GCT prototype achieved with cosmic-ray showers
 - * Contributions from Nagoya group
 - Front-end electronics (Tajima)
 - Camera software (Okumura)

photo taken by Okumura

CTA collaboration

* "First light" of GCT prototype achieved with cosmic-ray showers

- * Contributions from Nagoya group
 - Front-end electronics (Tajima)
 - Camera software (Okumura)

- * "First light" of GCT prototype achieved with cosmic-ray showers
 - * Contributions from Nagoya group
 - Front-end electronics (Tajima)
 - Camera software (Okumura)

Prototype is being constructed at Arizona
 Test performance of SC optics and SiPM camera

- * At least two origins are expected for cosmic rays
 - * Galactic origin may have acceleration limit at a few PeV (PeVatron)
 - * Extragalactic origin may be dominant above ~10¹⁷ eV
- Supernova remnants (SNRs) are the leading candidate for Galactic cosmic rays
 - * Fermi-LAT provided the first conclusive evidence that hadrons are accelerated in SNRs from the spectral features of W44 and IC 443
- * SNRs are not proven to be PeVatrons yet
 - * H.E.S.S. found two PeVatron candidates, one my be an SNR, the other may be a supermassive blackhole
 - * HAWC is expected to find more PeVatron candidates in northern sky with longer operations of the full array
 - * CTA is expected to provide more insights into the nature of those PeVatron candidates

CTA Sites

CTA Project Timeline

1609.08671v1

Quest for the Origin of Cosmic Rays with Gamma-Ray Observations KMI2017, JAN 5–7 2017, Nagoya University