フレーバーからテラスケールへ (さらに、テラスケールからフレーバーへ)

久野純治(名大理)

新学術領域研究 先端加速器LHCが切り拓くテラスケールの素粒子物理学 ~真空と時空への新たな挑戦~ 研究会 2013年5月23日~25日

今日の話題

- 1. テラスケール新物理への期待
- 2. ヒッグス粒子の相互作用へのフレーバーからの制限
- 3. テラスケール新物理へのフレーバーの物理からのアプローチ

テラスケール新物理への期待

- テラスケール新物理の存在を示唆するもの
 - 1. ミューオン g-2
 - 2. 暗黒物質
 - 3. 電弱バリオン数生成
 - 4. ニュートリノ質量
 - 5. ヒッグス質量自然さの問題

Various contribution to muon g-2 :

 m_0 (GeV)

Contribution from SUSY SM:

Since SUSY SM has two Higgs doublets, muon g-2 has a contribution proportional to $\tan \beta \equiv \langle H_2 \rangle / \langle H_1 \rangle$.

$$\delta a_{\mu} \sim \frac{5\alpha_2 + \alpha_Y}{48\pi} \frac{m_{\mu}^2}{M_{\rm SUSY}^2} \tan \beta$$
$$= 3 \times 10^{-9} \left(\frac{\tan \beta}{10}\right) \left(\frac{M_{\rm SUSY}}{200 \,{\rm GeV}}\right)^{-2}$$

CMSSM (Constrained MSSM) has been constrained by null results in SUSY searches. If we give up the GUT relation, we may get light EW SUSY particles, while squarks and gluino are heavy enough.

Direct searches for chargino/neutralino and slepton by CMS. When chargino/neutralino can decay into sleptons, the constraints on the masses are stronger.

Anatomy of SUSY contribution Δa_{μ} :

Case1 (compact spectrum): chargino-sneutrino diagram.

Case2 (large higgsino mass): bino-like neutralino-slepton diagram (enhanced left-right mixing proportional to higgsino mass)

Case2 (one light slepton and large higgsino mass):

Large higgsino mass is constrained from vacuum (meta)stability for stau direction. Assuming stau is lighter than smuon, we derive upperbound on SUSY contribution to muon g-2.

Bino mass (GeV)

Sakharov's three conditions for baryogenesis

- 1. Baryon number violation (Sphaleron)
- 2. C and CP violations (CKM or new phase)
- 3. Out of equilibrium (1st order EW phase transition)

EWBG in SM

- 1st order EWPT may be possible for mh smaller than ~70 GeV.
- CP violation in CKM is too small.

EWBG in MSSM (stop lighter top)

- 1st order EWPT may be possible when stop mass is smaller than ~115GeV.
- CP violation comes from SUSY breaking.

Stop mass is smaller than 115GeV is ruled out at 97% CL and 98%CL for mA= 300 GeV and 2TeV, respectively. (Curtin et al (12))

New possibility: Higgs coupled with strongly-interacting sector

$$V(\varphi,T) \simeq D(T^2 - T_0^2)\varphi^2 - ET\varphi^3 + \frac{\lambda_T}{4}\varphi^4 + \cdots$$

Introduction of new strongly-interacting boson coupled with Higgs boson leads Landau pole around O(10) TeV, above which the description should be changed.

Kanemura-Shindou-Yamada model

- Symmetries: SUSY SU(2) $_{H}$ ×SU(2) $_{L}$ ×U(1) $_{Y}$ ×Z₂
- Matter contents: Nf=Nc+1 (confiment)

Particle contents below the cutoff scale:

2doublets (MSSM-like Higgs)

2doublets+charged singlets+neutral singlets

New particles affects hhh, hyy couplings.

	Fields	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	Z_2
Z2	$\begin{pmatrix} T_1 \\ T_2 \end{pmatrix}$	2	0	+
	T_3	1	+1/2	+
	T_4	1	-1/2	+
	T_5	1	+1/2	_
	T_6	1	-1/2	—

Boson loop

Kanemura-Shindou-Yamada model:

Couplings hhh and $h\gamma\gamma$ may be deviated from the SM prediction.

(Kanemura, Senaha, Shindou and Yamada (1211.5883))

Generated baryon number in SUSY SM is sensitive to SUSY particle masses.

Generated baryon number in SUSY SM is sensitive to SUSY particle masses. For example, existence of lighter colored particles suppress the strong sphaleron (comes from QCD anomaly) so that generated baryon number is increased.

ヒッグス粒子の相互作用へのフレーバーからの制限

- 1. CP violating Higgs coupling
- 2. Lepton-flavor violating Higgs coupling

New physics contribution to odd hyy and hgg

Low-energy theorem:

New fermions with mass terms dependent on Higgs VEV are integrated out ($\mathcal{L}_M = -\mathcal{M}_{i,j}(v) (\overline{\psi}_{iL}\psi_{jR}) + h.c.$) so that

$$\mathcal{L}_{h\gamma\gamma} = \frac{\alpha}{4\pi} Q_e^2 \frac{h}{v} \left\{ \frac{1}{3} F^{\mu\nu} F_{\mu\nu} v \frac{\partial}{\partial v} \log \operatorname{Det} \left[\mathcal{M}^{\dagger} \mathcal{M} \right] + F^{\mu\nu} \tilde{F}_{\mu\nu} v \frac{\partial}{\partial v} \arg \left[\operatorname{Det} \mathcal{M} \right] \right\}$$
CP-even hyp coupling
(No bosonic contribution)

One example is 4^{th} generation with $SU(2)^*U(1)$ inv. Dirac mass terms.

$$\begin{split} v \frac{\partial}{\partial v} \log \operatorname{Det} \left[\mathcal{M}^{\dagger} \mathcal{M} \right] &\simeq -4v^2 \frac{\operatorname{Re}[M_1 M_2 y_{12} y_{21}]}{|M_1 M_2|^2} & \text{(} M_1, \ M_2: \text{Dirac masses)} \\ v \frac{\partial}{\partial v} \arg \left[\operatorname{Det} \mathcal{M} \right] &\simeq -2v^2 \frac{\operatorname{Im}[M_1 M_2 y_{12} y_{21}]}{|M_1 M_2|^2} & \text{(} y_{12}, \ y_{21}: \text{Yukawa coupling)} \end{split}$$

If CP phase is O(1), CP-odd coupling is not negligible.

CP-odd hgg coupling is also generated when new fermions have color.

New physics contribution to odd hyy and hgg Higgs coupling to 2 ys and 2gs: $\mathcal{L} = c_{\text{SM}}^{\gamma\gamma} \frac{\alpha}{4\pi} \frac{h}{v} \left\{ r_{\gamma} F^{\mu\nu} F_{\mu\nu} + s_{\gamma} F^{\mu\nu} \tilde{F}_{\mu\nu} \right\} + c_{\text{SM}}^{gg} \frac{\alpha}{12\pi} \frac{h}{v} \left\{ r_{g} G^{a\mu\nu} G^{a}_{\mu\nu} + s_{g} G^{a\mu\nu} \tilde{G}^{a}_{\mu\nu} \right\}$ $Br_{h \to \gamma\gamma(gg)} = Br_{h \to \gamma\gamma(gg)}|_{\text{SM}} \times (\gamma^{2}_{\gamma(g)} + s^{2}_{\gamma(g)})$

Barr-Zee diagrams generate EDMs and CEDMs (color EDMs).

$$\begin{aligned} |d_e/e| \sim 8 \times 10^{-27} \text{cm} \times s_{\gamma}L \\ |d_q/e| \sim 2 \times 10^{-26} \text{cm} \times Q_q m_q (\text{MeV}) \times s_{\gamma}L \\ |d_q^c| \sim 3 \times 10^{-26} \text{cm} \times m_q (\text{MeV}) \times s_gL \end{aligned}$$
where $L = \log(\Lambda^2/m_h^2)$.
From $|d_e/e| < 1.0 \times 10^{-27} \text{cm}$, $|d_n/e| < 2.9 \times 10^{-26} \text{cm}$, $s_{\gamma}L < \tilde{10}\%$, $s_gL < \tilde{1}$.

Higgs decay to $2 \gamma s$ and 2 g s is mildly constrained, if O(1) CP phase is in new contribution.

New physics contribution to odd hyy and hgg

Signal strength for $\gamma\gamma$ mode constrained from electron EDM

SU(2) doublet and singlet with Dirac masses

SU(2) doublet and triplet with Dirac and Majorana Masses.

New physics contribution to odd hyy and hgg

Signal strength for yy mode constrained from electron EDM

Lepton-flavor violating Higgs coupling

Discovered Higgs(-like) boson is in the standard model?

$$\begin{split} -\mathcal{L}_{\text{Yukawa}} &= \lambda_{ij} \bar{f}_L^i f_R^j H + \lambda'_{ij} \bar{f}_L^i f_R^j H \frac{H^{\dagger} H}{\Lambda^2} + \text{h.c.} \\ &= m_i \bar{f}_L^i f_R^i + V_{ij} \bar{f}_L^i f_R^j h^0 + \text{h.c.} \\ & \text{Flavor-violating Higgs(-like) coupling} \end{split}$$

Channel	Coupling	Bound			
$\mu ightarrow e \gamma$	$\sqrt{ Y_{\mu e} ^2 + Y_{e\mu} ^2}$	$< 3.6 \times 10^{-6}$			
$\mu \rightarrow 3e$	$\sqrt{ Y_{\mu e} ^2 + Y_{e\mu} ^2}$	< 0.31			
electron $g-2$	$\operatorname{Re}(Y_{e\mu}Y_{\mu e})$	$-0.019 \dots 0.026$			
electron EDM	$ \mathrm{Im}(Y_{e\mu}Y_{\mu e}) $	$<9.8\times10^{-8}$			
$\mu \rightarrow e$ conversion	$\sqrt{ Y_{\mu e} ^2 + Y_{e\mu} ^2}$	$<4.6\times10^{-5}$			
$M\text{-}\bar{M}$ oscillations	$ Y_{\mu e} + Y^*_{e\mu} $	< 0.079			
$\tau ightarrow e \gamma$	$\sqrt{ Y_{\tau e} ^2 + Y_{e\tau} ^2}$	< 0.014			
$ au ightarrow e \mu \mu$	$\sqrt{ Y_{\tau e} ^2 + Y_{e\tau} ^2}$	< 0.66			
electron $g-2$	$\operatorname{Re}(Y_{e\tau}Y_{\tau e})$	$[-2.1\ldots2.9]\times10^{-3}$			
electron EDM	$ \mathrm{Im}(Y_{e\tau}Y_{\tau e}) $	$< 1.1 \times 10^{-8}$			
$\tau \to \mu \gamma$	$\sqrt{ Y_{\tau\mu} ^2 + Y_{\mu\tau} ^2}$	$< 1.6 \times 10^{-2}$			
$\tau \rightarrow 3\mu$	$\sqrt{ Y_{\tau\mu}^2 + Y_{\mu\tau} ^2}$	< 0.52			
muon $g-2$	$\operatorname{Re}(Y_{\mu au}Y_{ au\mu})$	$(2.7\pm 0.75)\times 10^{-3}$			
muon EDM	$\operatorname{Im}(Y_{\mu\tau}Y_{\tau\mu})$	$-0.8 \dots 1.0$			
$\mu ightarrow e \gamma$	$(Y_{\tau\mu}Y_{\tau e} ^2 + Y_{\mu\tau}Y_{e\tau} ^2)^{1/4}$	$< 3.4 \times 10^{-4}$			
(Hornik Konn Zun					

(Harnik, Kopp, Zupan, (12))

20

Lepton-flavor violating Higgs coupling

Lepton-flavor violating Higgs coupling

(Harnik, Kopp, Zupan (13))

LFV Higgs decay search at LHC and LFV tau decay searches at B factories are competitive.

テラスケール新物理への フレーバーの物理からのアプローチ

- 1. Flavor constraints on MSSM with extra matter
- 2. How to access high-scale SUSY

Flavor constraints on MSSM with extra matter

Introduction of extra matter to MSSM

- Radiative correction to Higgs boson mass
- New flavor violation

Problem: How to construct more realistic model(s)

- How to control flavor violation
- Origin of mass for extra matter

MSSM with extra matter (SU(5) 10+10^{*} dim multiplets) under U(1) flavor and U(1) Peccei-Quinn symmetries.

	$U(1)_{\rm flavor}$	$U(1)_{\rm PQ}$		$(1)_{\rm flavor}$	$U(1)_{\rm PQ}$
10_{1}	2	1	5_{1}^{\star}	1	1
10_{2}	1	1	5^{\star}_2	1	1
10_{3}	0	1	5^{\star}_3	1	1
10_{4}	0	1	10^{\star}_{5}	0	-5
H_1	0	-2	H_2	0	-2

Flavor constraints on MSSM with extra matter

Superpotential (i = 1 - 4, a = 1 - 3):

 $W = \xi^{Q_i + Q_j} H_1 10_i 10_j + \xi^{Q_i + Q_a} H_2 10_i 5_a^{\star} + \xi_i^Q M 10_i 10_5^{\star} + \mu H_1 H_2$

U(1) flavor and U(1) Peccei-Quinn symmetries are broken by S and P. $\xi = \langle S \rangle / M_{\star} \sim 0.2$ $M \sim \mu \sim \langle P \rangle^2 / M_{\star} = O(100) \text{GeV}$

H1 is coupled with extra matter while H2 not.

(no excess hyy, no Barr-Zee type EDM, and no reduction of Higgs mass)

Tree-level FCNC appears due to introduction of 10* in Z coupling

- $\mu \rightarrow e\gamma/3e$ (left-handed lepton mixing) $\xi(v/M) < \sim 10^{-3}$
- up quark (C)EDM due to left- and right-handed up quark mixing) $\xi^2(v/M) <\sim 10^{-(3-4)}$
- Neutral Keon mixing (left-handed down quark mixing) $\xi(v/M) < \sim 10^{-2}$

Proton decay in SUSY GUTs with extra matter Introduction of extra matter makes gauge coupling at GUT scale larger.

X boson proton decay rate is enhanced.

(JH, Nagata, Kobayashi (12))

How to access high-scale SUSY

High-scale SUSY: Gauginos : O(1) TeV Sfermions and Higgsino: O(10²)TeV.

- 1. larger radiative correction to Higgs mass
- 2. dark matter is wino (m< 2.7 TeV)
- 3. FCNC and CP problems are solved.
- 4. Gauge coupling unification is improved.

Gauge coupling unification in high-scale SUSY

 From gauge coupling unification, we can constrain GUT-particle mass spectrum, especially colored Higgs mass (MHc) in the minimal SUSY SU(5) GUT.

$$\frac{3}{\alpha_2(m_Z)} - \frac{2}{\alpha_3(m_Z)} - \frac{1}{\alpha_1(m_Z)} = \frac{1}{2\pi} \left[\frac{12}{5} \ln\left(\frac{M_{H_C}}{m_Z}\right) - 2\ln\left(\frac{M_S}{m_Z}\right) + 4\ln\left(\frac{M_3}{M_2}\right) \right]$$

Ms is sfermion and Higgsino masses and M3 and M2 are gluino and wino masses, respectively. $10^{18} = \cdots = 10^{18}$

Low-energy SUSY predicts colored Higgs mass around 10¹⁵ GeV (blue bands in figs), while the gauge coupling unification can be improved in high-scale SUSY.

Colored Higgs proton decay

Proton decay induced by colored Higgs exchange killed the minimal SUSY SU(5) GUT with low-scale SUSY. In high-scale SUSY, the proton decay is suppressed so that the model is revived. In addition, future experiments may be accessible, depending on parameters.

Higgsino mass is equal to squark/slepton mass. Wino mass is 3 TeV. $M_{H_C} = 10^{16} \text{ GeV}$

Summary of my talk

- Muon g-2, EWBG, dark matter, and naturalness of Higgs mass motivates us to consider TeV-scale new physics. LHC may give us answers for them.
- Higgs boson properties are constrained from flavor physics. Constraints on EDMs gives bounds on (CP violating) hγγ and hgg. Constraints on tau LFV coupling of Higgs at LHC would be competitive to low-energy experiments.
- New ideas for TeV scale should be tested from flavor physics. A realistic extension of MSSM with extra matter has a tension with flavor physics. It is difficult to access high-scale SUSY models, though flavor physics may have windows to them, such as proton decay.