KMI 2019, Feb. 18-20, 2019 @ Nagoya

Recent developments in AdS/CFT -Emergent Space from Quantum Information-

Tadashi Takayanagi

Yukawa Institute for Theoretical Physics Kyoto University

(1) Introduction

Microscopes are often crucial for experiments in science.

In particle physics, accelerators are used as microscopes.

What are microscopes in gravitational physics?

⇒ Holography provides microscopes ! (AdS/CFT, gauge/gravity duality)

Holography is not a real experiment but provides a crucial device in thought experiments.

Indeed, holography magnifies a gravitational spacetime into tiny bits of quantum information as we will review.

Bekentein-Hawking Formula of BH Entropy

$$S_{BH} = \frac{c^3}{\hbar} \times \frac{A}{4G_N}$$

BH thermodynamics !

A= Surface Area of Black hole \Rightarrow Geometry
Gometry
GN=Newton constant \Rightarrow Gravity
Gravity
 \hbar =Planck constant \Rightarrow Quantum MechanicsQuantum
Gravity!

BH Entropy is proportional to the area, not to the volume !

Degrees of Freedom in Gravity \propto Surface Area !

BH entropy(∝Area)= Thermal Entropy of Matter (∝Volume) [Strominger-Vafa 1996]

However, we still do not know the origin of BH entropy from the viewpoint of gravity even now !

The best example of holography in string theory:

AdS/CFT Correspondence [Maldacena 1997]

AdS/CFT

Gravity (String theory) on D+1 dim. AdS (anti de-Sitter space)

Classical limit

General relativity with $\Lambda < 0$

Conformal Field
Theory (CFT) on
D dim.Minkowski
spacetime

Large N + Strong coupling Strongly interacting Quantum Field Theories

Basic Principle (Bulk-Boundary relation) :

 $Z_{Gravity} = Z_{CFT}$

Strongly Coupled SU(N) gauge theories in the large N limit

Closely related examples: Quark-Gluon plasma Cold atoms, High Tc SC, etc.

AdS/CFT result

[Kovtun-Son-Starinets 2004]

This strongly coupled property also leads to holographic studies of hadron physics. [Sakai-Sugimoto 2004] Viscosity/Entropy Ratio

Recent Applications to strongly coupled systems

(1) Quantum Chaos (Lyapunov exponent: λ)

$$\left\langle [W(t), V(0)]^2 \right\rangle \approx \frac{1}{N^2} e^{\lambda t}$$

$$\lambda_{AdS} = \frac{2\pi k_B T}{\hbar} \quad \text{In general, we have } \lambda \leq \frac{2\pi k_B T}{\hbar}$$
[Maldacena-Shenker-Stanford 2015]

(2) Specific Heat

2D strongly interacting metal (\exists Fermi Surface) **C**Ads $\propto T^{\alpha}$ with $\alpha \leq \frac{2}{3}$ (Non Fermi Liquids) [Ogawa-Ugajin-Takayanagi 2011] cf. $\alpha = 1$ for Landau Fermi liquids

<u>Contents</u>

① Introduction

② Quantum Entanglement and Holography

③ Emergent Space from Quantum Information

④ Conclusions

② Quantum Entanglement and Holography

(2-1) Quantum Entanglement (QE)

QE = quantum correlations between two subsystems <u>Simple example: 2 Qubits system</u>

(1) Direct Product State $|\Psi_c\rangle = |\uparrow\rangle_A \otimes |\downarrow\rangle_B$

(2) EPR (Bell) States $|\Psi\rangle = \frac{1}{\sqrt{2}} \left(\uparrow \rangle_{A} \otimes \left| \downarrow \rangle_{B} \pm \left| \downarrow \rangle_{A} \otimes \left| \uparrow \rangle_{B} \right) \right.$

Entanglement Entropy (EE)

by tracing out B $\rho_A = \text{Tr}_B \left[|\Psi_{tot}\rangle \langle \Psi_{tot}| \right]$

The entanglement entropy (EE) S_A is defined by

$$S_A = -\text{Tr}[\rho_A \log \rho_A]$$

(2-2) Holographic Entanglement Entropy (HEE)

[Ryu-Takayanagi 2006, Hubeny-Rangamani-Takayanagi 2007]

EE in CFT: SA can be computed from the minimal area surface ΓA:

$$S_A = \min_{\Gamma_A} \left[\frac{\operatorname{Area}(\Gamma_A)}{4G_N} \right]$$

Note: The bdy of ΓA =The bdy of A.

Many evidences for this conjecture have been found for these 10 years.

This formula was proved by Lewkowycz-Maldacena 2013 based on the bulk-bdy relation of AdS/CFT.

Algebraic relations in Quantum Info. Theory ⇔ Geometric properties in Gravity

(2-3) Einstein Equation from QE

[Casini-Huerta-Myers 2013, Bhattachrrya-Nozaki-Ugajin-Takayanagi 2013]

$$\Delta S_A \cong \Delta H_A$$

First Law of EE

[HA=-logpA: Modular Hamiltonian]

The 1st law of EE explains the perturbative Einstein eq. [Raamsdonk et.al. 2013, Faulkner et.al 2013, 2017, Sarosi-Ugajin. 2017]

Next leading order analysis

(2-4) Entanglement Wedges and QEC

- Which bulk region is dual to a given region A in CFT? \Rightarrow Entanglement Wedge MA MA = A region surrounded by A and DA
- **M**A = A region surrounded by A and ΓA

in CFT (Low energy info) ρ_{A} $\Leftrightarrow \rho_{MA}$ in AdS gravity

[Hamilton-Kabat-Lifschytz-Lowe 2006, Czech-Karczmarek-Nogueira-Raamsdonk 2012, Wall 2012, Headrick-Hubeny-Lawrence-Rangamani 2014, Jafferis-Lewkowycz-Maldacena-Suh 2015, Dong-Harlow-Wall 2016, ...]

We can reconstruct the bulk information at P from ho_{AB} . But we cannot do so from $ho_A,
ho_B,
ho_C$.

Property of Quantum Error Correcting Codes [Almheiri-Dong-Harlow 2014]

Physical Space = all CFT states = quantum gravityU **Code Subspace = BPS states in CFT = supergravity**

Protected by QEC

(2-5) Entanglement of Purification

Entanglement of Purification (EoP) \Rightarrow A mixed state extension of $\underbrace{EE}_{Good only}$

Purification

For a given density matrix: $\rho_C = \sum_i \lambda_i |i\rangle_C \langle i|$. we can always describe this as a pure state $|\Psi\rangle_{CD} = \sum_i \sqrt{\lambda_i} |i\rangle_C |i\rangle_D$ by extending the Hilbert space: $H_C \to H_C \otimes H_D$ such that $\rho_C = \operatorname{Tr}_D[|\Psi\rangle\langle\Psi|]$.

for pure states

Note: Purified states depend on the basis $/i\rangle_{D}$ we chose.

<u>EoP</u>

Consider all purifications $|\Psi\rangle_{A\tilde{A}B\tilde{B}}$ of \mathcal{P}_{AB} in the extended Hilbert space: $H_A \otimes H_B \to H_A \otimes H_B \otimes H_{\tilde{A}} \otimes H_{\tilde{B}}$.

Entanglement of Purification (EoP) is defined by

$$E_{P}(\rho_{AB}) = \underset{\text{All purifications}|\Psi\rangle \text{ of } \rho_{AB}}{\text{Min}} S_{A\tilde{A}}(|\Psi\rangle_{A\tilde{A}B\tilde{B}})$$
$$\rho_{AB} = \operatorname{Tr}_{\tilde{A}\tilde{B}}(|\Psi\rangle\langle\Psi|] \text{Entanglement Entrop}$$

Note: $E_p(\rho_{AB}) \ge 0$ and $E_p(\rho_{AB}) = 0 \Leftrightarrow \rho_{AB} = \rho_A \otimes \rho_B$.

Holographic Entanglement of Purification

Define the **EW cross section** by

$$E_{\rm W}(\rho_{\rm AB}) = \frac{\operatorname{Area}(\Sigma_{\rm AB})}{4G_N}$$

We propose that this quantity is a holographic dual of EoP:

$$E_{W}(\rho_{AB}) = E_{P}(\rho_{AB})$$

[Umemoto-TT 2017, Nguyen-Devakul-Halbasch-Zaletel-Swingle 2017, Explicit Checks from CFT calculations: Caputa-Miyaji-Umemoto-TT 2018]

③ Emergent Space from Quantum Information

The HEE suggests that there is one qubit of entanglement for each Planck length area !

$$S_A = \frac{\operatorname{Area}(\Gamma_A)}{4l_{pl}^{D-1}}$$

~10⁶⁵ qubits per 1cm² !

We can change the position and size of A as we like. Gravitational Space may consist of EPR pairs !

(3-1) Tensor Network (TN) and AdS/CFT

Tensor network = Graphical description of quantum states ⇒ Network of quantum entanglement

MERA (Multi-scale Entanglement Renormalization Ansatz) [Vidal 2005] \Rightarrow a TN suitable for CFTs.

(3-2) Surface/State duality [Miyaji-TT 2015]

A basic relation in AdS/TN conjecture is the surface/state duality: $|\Psi(\Sigma)|$

For Einstein gravity on a d+2 dim. AdS, the surface/state duality argues:

2 : a d dim. convex space-like surface in AdSd+2.
 Dual which is closed and homologically trivial

A pure state

Gravity AdSd+2

(3-3) Slice = Quantum Circuit Conjecture [TT 2018]

A CFT action on the curved space $M\Sigma$ with an appropriate coarse-graining s.t. z = lattice spacing

(3-4) Path-integral Optimization and Complexity

[Caputa-Kundu-Miyaji-Watanabe-TT 17]

Consider two dimensional CFTs. We write the metric:

 $ds^2 = e^{2\phi(x,z)}(dx^2 + dz^2)$ with $e^{2\phi}|_{z=\varepsilon} = \varepsilon^{-2}$. **space time** The rule of UV cut off: a lattice site for a unit area.

Path-integral Optimization for $|\psi>$

= a special Weyl transformation which

- (i) preserves the quantum state $|\psi\rangle$ at the time $z=\epsilon$,
- (ii) minimizes the path-integral "**complexity**"

<u>Comment on Complexity</u>

Computational Complexity of a quantum state |Ψ> = Min [# of Quantum Gates]

A Holographic Complexity Proposal

Holographic Complexity = Gravity Action in Wheeler-DeWitt (WDW) patch of AdS

[Brown-Roberts-Susskind-Swingle-Zhao 15]

Path-Integral Complexity Ι[φ]

A Sketch: Optimization of Path-Integral

Recently, this analysis gives a CFT confirmation of the holographic EoP conjecture: [Caputa-Miyaji-Umemoto-TT 2018].

4 Conclusions

- The holography (or AdS/CFT) provides a very powerful tool to study quantum gravity.
- The holographic counterpart of entanglement entropy is given by minimal surface areas in AdS.
- This inspires the new idea of *emergent spacetime from quantum entanglement*. This idea is explicitly realized in tensor networks and path-integral optimization.
- There have recently been interesting progresses on other quantum information theoretic quantities.

e.g. Complexity, Information metric, entanglement of purification, relatively entropy, etc.

Future problems

- An explicit proof of AdS/CFT [⇐Quantum info. ?]
- Generalization of AdS/CFT to other spacetimes (e.g. cosmological spacetimes such as de Sitter spaces)
- Clear explanation of Black hole information paradox
 : show explicitly recovery of information from radiations.
- More quantum information quantities from AdS/CFT (e.g. mixed state entanglement)