

どこまで探 すのか、 どこまで探 せばいいの か、Ονββ

市川 温子 (東北大学)

What is the origin of mass?

ニュートリノは、他のフェルミオンとはちょっと違うかもしれない

ニュートリノがディラック・フェルミオンなのかマヨラナ・フェルミオンなのかは、わかっていない。

A. M. Teixeira, neutrino 2020

What is the gauge group and how predictive it is?

- SUSY SU(5): minimal version → disfavored by pdecay, nu mass etc.
- Non-minimal version i.e. SUSY SU(5)+ ν_R + extra Higgs: OK but typically too many parameters (with no extra symmetries) to be predictive.

Also predictive and works for non-susy $SO(10)+U(1)_{PQ}!$

Bottom line for experiments

Inverted hierarchy will "rule out" GUTs !

■ Normal mass ordering + evidence for nonzero $\beta\beta_{0\nu}$ at current sensitivity will rule out two step SO(10); perhaps →TeV W_R

• Eagerly waiting for measurement of δ_{CP} to narrow down the choice of models!

レプトジェネシス

現代の宇宙の物質の量を説明するには、初期宇宙で6 × 10⁻¹⁰のmatterantimatter asymmetryが生成されたはず。

- 標準模型では、生成できない。
 (標準的な)レプトジェネシス
- N_R(重い右巻きニュートリノ)の崩壊で軽いvとHiggsを生成。この時にCPの破れ
 →レプトン数の生成
- スファレロン過程(標準理論で 許される過程。)
 宇宙初期の真空の遷移で、
 B-Lを一定に保った状態で 粒子を生成。
 レプトン数→バリオン数が生成
 マヨラナ質量が重いと、ヒッグス場との相互作 用で得られる質量が小さくなる
 シーソー模型における質量の与えられ方の一例

Searches in Low energy experiments	LHC	Possible connection with Lepton number violatir	n low energy phases. ng processes
GeV 100	GeV 1 TeV	10 ⁶ GeV	10 ¹² GeV
Leptogenesis from Oscillations (ARS) Asaka, Eijima, Ishida, 1112.5565 Asaka, Shaposhinokov, 0505013 Akhmedov, Rubakov, Smirnov 9803255 Leptogene decay of t T. Hambye and D. T Eijima, Shaposhnika	Resonant I A. Pilaftis and T. E. J. U A. Abada, H. Aissaoui, esis from LPV he Higgs Feresi arXiv:1606.00017 ov 1703.06085 ov, Timiryasov 1808.10833	Leptogenesis Inderwood Nucl. Phys. B692, 303 (2004) M. Losada 0406304 M. Fukugida and T. Yanagida Phy W. Buchmuller, P. Di Bari, M. Plu R. Barbiere, P. Creminelli, A. Stru	eptogenesis ys. Lett. B174 (1986) 45-47 imacher arXiv:0401240 umia, N. Tetradis
Giorgio Arcadi		NEUTRINO C	onference 24-06-2020
	微調整問題 らしい。(再	髢を無視すれば、SUSYはな 加熱温度が低くなってしま	:い方がいい ミう。)

ニュートリ/がマヨラナ 粒子かどうか確かめる ことが、 すごく重要

人類が予想している10¹⁰~10¹⁵ GeVの物理が正しいか どうかを垣間見る

Figure 2. Ground state mass parabola for isobaric nuclei, showing the necessary configuration for double beta decay. Only the one (a) on the even-even (E-E) shell, whose β -decay is blocked (b) but which could decay via two subsequent steps (c) is allowed to do double beta decay. The shift of the parabola of the odd-odd (O-O) nuclei is due to the nuclear pairing energy.

K. Zuber, Double Beta Decay, Contemp. Phys. 45 (2004) 491-502

Table 1. Compilation of $\beta^-\beta^-$ -emitters with a *Q*-value of at least 2 MeV. The transition energies *Q* and the natural abundances are shown.

Transition	Q-value (keV)	nat. ab. (%)
$^{48}_{20}$ Ca \rightarrow^{48}_{22} Ti	4271	0.187
$^{20}_{32}\text{Ge} \rightarrow ^{76}_{32}\text{Se}$	2039	7.8
$^{82}_{34}$ Se \rightarrow^{82}_{36} Kr	2995	9.2
$^{96}_{40}$ Zr \rightarrow^{96}_{42} Mo	3350	2.8
$^{100}_{42}\text{Mo} \rightarrow ^{100}_{44}\text{Ru}$	3034	9.6
$^{110}_{46}$ Pd $\rightarrow ^{110}_{48}$ Cd	2013	11.8
$^{116}_{48}$ Cd $\rightarrow ^{116}_{50}$ Sn	2802	7.5
$^{124}_{50}$ Sn $\rightarrow ^{124}_{52}$ Te	2288	5.64
$^{130}_{52}$ Te $\rightarrow ^{130}_{54}$ Xe	2533	34.5
$^{136}_{54}$ Xe $\rightarrow ^{136}_{56}$ Ba	2479	8.9
150_{60} Nd $\rightarrow 150_{62}$ Sm	3367	5.6

"ニュートリノを伴わない二重ベータ崩壊"($0\nu\beta\beta$)

▶ ニュートリノが"マヨラナ質量"を持つ場合にのみ起きる。

"Observation of neutrinoless double-beta ($0\nu\beta\beta$) decay would signal violation of total lepton number conservation. The process can be mediated by an exchange of a light Majorana neutrino, or by an exchange of other particles. However, the existence of $0\nu\beta\beta$ -decay requires a nonvanishing Majorana neutrino mass, no matter what the actual mechanism is." PDG2020

Lifetime for standard Majorana case

$$\begin{pmatrix} T_{1/2}^{0\nu} \end{pmatrix}^{-1} = G_{1/2}^{0\nu} \cdot |M_{1/2}^{0\nu}|^2 \cdot \langle m_{\beta\beta} \rangle^2$$
phase space factor
fa効ニュートリノ質量
nuclear matrix element
$$\langle m_{\beta\beta} \rangle^2 = \left| \sum_i U_{ei}^2 m_{\nu_i} \right|^2 = \left| (m_1 c_{12}^2 + m_2 s_{12}^2 e^{i\alpha_{21}}) c_{13}^2 + m_3 s_{13}^2 e^{i(\alpha_{31} - 2\delta)} \right|^2$$
If neutrino is Majorana type,

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & +c_{23} & +s_{23} \\ 0 & -s_{23} & +c_{23} \end{pmatrix} \begin{pmatrix} +c_{13} & 0 & +s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & +c_{13} \end{pmatrix} \begin{pmatrix} +c_{12} & +s_{12} & 0 \\ -s_{12} & +c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix} \\ (c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij})$$

Another two CP phases which cannot be accessible by oscillation. 有効ニュートリノ質量が10分の1になると、寿命は100倍(TДT) 寿命の感度は、

バックグランドフリーだと ∝ 崩壊核x時間 バックグランドリミテッドだと∝ √崩壊核x時間

Nuclear matrix element

Current limit

- ✓ 青とか緑は、マヨラナCP位相の値を、CP conservingなある値に固定した場合。 振動パラメータの不定性のために幅がある。
- ✓ 赤は、マヨラナ位相を振った場合。

Home

v5.0: Three-neutrino fit based on data available in July 2020

T2K&NOvA& JUNOでmass orderingは(2020 年代中頃に)5σで 決まる可能性が 高い。

FIG. 1. Marginalized posterior distributions for $m_{\beta\beta}$ and m_l for NO (a) and IO (b). The solid lines show the allowed parameter space assuming 3σ intervals of the neutrino oscillation observables from NuFIT [12]. The plot is produced assuming QRPA NMEs and the absence of mechanisms that drive m_l or $m_{\beta\beta}$ to 0. The probability density is normalized by the logarithm of $m_{\beta\beta}$ and m_l .

PRD 96, 053001 (2017)

実験で抑えられている範囲でパラメータをランダム に振ると

Front-Runner 1 : KamLAND-Zen

- ✓ 90%-enriched ¹³⁶Xe dissolved in Liq. Scinti.
 - 2011 ~ 2015 : 320 ~ 380 kg
 - 2019 : 745 kg
- Active shielding by ultra-low background liquid scintillator

Pre-activity cut by timing information

Front–Runner 2 : GERDA

Pulse shape Pure water discrimination (PSD) Liquid Ar for multi-site and surface α , β events Ge detector anti-coincidence LAr veto based on Ar PMT scintillation light read by fibers and PMT ß a Muon veto based on Optical Cherenkov light and detector : 35.6 kg \rightarrow 44.2 kg fibers plastic scintillator \checkmark

✓ 88%-enriched Germanium

Y. Kermadic, neutrino2020

Ultra-high energy resolution

Front-Runner 3 : CUORE T. O'Dor

T. O'Donnell, neutrino 2020

Double-Beta Decay Experiments

Jason Detwiler, University of Washington Neutrino 2020 - Virtual Meeting 1 July 2020

Agostini, Benato, JD, Menendez, Vissani

J. Detwiler

Ø Discovery Sensitivity Comparison

広告・やりがいのあるプロジェクトを お探しのあなたへ

> 1,000L (Xe ~40kg) 検出器で0νββ探索へ
 2023年 phase 1測定開始へ向けて、建設開始
 数年で世界記録に到達???

1トン検出器への布石

まとめ

- ▶ すごく大事。GUTスケールの物理の可能性。
- *m_{ββ}*で1 meVまでは、とにかく頑張って探すべき ただし、現在の技術では10 meVを超えるのは厳しい
- > 今の上限値のすぐ下にある可能性もある
- > 見つかったら、次は、
 - 角度分布とか偏極度とか
 - 異なる核種
- ➤ AXEL、一緒にやりませんか?

検出器本体以外にも、回路の開発などやることいろいろ