

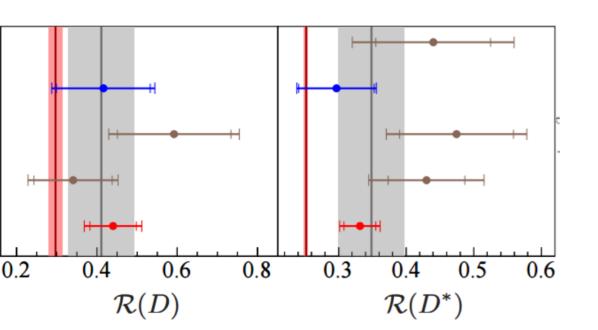
Measurement of R(D*) with hadronic tau decays "Benedetto Gianluca Siddi On behalf of the LHCb Collaboration

Università degli studi di Ferrara INFN - Sezione Ferrara CERN Mini-workshop on D(*) tau nu and related topics Nagoya 2017 March 27-28

B. Siddi INFN Ferrara

Measurement of R(D*) with hadronic tau decays

possible for a hadron collider.


in tau lepton final states

odel, predicts equal coupling between

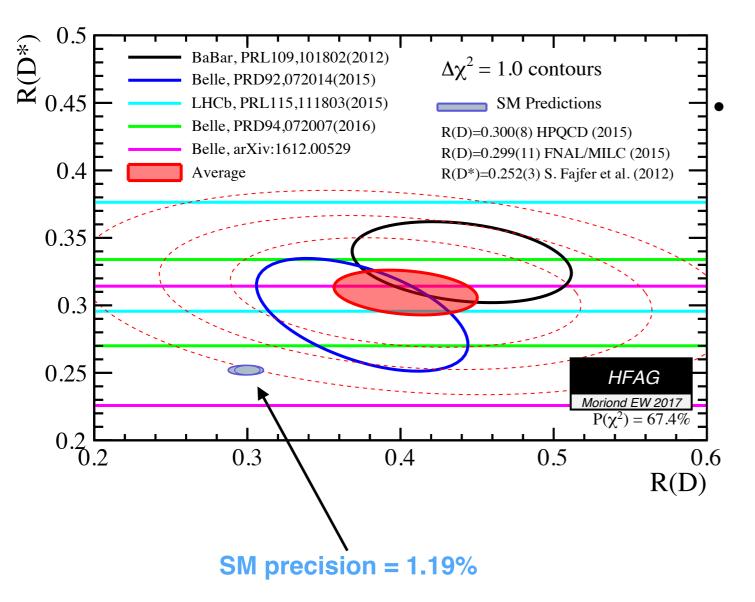
olying in some cases a stronger coupling

sitive probe to such New Physics effects.

equired by such SM extensions, can have or example in $\bar{B}^0 \rightarrow D^{*+} \tau^- \bar{\nu}_{\tau}$

 Ē.

B hadron semileptonic decays in tau leptons final states


- These decays are successfully studied in B factories with high purity and high statistics D^(*)τv samples
- Despite the hadronic environment LHCb is also able to study such kind of decays and extend to other b hadrons thanks to the high boost of the b hadrons and excellent vertexing

Analysis Challenges

- Finding kinematic variables that distinguish signal from background
- Suppressing background with additional charged/neutral particles
- Normalization channel
- These challenges have different levels of importance and difficulty, and different solutions between analyses
 - Especially between analyses of muonic and hadronic τ decays

B. Siddi	Mini-workshop on D(*) tau nu and related topics	LI
INFN Ferrara	Measurement of R(D*) with hadronic tau decays	3 4

B hadron semileptonic decays in tau leptons final states

B. Siddi

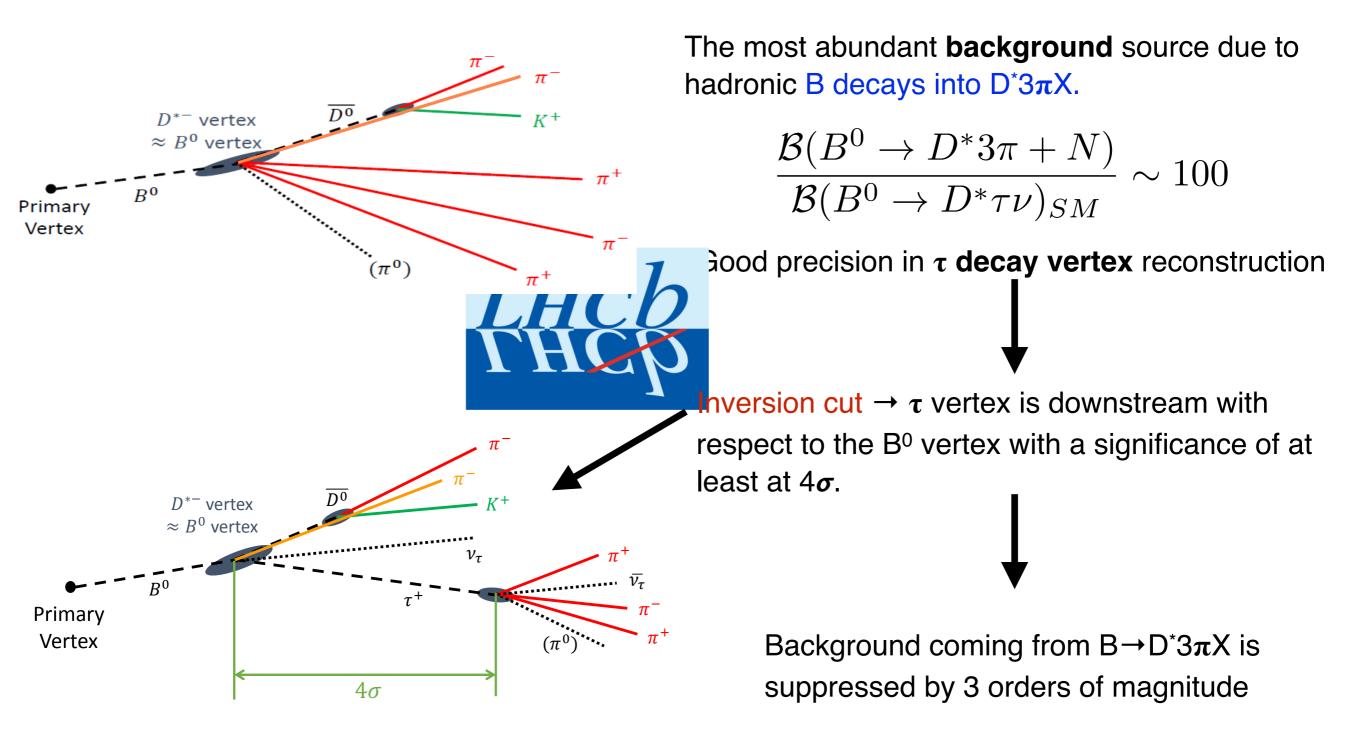
INFN Ferrara

Previous measurements of the combination of R(D) and R(D^{*}) performed by Belle, BaBar and LHCb are in tensions with the Standard Model expectation (~4 σ standard deviations)

- The au has been reconstructed in the muonic mode $au
 ightarrow \mu
 u
 u$
- The normalization channel $\mathbf{B}^0 \rightarrow \mathbf{D}^* \tau \nu$ share the same visible final state

Tau leptons with hadronic final state

- Semileptonic decay without charged leptons in the final state
- In our analysis the τ is reconstructed in the hadronic $\tau{\rightarrow}\pi\pi\pi\nu$ decay mode
- The normalization channel used is $B^0 \rightarrow D^* \pi \pi \pi$ decay


В.	510	aai	
INF	NF	- err	ara

Mini-workshop on D(*) tau nu and related topics Measurement of R(D*) with hadronic tau decays

5

Vertex Inversion method

B. Siddi INFN Ferrara Mini-workshop on D(*) tau nu and related topics

Measurement of R(D*) with hadronic tau decays

6

Double charm background

• The remaining background consists of B⁰ decays where the 3π vertex is transported

away from the D⁰ v

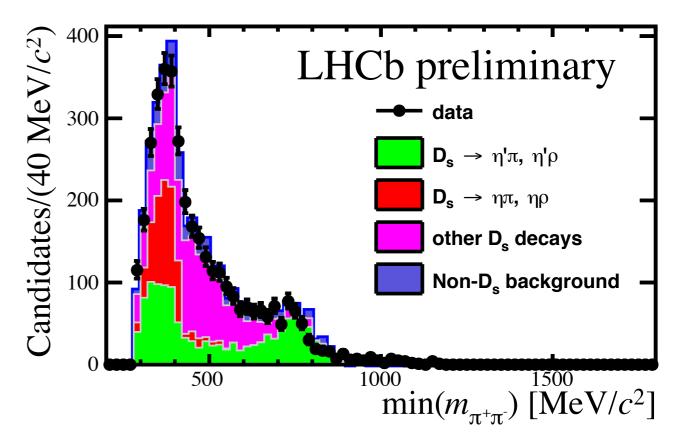
$$B^0 \rightarrow D^{*+} \tau^- \overline{\nu}_{\tau}$$
 with $\tau^- \rightarrow \mu^- \nu_{\tau}$

Tauonic analyses

LHCb has three very good balaite im Bt De Packernoves backgrounds

• 3 π dynamics Asume $\gamma \beta_{\parallel,D^*\mu} = \gamma \beta_{\parallel,B}$ to access res

EVEIN


- Isolation criteria against charged tracks and neutral energy deposits
- · Partial reconstruction in the signal and background hypotheses
- A Boosted Decision Tree is trained using variables computed with partial reconstruction and isolation criteria to discriminate double charm decays from signal

ΡV

B. Siddi INFN Ferrara

Double charm background

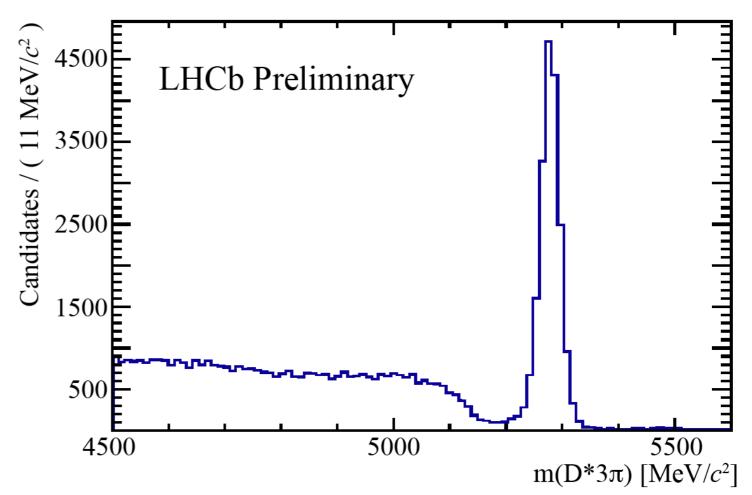
- The D_s decay model has been determined directly from data, using a enriched sample obtained using a BDT output region that is enriched in such decays (high purity)
- The min M(2 π), max M(2 π), M($\pi^+\pi^+$) and M(3 π) mass are fitted simultaneously
- PDF contains:
 - D_s decays where at least 1 pion is from η or η' : $\eta \pi$, $\eta \rho$, $\eta' \pi$, $\eta' \rho$
 - D_s decays where at least 1 pion is from an IS other η, η': ISπ, ISρ (IS could be ω, φ)
 - D_s decays where none of the 3 pions comes from an IS, subdivided in: K⁰3π, η3π, η'3π, ω3π, φ3π, 3π non resonant final state.

The weights obtained by this fit are then used to construct the D_s templates

B. Siddi INFN Ferrara

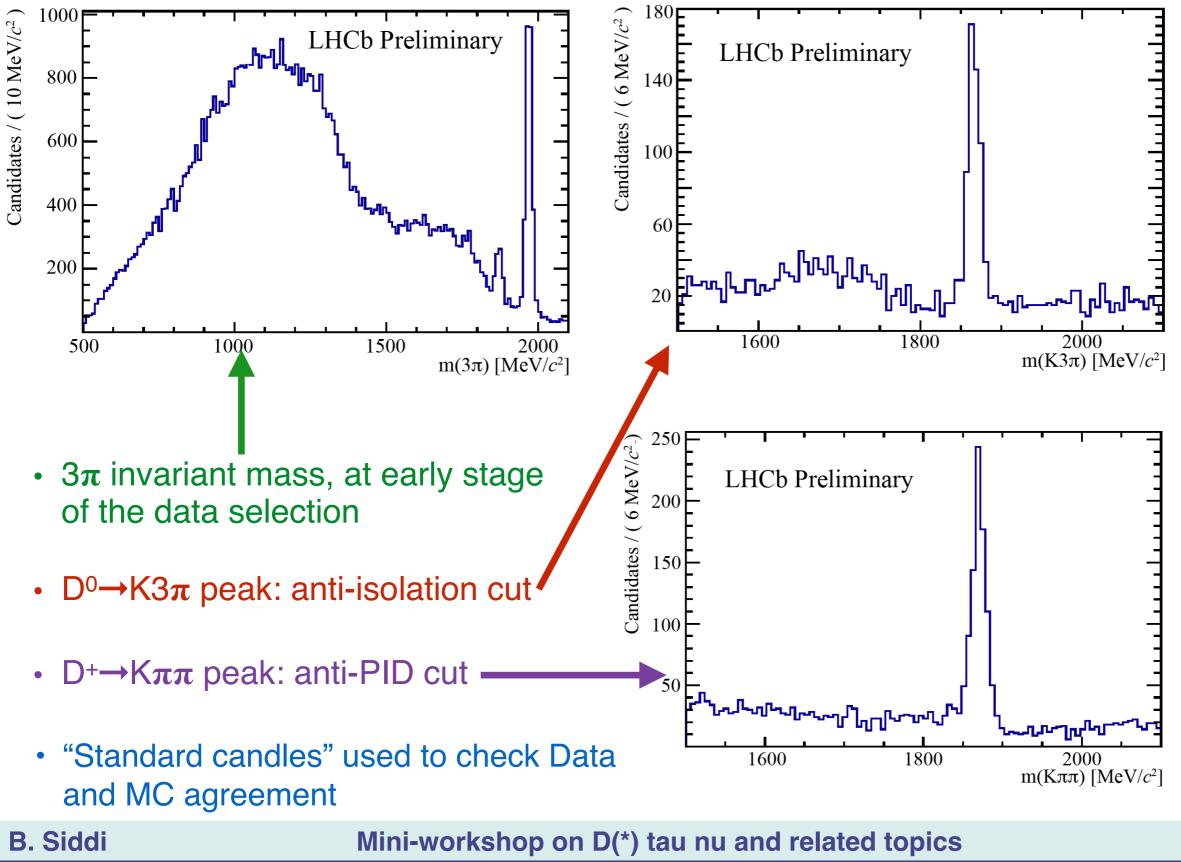
Mini-workshop on D(*) tau nu and related topics

Measurement of R(D*) with hadronic tau decays



Normalization channel

- The normalization channel has to be as similar as possible to the signal channel to cancel all systematics linked to trigger, particle ID, selection cuts
- What we are going to measure is:


 $\frac{\mathcal{B}(B^0 \to D^* \tau \nu)}{\mathcal{B}(B^0 \to D^* \pi \pi \pi)}$

- They differ by: softer pions and D^{*} due to the presence of two neutrinos, kinematics of the 3π system is not exactly the same:
 - This gives a small residual effect on the efficiency ratio.

Control channels D_s, D⁰ and D⁺

INFN Ferrara

Measurement of R(D*) with hadronic tau decays

10

Signal extraction

Signal Reconstruction:

B. Siddi

INFN Ferrara

- Assume 2 neutrinos in the event; can be used to access the full kinematics and can reject background where no neutrinos are emitted from B vertex
 - · Reconstruction of the τ and B⁰ momentum and τ decay time constraining their masses
 - Reconstruction of the W^* mass and a cut $M_{W^*} > 0$ is applied
 - A reconstruction efficiency of about 95% is reached

This method consists of solving the the following equation:

$$|\vec{p}_{\tau}| = \frac{(m_{3\pi}^2 + m_{\tau}^2)|\vec{p}_{3\pi}|\cos\theta \pm E_{3\pi}\sqrt{(m_{\tau}^2 - m_{3\pi}^2)^2 - 4m_{\tau}^2|\vec{p}_{3\pi}|^2\sin^2\theta}}{2(E_{3\pi}^2 - |\vec{p}_{3\pi}|^2\cos^2\theta)}$$

where θ is the angle between τ and 3π direction
(θ has been chosen such that the square root vanishes)
 π

Mini-workshop on D(*) tau nu and related topics

Measurement of R(D*) with hadronic tau decays

11 LHCP

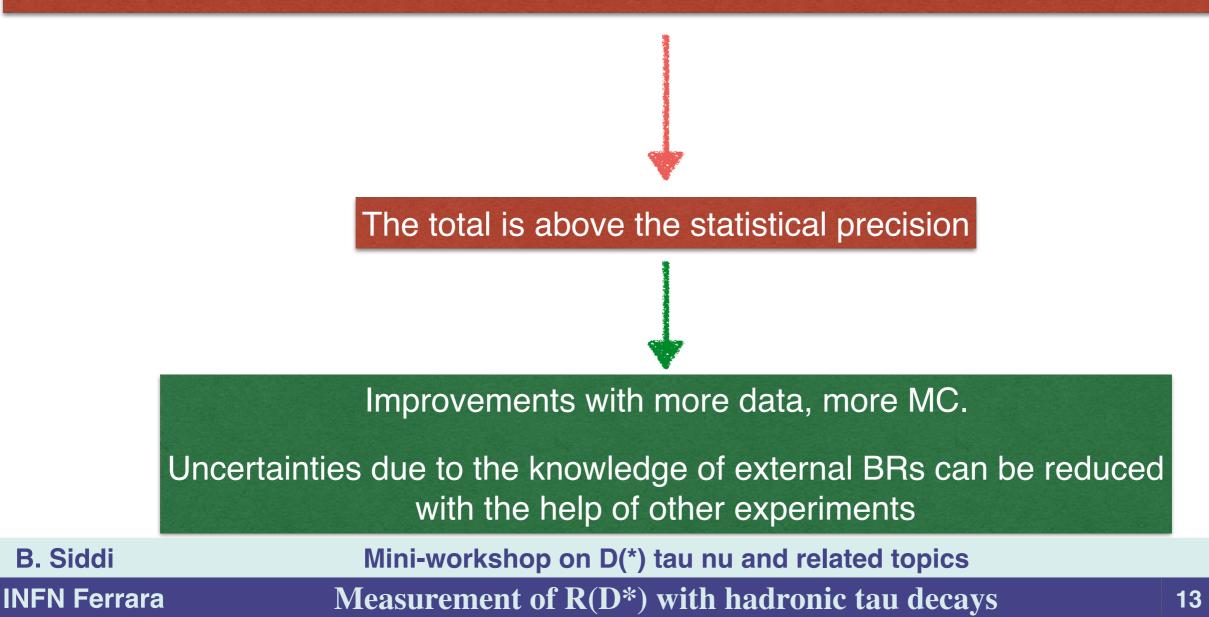
ν

Fit Model

- An extended maximum likelihood 3-dimensional fit using templates in:
 - q² (the squared momentum transferred to the tau-nu system),
 - 3π decay time,
 - The output of the BDT extracted from simulated and Data-Driven control samples
 - The Fit Model consists of 5 categories:
 - Signal described by the sum of $\tau \rightarrow \pi \pi \pi \nu$ and $\tau \rightarrow \pi \pi \pi \pi^0 \nu$
 - $B^0 \rightarrow D^{**} \tau \nu$
 - Double Charm components
 - $B^0 \rightarrow D^* 3\pi X$

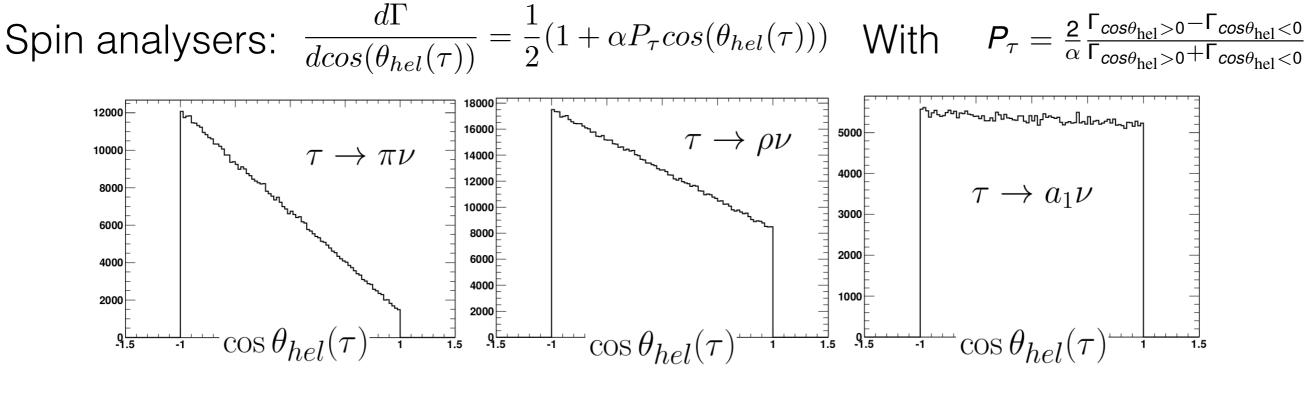
B. Siddi

INFN Ferrara


Combinatorial background

Main systematics

- MC statistics: difficult to produce very large samples (same issue for muonic analysis)
- External BR 4.3%, reduced (before 11%) thanks to last BaBar measurement (Phys. Rev. D 94, 091101 (2016))
- $B \rightarrow D^*$ (D_s, D⁰, D⁺)X and $B^0 \rightarrow D^* 3\pi X$ backgrounds


B. Siddi

τ polarization study

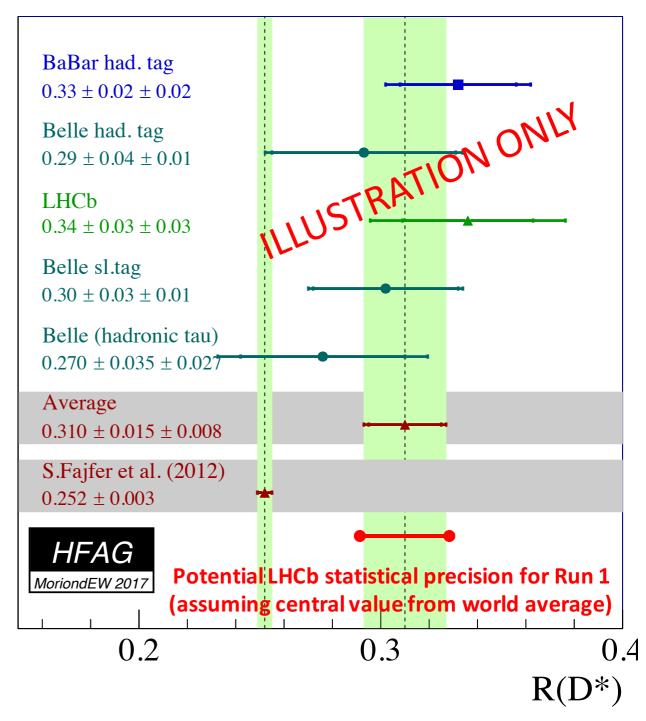
Belle:(arXiv:1612.00529) from Karol ADAMCZYK talk at CKM 2016

- D* and τ polarizations in semitauonic B decays are sensitive probes of various NP scenarios
- cos $\theta_{hel}(\tau)$ can be measured if there is a single v in τ decay $\tau \rightarrow hv_{\tau}$, h = π , ρ , a1

$$lpha = 1 \text{ for } \tau \to \pi \nu$$
 $lpha = rac{m_{ au}^2 - 2m_V^2}{m_{ au}^2 + 2m_V^2}, \, lpha = 0.45 ext{ for } au \to
ho
u$

- In the case of hadronic R(D^{*})
 - Pros: The systematics due to the knowledge of τ polarization is small ($\alpha \approx 0.02$)
 - Cons: Difficult to perform polarization studies

B. Siddi	Mini-workshop on D(*) tau nu and related topics	
INFN Ferrara	Measurement of R(D*) with hadronic tau decays	14


Conclusions

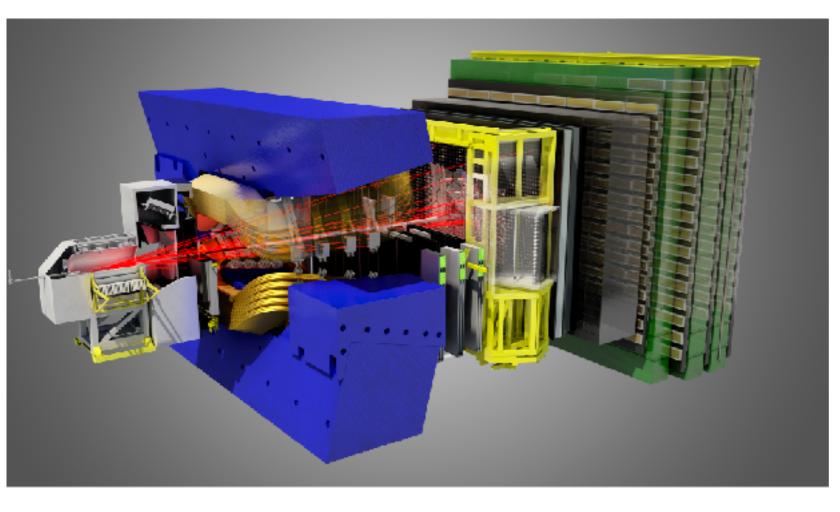
Semitauonic B decays are great tool to discover new physics

Several measurements of R are ongoing, e.g. $R(D^*)$, R(D), R(J/ ψ), R(Λ_c) and more modes are possible to do

▶Thanks to the LHCb capability, it is possible to reconstruct hadronic tau decays with good precision.
 ✓ Statistical precision in Signal extraction for hadronic R(D*) about 7% for Run1 data → competitive with the muonic LHCb measurement (PRL 115, 111803) and with the world average (arXiv:1612.07233)

It will be possible to study not only R but also angles, polarizations, form factors, and other physical quantities

B. Siddi INFN Ferrara



B. Siddi INFN Ferrara Mini-workshop on D(*) tau nu and related topics

Measurement of R(D*) with hadronic tau decays

The LHCb Detector

- Single arm spectrometer at LHC in the pseudorapidity range $2 < \eta < 5$;
- Optimized to study hadron decays containing **b** and **c** quarks:
 - CP violation, rare decays, heavy flavor production;
- Excellent vertex resolution and separation of B vertices;
- Good momentum and mass resolution;
- Excellent **PID** capabilities (good separation **K**-π and muon identification);
- Run 1: collected about 1 fb⁻¹ @ $\sqrt{s} = 7$ TeV in 2011 and about 2 fb⁻¹ @ $\sqrt{s} = 8$ TeV in 2012
- Run 2: collected about 2.0 fb⁻¹ @ $\sqrt{s} = 13$ TeV

B. Siddi	Mini-workshop on D(*) tau nu and related topics		інсь
INFN Ferrara	Measurement of R(D*) with hadronic tau decays	17	LHCp