Planar Pixel Sensor (PPS) Beam Test及び解析

陣内 修 (東エ大) on behalf of アトラス日本シリコングループ

2013.5.23 @名古屋大学 新学術領域研究 研究会

Contents

- ビームテストを行う意義
- 近年行われたビームテストの概要

- 2012年9月(CERN) 解析結果(メイン)
- 2013年3月(DESY) 解析の近況
- 2011年 high-etaデータ解析、phi方向傾斜データ解析
- 今後の見通し

ビーム試験:意義、手法

- ・ (PPS用)p型センサー様々な開発設計→性能評価が必須
- ・ 放射線照射後に バイアス構造、アイソレーション構造、 HV edgeプロテクション等の性能を確認

 → 善し悪しを評価し、次回の設計へFeed-Back
- 構造解析 1 pixel (250µm x 50µm) 内の検出効率分布を 知る必要がある
- そこでビームテスト: 高位置分解能検出器
 「テレスコープ」Δx~3μmでビームの貫通位置を特定

陣内(東工大)

2011年 PPSグループ ビームテスト

	7月@CERN				9月 @ CERN			
照射量	未照射 + 1.1e15/16 (p)				未照射+ 2e15(p)			
FEタイプ	FE-I3, FE-I4				FE-I4	後で少々触れる		
角度	0度	phi=15度	high-eta1	high-eta2	0度	phi=15度	high-eta2	
レコ*	Done	Done	Not yet	Not yet	Done	Done	Done (old)	
解析担当	永井	萩原	(John)	(John)	永井	萩原	本橋	

レコ * = Reconstruction(生データ→トラック再構成 、解析できるフォーマットへ)

プーレーヤーの紹介
 本橋(東工大M2)
 山口(東工大M1)
 留目(東工大M1)
 萩原(筑波大M1)
 コーチ兼現役中村(KEK)
 監督海野(KEK)助監督池上、田窪(KEK)
 ロックネージャー陣内(東工大)、原(筑波大)
 引退永井(東工大D2),久保田(東工大OB)

ビームテスト解析

2012/2013年 PPSグループ ビームテスト

	2012年3月	2012年5月	2012年8月	2012年9月	2013年3月
場所	DESY	CERN	CERN	CERN	DESY
FEタイプ	FE-14	FE-I3, FE-I4	FE-13	FE-14	FE-I4
照射量	2e15(p)	2e15/5e15(p)	2-5e15(n)	1e16(n)	5e15(p)
角度	0 deg	0 deg	0 deg	0 deg	0 deg
レコ*	Done	Not yet	Not yet	Done	Done (almost)
解析担当	(久保田)	TBA	ТВА	久保田	本橋、中村

このトークのメイン

- 各人担当のデータがアサインされている
- PPSグループOfficialな形式で結果を出す必要性
 - Reconstructionソフトのversionを合わせる
 - 共通解析ツールを利用
- (AJ)グループ内の情報共有化が非常に有効

試験中のセンサー構造

[1] バイアス構造

- GNDへ各ピクセルを抵抗を介して つなぐ→各ピクセルは分離
- 'Poly-Silicon抵抗', or 'Punch Through (PT) 抵抗' 設計

[2] 電極分離構造

- 酸化膜のチャージアップ(+)に よる電荷収拾効率の低下を防ぐ
- 'Common P-stop', or 'P-spray' 設計

P-stop

2012年9月のビームテスト解析

未照射 FE-I4 サンプル バイアス・スキャン: 6 – 700V 照射 neutrons-1E16neq/cm² FE-I4サンプル バイアス・スキャン: 200 – 1200V

Sensor ID	Bias Type	Separation
#18	Punch Through	P-stop
#19	Poly Silicon	P-stop
#20	Punch Through	P-spray
#21	Poly Silicon	P-spray

陣内(東エ大)

照射前&後の Hit Efficiency map

全体の測定効率

Bias = 100V (全空乏化)

bias構造が P-sprayタイプ で見られる(inefficiency)

Bias = 1200V

inefficient 領域が確認された bias rail, PT dot, PolySi

>99.7% @ 600V (各サンプルの電極領域)

同じPolySi同士だが 異なる測定効率

P-stop サンプルにはより多くのPolySiが Bias rail付近に集中 _________poly-silicon

PolySi が非効率を生んでいる可能性が高い (最終結論には PT/P-stopの結果が必要)

Poly-Silicon抵抗効果

- PolySiの下で効率が落ちることが確認された→同じ結論
- 完全空乏化する1200Vでは 効果が減少,しかしまだ見える
- 電荷収拾量がPolySiの下で 落ちていることも確認(Backup)

2013年3月DESYビームテストデータの現状

			PT/common p-stermine	op(照射後)	これは9月デ	ータになかった(貴重)
Batch	Sensor ID	Bias	Separation	Thickness	Dose	
1a	#09	PolySi	Individual P-stop	150um	0	
1e	#18	РТ	Common P-stop	150um	5.1E15	
1b	#19	PolySi	Common P-stop	150um	5.0E15	
1d	#20	РТ	P-spray	150um	5.6E15	9月の試験で
1c	#21	PolySi	P-spray	150um	5.6E15	照射して試験
ref	#22	РТ	P-spray	320um	0	

- 通常、日本グループの順は中盤→別グループが既にセットアップ
 今回日本グループ最初→セットアップのノウハウを身につけた
- 上記サンプルは Parylen N でedge protectionされた(後に照射試験)
- 1200Vまでバイアスをかけられることを確認
- 現在Reconstructionが終わりデータを見始めているところ

入射粒子角度依存性

- Barrel状に配置
 - phi方向に 0-15度 程度
 - eta方向に 90-4度 程度
 想定して性能評価を行う(重要)

IBLはeta=3 (5.7度まで)

high-eta解析の一部を紹介

• 空乏化度合いを確認することができる

照射前:HVを上げる→クラスタサイズ大 →収拾電荷量も増える

照射後:電荷トラップの効果で収拾電荷量減る

high-etaデータのトラッキング電荷の絶対較正が現在の課題

high-eta解析の一部を紹介

• 空乏化度合いを確認することができる

照射前:HVを上げる→クラスタサイズ大 →収拾電荷量も増える

照射後:電荷トラップの効果で収拾電荷量減る

high-etaデータのトラッキング電荷の絶対較正が現在の課題

phi方向傾斜 解析の一部を紹介

- phi方向傾斜により
 - シリコン通過距離増加→収拾電荷増&測定効率向上
 - 特定の構造がぼやける

照射前サンプル Bias = 100V, センサー150µm厚

phi = 0度

Poly-Si, indiv p-stop

全体のefficiency:0.943798±0.000622912 PTLA, indiv p-stop

phi = 15度

全体のefficiency:0.991037±0.000237035

基本的な傾向は確認できた 各構造における影響の違いを今後詳しくみていく

今後の見通し

- ビームテスト解析
 - 2011年角度付きデータの解析 (high-eta 本橋・山口、 Phi 萩原)
 - 2011年0度データ 未解決トピックス(留目)
 - 2012/2013年3月 DESY(中村、本橋)
 - 2012年9月 CERN 未解決問題、TOTの絶対較正(中村)
 - 2012年5/8月 担当者の割当必要
- 今後のビームテスト
 - 2013年8月下旬 DESYにて
 新設計センサー(未照射)をビーム試験
 - 2014年2月 DESY ビーム試験を予定

extra materials

Charge collection ratio

- The ratio is defined as
 - (TOT_{obs})/(TOT_{ave}) where TOT_{ave} is average TOT in electrode region
 N.B since TOT→ charge calib is not done & calib. is non-linear, this ratio is not pure charge ratio

- charge loss at 1200V
 - PT/P-spray : 5.0%
 - PolySi/P-stop : 14.7%
 - PolySi/P-spray : 18.1 %
- charge loss in 'PolySi' types are significant
- Short Conclusion : PolySi register have caused the inefficiency (at least with the current design)
- possible explanation for the charge loss is in backup material

high-eta data (2011) analysis status

- High-eta run : 2011 July for non-irrad, Sept. for irrad sensors
 - Analysis carried out by John Idarraga using Mafalda framework (the results presented in 8th Hiroshima Sympo. (Taiwan 2011 Dec)
 - Kazuki Motohashi revisits high-eta analysis with TBmon framework, currently works on the Sept. data
 - Reconstruction of Sept data is done, however the reconstruction seems to be not properly done (has problem with the alignment) Kazuki is going to rerun the reconstruction with proper setup
 - Several analysis (based on the cluster size, TOT without tracking info) are done, analysis class under TBmon are prepared by Kazuki

SCC94 non-irrad SCC96 irrad 10_E-10 <u>_</u> Time Over Threshold **Fime Over Threshold** 9 9Ē 8E 7F 5 5V 3 - 10V 20V \rightarrow 50V error = stat. ⊕ fit 200V error = stat. ⊕ fit 1000 8 g # in Cluster pixel side rear side pixel side rear side # in Cluster

 beam passed through sensors from pixel side to rear side

ΤΟΚΥΟ ΤΕΓΗ

Pursuing Excellence

TOT of first & last pixel is low
 → beam passed narrow region

- depletion zone get widen with increasing HV
- more HV, more TOT
- irrad : more distant, less TOT
- → effect of trapping charge?
- these effect not appear so much in non-irrad

by K.Motohashi

March 2013 TB measurement list

- □ Scan type : **Bias voltage scan** without sensors tilted
- Batch1a (0.5M triggers)
 - KEK22 (ref) & KEK09 (non-irrad : PolySi, individual p-Stop)
 - HV_{both} : 6, 14, 25, 40, 57, 100, 200, 400V
- Batch1b (1M triggers)
 - KEK22 (ref) & KEK19 (irrad : PolySi, Common p-Stop)
 - HV_{ref}: 300V, HV_{DUT}: 260, 15, 65, 145, 400, 600, 800, 1000, 1200V
- Batch1c (1M triggers)
 - KEK22 (ref) & KEK21 (irrad : PolySi, Common p-Stop)
 - HV_{ref}: 300V, HV_{DUT}: 200, 400, 600, 800, 1000, 1200V
- Batch1d (1M triggers)
 - KEK22 (ref) & KEK20 (irrad : PT, p-spray)
 - HV_{ref}: 300V, HV_{DUT}: 200, 400, 600, 800, 1000, 1200V
- Batch1e (1M triggers)
 - KEK22 (ref) & KEK18 (irrad : PT, Common p-Stop)
 - HV_{ref}: 300V, HV_{DUT}: 200, 400, 600, 800, 1000, 1200V
- Kazuki and Koji are trying to reconstruct these data

Charge Loss Mechanism : Surface Damage

- The efficiency loss due the the bias structure is explainable from the surface damage of the Oxide layer
- Surface damage mechanism
 - ionizing radiations would create electron-hole pairs
 - the electrons are absorbed in the metal layer owing to its larger mobility
 - holes are trapped in oxide layer (at the transition region)
 - electric field are effectively decreased, causing slower change collection, end up with the lower collected charge with certain readout
 - Under Bias rail and, poly-silicon resisters, such effect would happen