クォークセクター: Bアノマリーの現状まとめ

### 山田洋一 (東北大)

FPWS2022, 2022/11/7

- Lepton Flavor Universality (LHC)
- $B \rightarrow D^{(*)}l^-\bar{\nu}$  でのLFU の破れ? (B anomaly, charged current)
- $B \to K^{(*)}l^+l^-$  でのLFUの破れ? (B anomaly, FCNC)
- Effective theory  $\succeq$  parameter fit
- アノマリーを説明するBSMの候補

#### 参考: D. London and J. Matias, 2110.13270

# 標準模型(SM)のゲージ相互作用

•  $W^{\pm}$ (荷電カレント相互作用) f SU(2)<sub>L</sub> ゲージ doublet  $(f_1, f_2)_L$  と結合:フレーバーを変える

Coupling の強さはすべて共通

質量固有状態 
$$u_i = (u, c, t), d_j = (d, s, b), l_i = (e, \mu, \tau),$$
  
 $v_i = (v_e, v_\mu, v_\tau)$   
 $L_{int} = -\frac{g_w}{\sqrt{2}} \overline{u}_i V_{ij} \gamma^\mu P_L d_j W^+_\mu - \frac{g_w}{\sqrt{2}} \overline{v}_i \gamma^\mu P_L l_i W^+_\mu + (h.c)$ 

- クォークとWの結合の強さは1つのユニタリー行列 V (CKM行列) で決まる。  $V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$ •レプトン ( $e, v_e$ ), ( $\mu, v_{\mu}$ ), ( $\tau, v_{\tau}$ ) とWの結合はフレーバー(or 世代)に よらずすべて共通 Lepton Flavor Universality (LFU)

# LFU の例

• On-shell W decays (RPP 2022)  

$$\frac{\Gamma(\mu^+ \nu_{\mu})}{\Gamma(e^+ \nu_e)} = 0.996 \pm 0.008, \qquad \frac{\Gamma(\tau^+ \nu_{\tau})}{\Gamma(e^+ \nu_e)} = 1.043 \pm 0.024$$
• Lontonia decays of tau (PDP 2022)

$$B(\tau^{-} \to \nu_{\tau} \bar{\nu}_{e} e^{-}) = 17.82 \pm 0.04 \%,$$
  

$$B(\tau^{-} \to \nu_{\tau} \bar{\nu}_{\mu} \mu^{-}) = 17.39 \pm 0.04 \%$$
  

$$(O(\alpha \log m_{\tau} / m_{e,\mu}) \text{ corr } \overline{b} \psi)$$

ところが、B mesons の崩壊に関して、LFU を大きく破る結果が 2012 年頃からいくつもの過程で報告され続けている (B アノマリー)

# $B^- = (b\overline{u}), \overline{B} = (b\overline{d})$ の崩壊

bクォークの崩壊で起こる

Main modes (charged current)

$$b \rightarrow c + W^{-*} \rightarrow c + (l^- \overline{\nu}_l, d_j \overline{u}_i)$$
  
hadronic:  $D\pi, J/\psi K, \cdots$ 

semi-leptonic:  $D^{(*)}l^-\bar{\nu}_l, \cdots$ 

FCNC (flavor-changing neutral current) modes
 SM では摂動の高次でのみおこる(→rare modes)
 K<sup>(\*)</sup>l<sup>-</sup>l<sup>+</sup>, l<sup>+</sup>l<sup>-</sup>, K<sup>\*</sup>γ, …

2012年頃から、これらの崩壊に関してSM,特にLFUからずれた結果が報告され続けている。

アノマリー (1) Semi-leptonic decays of B

•  $b \to c(u) + W^{-*}, W^{-*} \to l^- \bar{\nu}_l \ (l = e, \mu, \tau)$  $|V_{cb}| \sim 0.04, |V_{ub}| \sim 0.004 \Rightarrow : 主に charm mesons に崩壊$ 

Branching ratios  $B(B \rightarrow X_c \ \mu^- \overline{\nu}) \sim 0.1$  (inclusive)  $5 \ B(B \rightarrow D \mu^- \overline{\nu}) \sim 0.02, \quad B(B \rightarrow D^* \mu^- \overline{\nu}) \sim 0.06$  • Decay amplitudes

$$A(B \to D^{(*)}l^-\bar{\nu}) \sim C \frac{g_w^2}{M_W^2} L(l)_\mu V_{cb} < D^{(*)}|\bar{c}_L\gamma^\mu b_L|B >$$
  
Meson form factor の評価が必要

しかし、レプトンフレーバーだけが異なるモード間では decay rates ( $\propto$  branching ratios)は、 ( $m_l$  に依存する効果を除いて)等しくなるはずである。

# Test of LFU in $b \rightarrow c l^- \bar{\nu}$

•  $e - \mu$  間では成立  $\frac{B(B \to D^* e \overline{\nu})}{B(B \to D^* \mu \overline{\nu})} = 1.01 \pm 0.01 \pm 0.03$  (Belle, 1809.03290)

•  $(e, \mu)$ - $\tau$  間:decay width は $\tau$ の質量の効果で抑えられる。 SM での予言値 (HFLAV, 2206.07501)  $R_{D^*}^{\mu} = \frac{B(B \to D^* \tau \overline{\nu})}{B(B \to D^* \mu \overline{\nu})} = 0.254 \pm 0.005,$  $R_D^{\mu} = \frac{B(B \to D \tau \overline{\nu})}{B(B \to D \mu \overline{\nu})} = 0.299 \pm 0.003,$ 

# $B \mathcal{T} / \mathcal{T} - (charged)$

• BaBar, 1205.5442

$$\begin{split} R_D^l &= \frac{2 * B(B \to D\tau \overline{\nu})}{B(B \to De\overline{\nu}) + B(B \to D\mu \overline{\nu})} = 0.440 \pm 0.058 \pm 0.042 \ , \\ R_D^l &= 0.332 \pm 0.024 \pm 0.018, \end{split}$$

SM の理論値(0.299, 0.254)より 2-3 σ超過

続く実験でも同様の超過が観測される。

• Belle, 1910.05864

 $R_D^l = 0.307 \pm 0.037 \pm 0.016, R_{D^*}^l = 0.283 \pm 0.018 \pm 0.014$ 

• LHCb, 2022

$$\begin{split} R_D^l &= 0.441 \pm 0.060 \pm 0.066, \, R_{D^*}^l = 0.281 \pm 0.018 \pm 0.024 \\ \end{split}$$

### 他の $b \rightarrow c\tau \bar{\nu}$ 反応

• 
$$B_c^+ \to J/\psi l^+ \nu$$
 ( $[c\overline{b}] \to [c\overline{c}]l^+\nu$ )  
 $B(B_c^+ \to J\psi\tau^+\nu)/B(B_c^+ \to J\psi\mu^+\nu):$   
0.71±0.17±0.18 (LHCb,1711.05623),  
0.25~0.28 (SM) より2o近く大きい

•  $\Lambda_b(udb) \to \Lambda_c^+(udc)l^-\overline{\nu}$ 

 $B(\Lambda_b \to \Lambda_c \tau \bar{\nu})/B(\Lambda_b \to \Lambda_c \mu \bar{\nu}):$ 0.324 ± 0.004 SM (Bernlochner et al, 1812.07593) 0.242 ± 0.026 ± 0.040 ± 0.059 (LHC, 2201.03497) ⇒実際は 0.285 ± 0.073 (Bernlochner et al, 2206.11282)? SM と一応consistent,  $B \to D^{(*)} l^- \bar{\nu}$  とは逆傾向(抑制)?

### $\mathcal{T} / \mathcal{T} / \mathcal{T} = (2)$ $\boldsymbol{b} \to \boldsymbol{s}\boldsymbol{l}^{-}\boldsymbol{l}^{+}$ decays

Flavor-changing neutral current (FCNC) ⇒ SM では摂動の高次でのみ起こる u-quark loop はV<sub>CKM</sub>で強く抑制 ⇒long-distance の寄与による計算の不定性が小さい



New physics の効果を見るのに適している

#### Branching ratios (PDG 2022) rare decays $B(B \rightarrow K l^+ l^-) \sim 5 \times 10^{-7}$ $B(B \rightarrow K^* l^+ l^-) \sim 10^{-6}$ ( $B \rightarrow K \psi, \psi \rightarrow l^+ l^-$ 共鳴の部分を除いて)



$$d\Gamma(B \to K^{(*)}l^+l^-)/dq^2 \circ q^2$$
依存性  
 $(q^2: l^+l^- \circ T o c g g a^2)$ 



From Egede et al., 2205.05222

 $B \rightarrow K^{(*)}l^+l^-$ の測定

- $B^0 \rightarrow K^{*0}\mu^+\mu^- \rightarrow K^+\pi^-\mu^+\mu^-$ の角度分布の1つがSMから3 $\sigma$ の ずれ (LHCb, 1308.1707)
- $dB/dq^2(B \rightarrow K^{(*)}\mu^+\mu^-)$ がSM より小さい



Decay rate の計算  $b \rightarrow sl^+l^-$  過程を effective 4-fermiinteractions  $(s_L\gamma^{\mu}b_L)(\overline{l^-}\gamma_{\mu}(1,\gamma_5)l^-)$  interaction とみなす。

hadron form factor <  $K^{(*)}(p')|\bar{s}_L\gamma^{\mu}b_L|B(p)$  > の評価が必要 主に、

Light-cone sum rule (LCSR) (small  $q^2$ , large recoil in  $B \to K^{(*)}$ ), lattice QCD (LQCD) (mainly large  $q^2$ , small recoil in  $B \to K^{(*)}$ ), の組み合わせで計算

 $\Gamma_{SM}(B \to K^{(*)}l^+l^-)$ には 10% 程の不定性が残る。

Hadron physics の不定性を抑える手法: 異なるレプトン間で分岐比の比を直接扱う µ/e ratio

$$R_{K^*}[q_{min}^2, q_{max}^2] \equiv \frac{B(B \to K^* \mu^+ \mu^-)[q_{min}^2, q_{max}^2]}{B(B \to K^* e^+ e^-)[q_{min}^2, q_{max}^2]}$$

$$= \frac{N(B \to K^* \mu^+ \mu^-)}{N(B \to K^* J/\psi(\to \mu^+ \mu^-))} \frac{N(B \to K^* J/\psi(\to e^+ e^-))}{N(B \to K^* e^+ e^-)} \times (\text{efficiencies})$$

Hadron form factor や $\mu/e$ の detection efficiencyの違いは大き く打ち消される。 SM での理論値: O(1)% で1 [Capderia et al, 1701.08672]  $R_K = 1.00 \pm 0.01, R_{K^*}[1.1,6.0] = 1.000 \pm 0.006,$  $R_{K^*}[0.045,1.1] = 0.922 \pm 0.022$  (near  $\mu\mu$  threshold)

# $R_{K,K^*}$ の実験値: 標準模型の予言より有意に低い。 Bアノマリー (neutral)

• LHCb (1705.05802)

 $R_{K^{*0}}[1.1, 6.0] = 0.69 \pm \frac{0.11}{0.07} \pm 0.05$ ,  $R_{K^{*0}}[0.045, 1.1] = 0.66 \pm \frac{0.11}{0.07} \pm 0.03$ 

• LHCb (2103.11769, 2110.09501)

 $R_{K^+}[1.1, 6.0] = 0.846 \pm \frac{0.042}{0.039} \pm \frac{0.013}{0.012}$ ,  $R_{K_S^0}[1.1, 6.0] = 0.66 \pm \frac{0.20}{0.14} \pm \frac{0.02}{0.04}$ • Belle (1904.02440) (SM, LHCb の双方とconsistent)

$$R_{K^{*0}}[1.1,6.0] = 1.06 \pm \frac{0.63}{0.38} \pm 0.14, R_{K^{*0}}[0.045,1.1] = 0.46 \pm \frac{0.55}{0.27} \pm 0.13$$

#### 関連: $b \rightarrow s\mu^+\mu^-$ による $B_s(b\bar{s})$ decays

•  $B(B_s \rightarrow \phi \mu^+ \mu^-)[1.1, 6.0] = (2.88 \pm 0.22) \times 10^{-8} \text{ GeV}^{(-2)}$ (LHCb, 2105.114007) SM:  $(5.37 \pm 0.66) \times 10^{-8} \text{ GeV}^{-2}$  (LCSR + LQCD)  $(4.77 \pm 1.01) \times 10^{-8} \text{ GeV}^{-2}$  (LCSR)  $(3.6 \sigma \text{ or } 1.8 \sigma)$  低くずれている。 $B \rightarrow K^{(*)} \mu^+ \mu^-$  と同じ傾向

• 
$$B(B_s \rightarrow \mu^+ \mu^-)$$
  
SM:  $(3.66 \pm 0.14) \times 10^{-9}$  精度よい  
(ATLAS, CMS, LHCb) average on 2021:  
 $(2.69 \pm \frac{0.37}{0.35}) \times 10^{-9}$  SMからずれ?  
New average (Hurth et al., 2210.07221) including CMS (2022) data  
 $(3.52 \pm \frac{0.32}{0.30}) \times 10^{-9}$  SMとconsistent?

# Effective Field Theory によるB アノマリーの説明

- LHC ではSMを超える新粒子は見つかっていない。
- → B アノマリーを説明する新物理(もしあれば)のスケールは *M<sub>W</sub>* より十分大きいと思われる。
- $\int$
- $E < M_W$  での新物理の効果は、
- 4-Fermi interaction を含む有効理論(EFT)で記述できる。

$$L_{eff} = L(q(\neq t), l, \nu, \gamma, g) + \Delta L_{eff}(\dim = 6) + \cdots$$

ΔL<sub>eff</sub>(d = 6): 4-Fermi *qqll* 有効相互作用:
 *c̄bµ<sup>-</sup>v* や *s̄bl<sup>+</sup>l<sup>-</sup>*の形の operators の多項式。
 その係数 (Wilson 係数)をSM からずらすことで
 B アノマリーを説明する。

 $\Delta L_{eff}$ の具体的な形は New physics に対する重要な情報を与える

#### $b \rightarrow c\mu^{-}\bar{\nu}$ アノマリーに関するEFT

 $\begin{aligned} H_{eff} &= 2\sqrt{2}G_{F}V_{cb}[(1+C_{V1})(\bar{c}_{L}\gamma^{\mu}b_{L})(\bar{\tau}_{L}\gamma_{\mu}\nu_{\tau L}) + C_{V2}(\bar{c}_{R}\gamma^{\mu}b_{R})(\bar{\tau}_{L}\gamma_{\mu}\nu_{\tau L}) \\ &+ C_{S1}(\bar{c}_{L}b_{R})(\bar{\tau}_{R}\nu_{\tau L}) + C_{S2}(\bar{c}_{R}b_{L})(\bar{\tau}_{R}\nu_{\tau L}) + C_{T}(\bar{c}\sigma^{\mu\nu}b)(\bar{\tau}_{R}\sigma_{\mu\nu}\nu_{\tau L})] \\ &+ \nu_{R} ?) \end{aligned}$ 

 $(C_{V1}, C_{V2}, C_{S1}, C_{S2}, C_T)$ :new physics の寄与を表す Wilson 係数

$$\begin{split} &R_D, R_{D^*} \ \mathcal{O}$$
表式 (simplified the formulas in Iguro et al, 2210.10751)  $&\frac{R_D}{R_D^{SM}} \sim |1 + C_{V1} + C_{V2}|^2 + |C_{S1} + C_{S2}|^2 + |C_T|^2 \\ &+ 1.5 Re[(1 + C_{V1} + C_{V2})(C_{S1}^* + C_{S2}^*)] + Re[(1 + C_{V1} + C_{V2})C_T^*] , \\ &\frac{R_D^*}{R_D^{SM}} \sim |1 + C_{V1} - C_{V2}|^2 + 16|C_T|^2 - 6Re[(1 + C_{V1} - C_{V2})(C_T^*)] \end{split}$ 

### Fit の例: Iguro et al., 2210.10751

• Fit に用いる観測量:  $R_{D^{(*)}}, F_{L}^{D^{*}}$  (生成された $D^{*}$ の縦偏極の割合)

1D fit ( $C_i$  のうち1つだけを0から動かす)

|                               | Fitted $C_i(1\sigma)$ | $\chi^2$ | "Pull" |
|-------------------------------|-----------------------|----------|--------|
| (SM)                          |                       | 21.8     | 0      |
| <i>C</i> <sub><i>V</i>1</sub> | +0.08(2)              | 2.8      | 4.4    |
| <i>Cs</i> <sub>1</sub>        | 0.20(5)               | 7.5      | 3.8    |

 $O_{S1}$ は $\tau_R^-$ を含む(SM, $C_{V1}$ は $\tau_L^-$ )  $\Rightarrow \tau$ の縦偏極がSMから変わる

$$\begin{split} b &\to s\mu^+\mu^- \ \mathcal{P} / \forall \forall l = 0 \ \text{EFT} \\ H_{eff} &= -\frac{4G_{\mu}}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} [\sum_{l=e,\mu} (C_{9l}^{(\prime)} O_{9l}^{(\prime)} + C_{10l}^{(\prime)} O_{10l}^{(\prime)} + C_{Sl}^{(\prime)} O_{Sl}^{(\prime)} + C_{Pl}^{(\prime)} O_{Pl}^{(\prime)} + C_{Tl} O_{Tl} + C_{T5l} O_{T5l}) + C_7^{(\prime)} O_7^{(\prime)}], \end{split}$$

$$\begin{aligned} O_{9l}^{(\prime)} &= (\bar{s}_{L(R)} \gamma_{\mu} b_{R(L)}) (\bar{l} \gamma^{\mu} l), \ O_{10l}^{(\prime)} &= (\bar{s}_{L(R)} \gamma_{\mu} b_{R(L)}) (\bar{l} \gamma^{\mu} \gamma_{5} l), \\ O_{Sl}^{(\prime)} &= (\bar{s}_{L(R)} b_{R(L)}) (\bar{l} l), \ O_{Pl}^{(\prime)} &= (\bar{s}_{L(R)} b_{R(L)}) (\bar{l} \gamma_{5} l), \\ O_{Tl} &= (\bar{s} \sigma_{\mu\nu} b) (\bar{l} \sigma^{\mu\nu} l), \ O_{T5l} &= (\bar{s} \sigma_{\mu\nu} b) (\bar{l} \sigma^{\mu\nu} \gamma_{5} l), \\ O_{7}^{(\prime)} &= \frac{m_{b}}{e} (\bar{s}_{L(R)} \sigma^{\mu\nu} b_{R(L)}) F_{\mu\nu} \text{ (for } \gamma^{*} \to l^{+} l^{-}) \end{aligned}$$

SM contributions  $C_{9l}^{SM}(eff) \sim 4.1 + Y(q^2), \ C_{10l}^{SM} \sim -4.2, \ C_7^{SM} \sim -0.3$ 

# 実験結果との fit

• 近年の例

Altmann, Alguero et al., Hurth et al., Ciuchini et al., …

• 用いる観測量

LFU を破る量  $R_{K(*)}$ , … のみを用いる(理論の不定性を避ける) もっと多数の量も用いる

• 有効理論

 $C_{9l}^{NP}, C_{10l}^{NP}$ の他にどの相互作用をSMからずらす?

- 例: Alok et al, 2203.13217
  - 観測量  $R_{K^{(*)}}, B(B_s \rightarrow \mu^+\mu^-), dB/dq^2(B \rightarrow K^{(*)}\mu^+\mu^-),$ angular distributions of  $B \rightarrow K^*\mu^+\mu^-, B_s \rightarrow \phi\mu^+\mu^-$
  - Parameters for fit:  $\delta C_{9\mu}^{(\prime)}$ ,  $\delta C_{10}^{(\prime)}$



2 dim. Fitting: Favor  $(\delta C_9, \delta C_{10})$ ,  $(\delta C_9, \delta C_9')$ ,  $(\delta C_9, \delta C_{10}') \chi^2$ : 200 $\rightarrow$ 150

例: Hurth et al., 2210.07221

• Parameters for fit:  $\delta C_{9e}$ ,  $\delta C_{9\mu}$ ,  $\delta C_{10e}$ ,  $\delta C_{10\mu}$ 

• 観測量: "clean":  $R_{K^{(*)}}$  in  $q^2 \in [1, 6]$  GeV<sup>2</sup>,  $B(B_s \rightarrow \mu^+ \mu^-)$ All:  $b \rightarrow s$ , such as  $\partial \Gamma / \partial q^2$ , angular analysis, …

2 dimensional fitting by  $(\delta C_{9\mu}, \delta C_{10\mu})$  : -20% shift of  $\delta C_{9\mu}$  がよい



# "20 dimensional fit" (Hurth et al., 2210.07221)

| All observables with $\chi^2_{\rm SM} = 225.8$ , nr. obs.= 173                              |                             |                              |                             | All observables with $\chi^2_{\rm SM} = 253.5$ , nr. obs.= 183                               |                              |                             |                               |                             |
|---------------------------------------------------------------------------------------------|-----------------------------|------------------------------|-----------------------------|----------------------------------------------------------------------------------------------|------------------------------|-----------------------------|-------------------------------|-----------------------------|
| <b>2021 fit results</b> $(\chi^2_{\min} = 151.6; \text{Pull}_{\text{SM}} = 5.5(5.6)\sigma)$ |                             |                              |                             | <b>2022 fit results</b> $(\chi^2_{\min} = 179.1; \text{ Pull}_{\text{SM}} = 5.5(5.5)\sigma)$ |                              |                             |                               |                             |
| $\delta C_7$                                                                                |                             | $\delta C_8$                 |                             |                                                                                              | $\delta C_7$                 |                             | $\delta C_8$                  |                             |
| $0.05 \pm 0.03$                                                                             |                             | $-0.70\pm0.40$               |                             |                                                                                              | $0.06 \pm 0.03$              |                             | $-0.80 \pm 0.40$              |                             |
| $\delta C'_7$                                                                               |                             | $\delta C'_8$                |                             |                                                                                              | $\delta C_7'$                |                             | $\delta C'_8$                 |                             |
| $-0.01 \pm 0.02$                                                                            |                             | $0.00\pm0.80$                |                             |                                                                                              | $-0.01\pm0.01$               |                             | $-0.30\pm1.30$                |                             |
| $\delta C_9^{\mu}$                                                                          | $\delta C_9^e$              | $\delta C^{\mu}_{10}$        | $\delta C_{10}^e$           |                                                                                              | $\delta C_9^{\mu}$           | $\delta C_9^e$              | $\delta C^{\mu}_{10}$         | $\delta C^e_{10}$           |
| $-1.16\pm0.17$                                                                              | $-6.70\pm1.20$              | $0.20\pm0.21$                | degenerate w/↓              |                                                                                              | $-1.14\pm0.19$               | $-6.50\pm1.90$              | $0.21\pm0.20$                 | degenerate w/ $\downarrow$  |
| $\delta C_9^{\prime \mu}$                                                                   | $\delta C_9'^e$             | $\delta C_{10}^{\prime\mu}$  | $\delta C_{10}^{\prime e}$  |                                                                                              | $\delta C_9^{\prime \mu}$    | $\delta C_9'^e$             | $\delta C_{10}^{\prime\mu}$   | $\delta C_{10}^{\prime e}$  |
| $0.09\pm0.34$                                                                               | $1.90 \pm 1.50$             | $-0.12\pm0.20$               | degenerate w/ $\uparrow$    | J                                                                                            | $0.05\pm0.32$                | $1.40\pm2.30$               | $-0.03\pm0.19$                | degenerate w/ $\uparrow$    |
| $\delta C^{\mu}_{Q_1}$                                                                      | $\delta C^e_{Q_1}$          | $\delta C^{\mu}_{Q_2}$       | $\delta C^e_{Q_2}$          |                                                                                              | $\delta C^{\mu}_{Q_1}$       | $\delta C^e_{Q_1}$          | $\delta C^{\mu}_{Q_2}$        | $\delta C^e_{Q_2}$          |
| $0.04\pm0.10$                                                                               | $-1.50\pm1.50$              | $-0.09\pm0.10$               | $-4.10\pm1.5$               |                                                                                              | $0.04\pm0.20$                | $-1.60 \pm 1.70$            | $-0.15\pm0.08$                | $-4.10\pm0.9$               |
| $\delta C_{Q_1}^{\prime\mu}$                                                                | $\delta C_{Q_1}^{\prime e}$ | $\delta C_{Q_2}^{\prime\mu}$ | $\delta C_{Q_2}^{\prime e}$ |                                                                                              | $\delta C_{Q_1}^{\prime\mu}$ | $\delta C_{Q_1}^{\prime e}$ | $\delta C_{Q_2}^{\prime \mu}$ | $\delta C_{Q_2}^{\prime e}$ |
| $0.15\pm0.10$                                                                               | $-1.70\pm1.20$              | $-0.14\pm0.11$               | $-4.20\pm1.2$               |                                                                                              | $-0.03\pm0.20$               | $-1.50 \pm 2.10$            | $-0.16\pm0.08$                | $-4.00\pm1.2$               |

 $\delta C_{10}^{(\prime)e}$ ,  $\delta C_{Q_2}^{(\prime)e}$ : e セクターのデータ不足による?

### Fit の傾向

- 1 parameter fit: おおむね  $\delta C_{9\mu} \sim -1$  がbest fit
- 他に prefer される係数:用いる観測量の選び方に大きく依存 している。
- どれだけの Wilson 係数を fit に用いるかにも依存

ex.  $\delta C_{9e}^{(\prime)}$ ,  $\delta C_{10e}^{(\prime)}$ ,  $\delta C_{S\mu}^{(\prime)}$ , ...

# Bアノマリーと新物理

もし B アノマリーの存在が確立したら、それはSMを超えた 新しい物理の存在を示すものとなる。

#### B アノマリーを説明する新物理の例

• tree-level:

Z'/W', leptoquark (LQ), …

• loop-level (for neutral B anomaly) :

その他もろもろの模型



•  $b \rightarrow sl^+l^-$ 

Tree-level で  $|C_i^{NP}| \sim O(1)$ を生成するための条件  $\frac{4G_F}{\sqrt{2}} |V_{tb}V_{ts}^*| \frac{e^2}{16\pi^2} |C_i^{NP}| \sim \frac{\lambda^2}{M_X^2} \Rightarrow M_X \sim \frac{\lambda}{\sqrt{|c_i^{NP}|}} \times 35 \text{ TeV}$ Loop で生成する場合  $M_X \sim M_X^{tree} \times \frac{\lambda}{4\pi} \sim \frac{\lambda^2}{\sqrt{|c_i^{NP}|}} \times 3 \text{ TeV}$   $\cdot b \to c\tau \bar{\nu}$  Tree-level で  $|C_i| \sim O(0.1)$ を生成するためには  $2\sqrt{2}G_F V_{cb} |C_i| \sim \lambda^2 / M_X^2 \Rightarrow M_X \sim \lambda \times 3 \text{ TeV}$  (loop では苦しい)

# 新物理の候補

#### (1) Z' (neutral) / W' (charged)

Altmannshofer et al; Crivellin et al; Ko et al; ···/Asadi et al; Greljo et al, ···



- ゲージ群はSMから拡張される  $U(1)_{(L_{\mu}-L_{\tau})}$ , SU(2)<sub>R</sub> ( $W_R$  with  $\nu_R$ ), etc.
- q, l の世代に依存して結合の強さが変わる必要がある
- 理論には他の粒子を加える必要も  $(U(1)_{(L_{\mu}-L_{\tau})}$  をbs に結合させるためなど)

#### (2) Higgs-like scalars Crivellin et al; Chiang et al; ··· / Celis et al; Chen-Nomura; ···



Neutral:  $C_{S\mu}, C_{P\mu}$ のみが生じる。(fit と合わない?) Charged:  $C_{S1}, C_{S2}$ のみが生じる。(Large  $B(B_c^+ \rightarrow \tau^+ \nu_{\tau})$ ) (3) Leptoquark (LQ)

- l-q-(LQ)のように結合する未知粒子
- 「レプトン数、バリオン数の両方を持つ」と見なせる
- スピン 0 or 1
- 各種の拡張模型に現れる (GUT, R-violating SUSY, etc.)



#### B アノマリーに寄与できるLQ

*b<sub>L,R</sub>*と結合が可能なLQのSU(3)xSU(2)xU(1)表現 • スカラー:

 $S_{3}(\overline{3},3,\frac{1}{3}), S_{1}(\overline{3},1,\frac{1}{3}), R_{2}(\overline{3},2,-\frac{7}{6}), \tilde{S}_{1}(\overline{3},2,-\frac{1}{6}), \tilde{R}_{2}(\overline{3},2,-\frac{1}{6})$ • ベクトル

$$U_1\left(\overline{3}, 1, -\frac{2}{3}\right), U_3\left(\overline{3}, 3, -\frac{2}{3}\right), V_2\left(\overline{3}, 1, -\frac{5}{6}\right)$$

候補  $b \rightarrow c\tau^- \bar{\nu}_{\tau} : S_1, R_2, U_1$  $b \rightarrow s\mu^+\mu^- : S_3, U_1, U_3$ 

# どの LQ がよいか? Angelescu et al, 1808.08179

Scalars

- • $S_3$   $\delta C_9 = -\delta C_{10} < 0$  を作れる neutral 説明可?  $C_{V1} < 0$  charged 逆
- $R_2$   $C_{S2} = 4C_T$  imaginary なら charged 説明可?  $\delta C_9 = \delta C_{10}$  (tree) neutral 逆
- $\tilde{R}_2$   $\delta C'_9 = -\delta C'_{10}$   $R_K \geq R_{K^*}$ を同時に減らせない charged に寄与なし
- • $S_1$   $C_{V1}, C_{S2}, C_T$  を作る charged説明可? neutral: tree の寄与なし

#### Vectors

- LQ direct production search: M>(1-2) TeV
- single  $U_1$  solution (Angelescu et al, 2103.12504)  $U_1$  は $\mu$  と $\tau$ の両方に結合する必要

 $R_{K^{(*)}}, R_{D^{(*)}}, M = 1.8$  TeV, その他のbounds  $\Rightarrow B(B \rightarrow K\mu\tau) > 0.7 \times 10^{-7}$  複数の新粒子を組み合わせて  $R_{D^{(*)}}, R_{K^{(*)}}$ を同時に説明することももちろん可能

例 2つの scalar LQ  $S_1 + S_3$  (Bhaskar et al, 2204.09031)

2 TeV のLQ に以下のような couplings を与えて、  $R_{D^{(*)}}, R_{K^{(*)}},$ および  $\Delta a_{\mu}$  (anomalous magnetic moment of  $\mu$ ), CDF による  $\Delta M_{W}$ (exp vs SM) も説明

| $x_{32}^{L}$ | $y_{32}^{L}$ | $x_{32}^{R}$ | $x_{23}^{L}$ | $y_{23}^{L}$ | $y_{22}^{L}$ | $R_K^{VV}$ |
|--------------|--------------|--------------|--------------|--------------|--------------|------------|
| -1           | 1            | -0.0053      | 0.945        | 0.945        | 0.0028       | 1.045      |
| 1            | 1            | 0.0087       | 0.945        | -0.945       | 0.0027       | 1.0446     |

x:  $S_1 - q - l$  couplings y:  $S_3 - q - l$  couplings

#### Bアノマリーに関連する現象

•  $B_c^+ \rightarrow \tau^+ \nu_\tau$  decay の分岐比

 $b \rightarrow c\tau \bar{\nu}_{\tau}$ をスカラー型  $O_{s_1}, O_{s_2}$ で説明しようとすると、この 分岐比が極めて大きくなる。未発見だが B~60 % もありうる?

- $b \rightarrow s v \bar{v}$  $b \rightarrow s l^{-} l^{+} \geq SU(2)$ 対称性で関連する。  $B \rightarrow K^{(*)} v \bar{v}$ : Belle II で見つかるか?
- Anomalous magnetic moment of  $\mu$  $b \rightarrow s\mu^{-}\mu^{+}$ に寄与する粒子は $\mu$ と結合する。  $\Rightarrow a_{\mu}$ にも寄与?

# まとめ

- B mesons の崩壊に関して、lepton flavor universality を破る アノマリーが、 $b \rightarrow c\tau^- \bar{\nu} \geq b \rightarrow sl^+l^-$ のそれぞれに関する様々 なモードについて報告されている(主にLHCbから)。
- SM と比べて、 $b \rightarrow c\tau^- \bar{\nu}$ が多く  $b \rightarrow s\mu^+\mu^-$ が少なく出る傾向は、ここ10年程続いている。
- これらのアノマリーを説明するBSM 物理が各種提案されている。
- Belle の $R_{D^{(*)}}$ ,  $R_{K^{(*)}}$ の結果は LHCb より SM よりに見える? ⇒ Belle II に期待