GAMBIT and semileptonic decay using the Recursive Jigsaw Reconstruction

Paul Jackson

Nagoya University, March 28th 2017

Mini Workshop on D(*)taunu and related topics

- Brief introduction to the Recursive Jigsaw Reconstruction
 - potential application to semileptonic B decays
- Introduction to GAMBIT
 - application to constraints on new physics from various sources, including flavour
- Lattice efforts in Adelaide

Recursive Jigsaw Reconstruction technique

- Original method to **reconstructing** final states with weakly interacting particles.
- Transform observable momenta
 reference-frame to reference-frame
- Jigsaw rules: specify the unknown d.o.f. relevant to the transformation (customizable-interchangeable like jigsaw puzzle pieces)
- The procedure is repeated recursively, travelling through each of the reference frames relevant to the topology

• Rather than obtaining one observable, get a complete basis of useful variables diagonalized with physical observable: angles, energies, masses ...

RJR technique

- Original method to reconstructing final states with weakly interacting particles.
- Transform observable momenta
 reference-frame to reference-frame
- Jigsaw rules: specify the unknown d.o.f. relevant to the transformation (customizable-interchangeable like jigsaw puzzle pieces)
- The procedure is repeated **recursively**, travelling through each of the reference frames relevant to the topology

• Rather than obtaining one observable, get a complete basis of useful variables diagonalized with physical observable: angles, energies, masses ...

RJR technique

- Original method to reconstructing final states with weakly interacting particles.
- Transform observable momenta
 reference-frame to reference-frame
- Jigsaw rules: specify the unknown d.o.f. relevant to the transformation (customizable-interchangeable like jigsaw puzzle pieces)
- The procedure is repeated **recursively**, travelling through each of the reference frames relevant to the topology

• Rather than obtaining one observable, get a complete basis of useful variables diagonalized with physical observable: angles, energies, masses ...

5

• Compressed scenarios refer to small mass-splittings $M_{\tilde{P}} - M_{\tilde{\chi}_1^0}$ between the parent superparticle \tilde{P} and the lightest supersymmetric particle (LSP) $\tilde{\chi}_1^0$

- Challenge > Low momentum decay products are hard to detect
 - > The LSPs result in a low value of the transverse missing momentum $ec{E}_T$
- To separate signal from BGs, consider only events with a high momentum ISR-system
- · In the limit where the LSPs receive no momentum from their parents' decays

$$\vec{E}_T \sim -\vec{p}_T^{\rm ISR} \times \frac{M_{\tilde{\chi}^0_1}}{M_{\tilde{P}}}$$

How do we separate initial state radiation from the other decay products?

- The RJR algorithm to separate ISR from "sparticle objects"
- Accomplished with a simple *transverse* decay view of the event
- CM: centre-of-mass system including all visible objects and MET
- **ISR** radiation not coming from sparticle decays
- S is the Signal/SUSY system decaying in
- V: Visible system
- I: Invisible system = missing transverse momentum

Kinematics observables to probe SUSY in the compressed regime

Magnitude of the jets vector-sum transverse momentum of ISR-system evaluated in the CM frame ($\vec{p}_{\text{ISR},T}^{\text{CM}} = -\vec{p}_{\text{S},T}^{\text{CM}}$)

 $R_{\rm ISR} \equiv \left| \vec{p}_{\mathbf{I},T}^{\rm CM} \cdot \hat{p}_{\mathbf{ISR},T}^{\rm CM} \right| / p_{\mathbf{ISR},T}^{\rm CM}$

Variable sensitive to the mass ratio $\frac{M_{\tilde{\chi}_1^0}}{M_{\tilde{P}}}$

Transverse mass of **S** system (V+I)

Number of jets assigned to the V system (i.e. not associated with the ISR system)

Opening angle between the ISR system and the I system, evaluated in the CM frame.

Using Recursive Jigsaw Reconstruction for SL tagged B->Dτv

- The technique develops physics sensitive discriminants in events with multiple missing final state particles.
- Been applied at the LHC to various searches for new physics, and studies of Higgs (H->WW->lvlv)
- We've been making the first attempts to look at how this may contribute to the semileptonic tagged measurements in Belle II - in principle it should be easier than at a proton collider, given the knowledge of the CM frame.
- We start by partitioning our events via a "decay tree" (see right) and use this as both an organising principle and a method of measuring angular and mass difference properties
- These variables can provide the added benefit of distinguishing SM from other models

Applying RJR SL tagged B->Dτv

Where "D_a" and "D_b" correspond to the X_c (D⁰, D[±], D^{*0}, D^{*±}) system. The "l_a" and "l_b" are the e[±] or μ^{\pm} .

Of course, the tau decays, and will contribute additional missing momentum to the signal B.

The idea is to partition this event-by-event, using the recursion principles of the jigsaw algorithm (currently work in progress for B decays)

GAMBIT: The Global And Modular BSM Inference Tool

gambit.hepforge.org

- Fast definition of new datasets and theoretical models
- Plug and play scanning, physics and likelihood packages
- Extensive model database not just SUSY
- Extensive observable/data libraries

ATLAS	A. Buckley, P. Jackson, C. Rogan, M. White		
LHCb	M. Chrząszcz, N. Serra		
Belle-II	F. Bernlochner, P. Jackson		
Fermi-LAT	J. Conrad, J. Edsjö, G. Martinez, P. Scott		
CTA	C. Balázs, T. Bringmann, J. Conrad, M. White		
HESS	J. Conrad		
IceCube	J. Edsjö, P. Scott		
XENON/DARWIN	J. Conrad, B. Farmer, R. Trotta		
Theory	P. Athron, C. Balázs, T. Bringmann,		
~	J. Cornell, J. Edsjö, B. Farmer, A. Fowlie, T. Gonz		

J. Harz, S. Hoof, F. Kahlhoefer, A. Kvellestad,

F.N. Mahmoudi, J. McKay, A. Raklev, R. Ruiz, P. Scott, R. Trotta, C. Weniger, M. White, S. Wild

- Many statistical and scanning options (Bayesian & frequentist)
- Fast LHC likelihood calculator
- Massively parallel
- Fully open-source

29 Members, 9 Experiments, 5 major theory codes, 11 countries

Global

- Complete global statistical fit framework
- Can be Bayesian, Frequentist or other (random, grid, etc)
- Interfaced to the best + fastest scanners available: Multinest, MCMC, Diver (new differential evolution scanner)

Publication ready plots available using *pippi* plotting code on the GAMBIT HDF5 output

13

GAM BIT

GAMBITC CAMBIT

Global and Modular

- ColliderBit: collider observables including Higgs + SUSY Searches from ATLAS, CMS, LEP
- DarkBit: dark matter observables (relic density, direct & indirect detection)
- FlavBit: including $g 2, b \rightarrow s\gamma$, B decays (new channels), angular obs., theory unc., LHCb likelihoods
- SpecBit: generic BSM spectrum object, providing RGE running, masses, mixings
- DecayBit: decay widths for all relevant SM and BSM particles
- PrecisionBit: precision EW tests (mostly via interface to FeynHiggs or SUSY-POPE)
- ScannerBit: manages stats, sampling and optimisation

GAMBITC GAMBT

What's in a module?

- Module functions (actual bits of GAMBIT C++ code)
- These can depend on other module functions
- Or can they can depend on *backends*(external codes)
- Adding new things is *easy* (detailed manual)
- Hooking up new backends or swapping them is *easy*
- Module functions are **tagged** according to what they can calculate \rightarrow plug and play!

15

How does GAMBIT work?

- You specify what to calculate and how (yaml input file)
- GAMBIT checks to see which functions can do it
- A dependency resolver stitches things together in the right order, and calculations are also ordered by speed
- GAMBIT performs the scan and writes output
- Pippi makes the plots
- You(r student) write(s) the paper

Dependency resolution in action

CMSSM:

Model independent LHC limits

- Custom parallelised Pythia MC + custom detector sim
- Can generate 20,000 events on 12 cores in < 5 s
- Then apply Poisson likelihood with nuisance parameters for systematics
- Combine analyses using best expected exclusion
- The best you can do without extra public info from the experiments. CMS are getting better at this:

https://cds.cern.ch/record/2242860/files/NOTE2017_001.pdf

Astro limits: the GAMBIT solution

- Event level neutrino telescope and gamma ray likelihoods!
- First principles treatment of direct search limits → easily extendable to non-trivial operators
- Very large range of experiments included (includes future, e.g. CTA)

19

Global and Modular BSM

- Models are defined by their parameters and relations to each other
- Models can inherit from parent models, easy translation between relations
- We have so far scanned SUSY + Higgs portal + axion + two Higgs doublet models

Global and Modular BSM Inference Tool

- GAMBIT will be released next month as an open source public tool
- 9 papers to be published in EPJC (design, manual + first physics results) *First 6 papers already submitted!*
- Feature article in *Physics World* March 2017 issue if you want a gentler introduction

Talks lined up with physics working groups in collaborations.

	Born Phys. J. C. manuscript No. [Nell be lasered by the effects] GAMBIT: The Global and M Model Inference Tool The GAMBIT Collaboration: Pret Author ³ , S * Fat Addam, Sun, Cim. Court.	Iodular I	Beyond-the-Standard-
	Invited date / Anophel date Abstract We describe the open-source global fitting pulsage GAMBT: the Gabai And Ideolatic Boyon contrast of the state of the state of the state of the contrast of the state of the state of the state of the in particle and antroparticle places with a hierarchi- an model dualwase, advanced tools for statemasticity in model dualwase, advanced tools for statemasticity	3.2 Pper. 32.1 32.2 32.3 32.4 32.5 4 Bocknob 4.1 Bocknob	Advantage dependences
	meaning setume for interfacing to return of onder a new of different statistical methods any accurate sensing digerithms, and a lost of other utilities designed to also sense how a new gave a designed on the statistical in the part. How we gave a designed on the statistical methods, and other gave designed on the statistical methods and other gave for composenty proversity imple- mented in GAMBIT. Accompanying papers dott with methods and other gave for composenty gaves of the distribution and show and proversit for ideal MAIIIT results. GAMBIT can be downloaded from gambit-hyperparents.	4.2 Boden 4.3 Londen 4.4 Londen 5 Hierarchicol 5.1 Model 5.2 Model 5.4 Model 5.4 2 5.4 2 5.4 2 5.4 3 5.4 2 5.4 3 5.4 5 5.4 5 5.	d gym 16 construction of the DDD of the DD of the DDD o
	Contents	6.1 Comm	and line switches and general unge 39
			PRC METHEUS
When suc		veer to	<text></text>

Making B mesons

- There are two main methods for generating *b*-quarks on the lattice:
 Work of Sophie Hollitt
 - Use anisotropic lattices
 - Use anisotropic quark actions
- We choose to modify the *b*-quark action, as generating new lattices is computationally expensive.
- Focus on SU(3) symmetry breaking effects on B mesons by varying the mass of the strange quark

Many groups choose to keep the strange quark mass constant.

SU(3) symmetry breaking is not necessarily controlled

QCDSF collaboration (inc Adelaide): focus on symmetry breaking effects with constant average mass $m = m_u + m_d + m_s$

23

with Ross Young and James Zanotti

SU(3) breaking of decay constant f_{Bq}

- Compare f_B and f_{Bs} to the "average" decay constant f_{Bx} = $2f_B + f_{Bs}$ as the light and strange quark masses vary.
- Good agreement with FLAG collaboration world average: we target reduced uncertainty in calculation of f_{Bs}/f_B SU(3) breaking curves for best tuning

- In the short term:
 - Continue collecting lattice measurements of f_B and f_{Bs} for different lattice spacings and lattice sizes to quantify systematic uncertainty

- In the long term:
 - Use this framework for generating b-quarks/B mesons to investigate other B-physics observables
 - Current target: form factors of weak
 B meson decays
 - Suggestions or ideas welcome!

Summary

Summary

That all have some relation to our interest in semitauonic B-decays

Thanks! Some backup slides may follow

p.jackson@adelaide.edu.au

There's nothing useful written in this box

from M. Santoni

- Consider the worst scenario: final states with only light jets and MET
- We want to separate the jets between the visible system (V) and those recoiling against it (ISR)
- *Transverse* view of the event $(\vec{P}_z (jet_i) = 0)$
- Zero mass for I system
- $\vec{P}_T(CM) = \vec{E}_T + \sum_i \vec{P}_T (jet_i)$ Boost in the *estimated* CM frame
- Combinatoric jigsaw rule based on the minimization of the masses

In CM frame
$$M_{\rm CM} = \sqrt{M_{\rm ISR} + p^2} + \sqrt{M_{\rm S} + p^2}$$

Equivalent to maximize p or find the thrust axis in the CM frame

