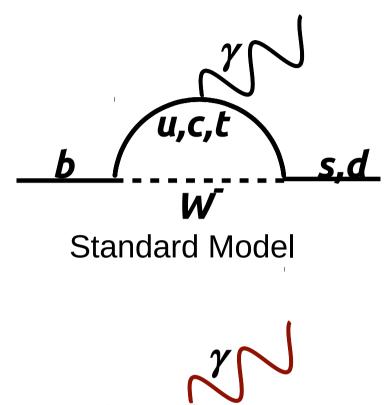
Inclusive radiative electroweak penguin decays: $b \rightarrow s\gamma$

Luis Pesántez University of Melbourne

25/05/15

PIOSTER CRESCE

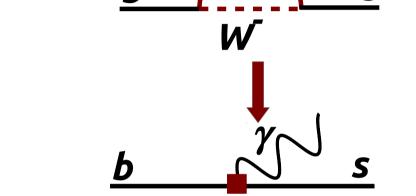

Contents

- Electroweak penguins
 - -SM predictions & New Physics
- Experimentally
 - -Observables: branching fraction and CP asymmetries
 - $\boldsymbol{B}(B \rightarrow X_{S}\gamma)$, $\boldsymbol{B}(B \rightarrow X_{S}+d\gamma)$, $\boldsymbol{ACP}(B \rightarrow X_{S}\gamma)$, $\boldsymbol{ACP}(B \rightarrow X_{S}+d\gamma)$, $\boldsymbol{\Delta ACP}$
- Belle II
- Limits on 2HDM-II

Introduction

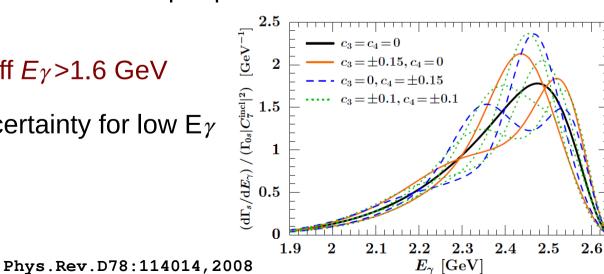
- Electroweak penguins: $\mathbf{b} \rightarrow \mathbf{s/d} \ \gamma$ are FCNC, forbidden at tree level in SM
- In NP models, new heavy particles could enter the loop (in 2HDM-II it is the H^-)
 - Modify observables (BF, ACP, ...)
- Most precise predictions are for inclusive $b \to s \; \gamma$
 - Motivates inclusive or semi-inclusive analyses
- Challenges: large BG, missing exclusive modes, fragmentation modeling, etc.
- Suppression for $\mathbf{b} \rightarrow \mathbf{d\gamma}$ with respect to $\mathbf{b} \rightarrow \mathbf{s\gamma}$ of order: $|V_{td}/V_{ts}|^2 \approx 1/20$

 H/χ


New Physics

The inclusive rate

- HQET Hamiltonian: $H_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_i C_i(\mu_b) O_i(\mu_b)$
 - $-mw, mt >> \mu_b$
- Ci & Oi are the Wilson coefficients and operators. C7 and C8 are the relevant contributions


$$\mathcal{O}_7 = \frac{em_b}{16\pi^2} \bar{s}_L \sigma_{\mu\nu} F^{\mu\nu} b_R$$
$$\mathcal{O}_8 = \frac{gm_b}{16\pi^2} \bar{s}_L \sigma_{\mu\nu} T^a b_R G_a^{\mu\nu}$$

energy or Xs mass spectra, Photon described by two parameters: $m_b, \ \mu_{\pi}^2$

With NP: $C_i \rightarrow C_i + C_i'$

- Strong dependence on input parameters and model
 - Use cut-off E_{γ} >1.6 GeV
 - Large uncertainty for low E_{γ}

• Central value increased by **6.4%** with respect to 2006 value

$$\mathcal{B}(B \to X_s \gamma) = (3.36 \pm 0.23) \times 10^{-4}$$

$$\mathcal{B}(B \to X_d \gamma) = (1.73^{+0.12}_{-0.22}) \times 10^{-5}$$

- Total uncertainty is ~7% for $B(B \rightarrow Xs\gamma)$
- Room for improvement: interpolation for *mc=0* in new NNLO terms.
- Limit on 2HDM-II charged Higgs mass, based on 2014 HFAG average

$$\mathcal{B}(B \to X_s \gamma)^{\text{exp}} = (3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$$

 $M(H^-) > 480 \text{ GeV at } 95\% \text{ CL}$

Direct CP asymmetry

• Direct **CP** Asymmetry: non-vanishing for exclusive cases

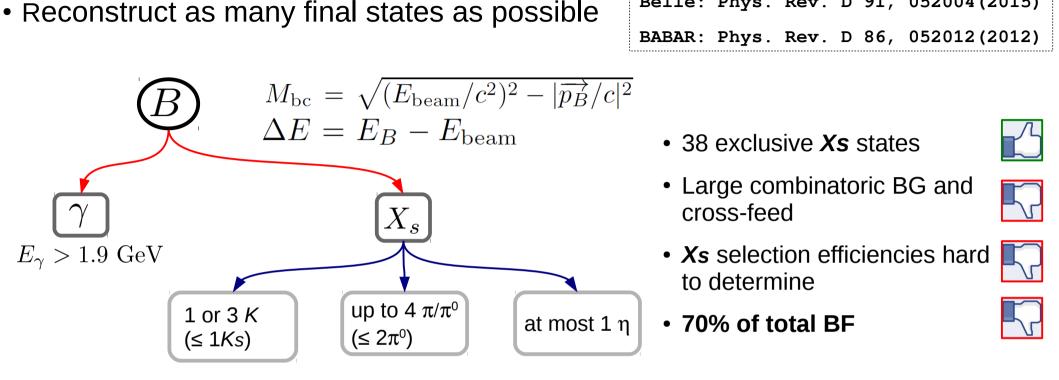
$$A_{CP} = \frac{\Gamma(\bar{B} \to \bar{f}) - \Gamma(B \to f)}{\Gamma(\bar{B} \to \bar{f}) + \Gamma(B \to f)} \qquad \begin{array}{cc} \text{Channel} & A_{CP}(SM) \\ \hline B \to X_s \gamma & [-0.6\%, +2.8\%] \\ B \to X_d \gamma & [-62\%, +14\%] \\ B \to X_{s+d} \gamma & 0 \end{array}$$

• Cancellation for Xs+d due to CKM unitarity, theory error becomes negligibly small

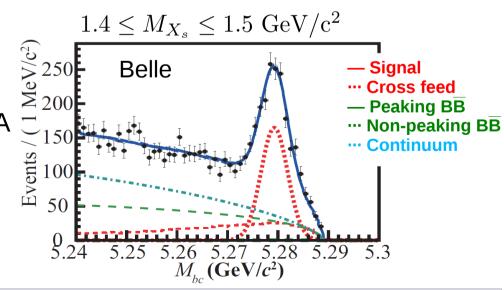
$$A_{\rm CP} = \frac{\Delta \Gamma_q}{2\Gamma(B \to f_q)} \longrightarrow \Delta \Gamma_q \propto \Im (V_{ub} V_{cb}^* V_{cq} V_{uq}^*)$$
$$\Delta \Gamma_s = -\Delta \Gamma_d \qquad \text{Nucl.Phys.B704(2005) 56-74}$$

• Difference of *Acp* between charged and neutral modes gives information on Wilson coefficients C7 and C8:

$$\Delta A_{CP} \equiv A_{CP} (B^+ \to X_s^+ \gamma) - A_{CP} (B^0 \to X_s^0 \gamma)$$
$$\Delta A_{CP} \approx 4\pi^2 \alpha_s \frac{\bar{\Lambda}_{78}}{m_b} \text{Im} \frac{C_8^{\text{eff}}}{C_7^{\text{eff}}}$$

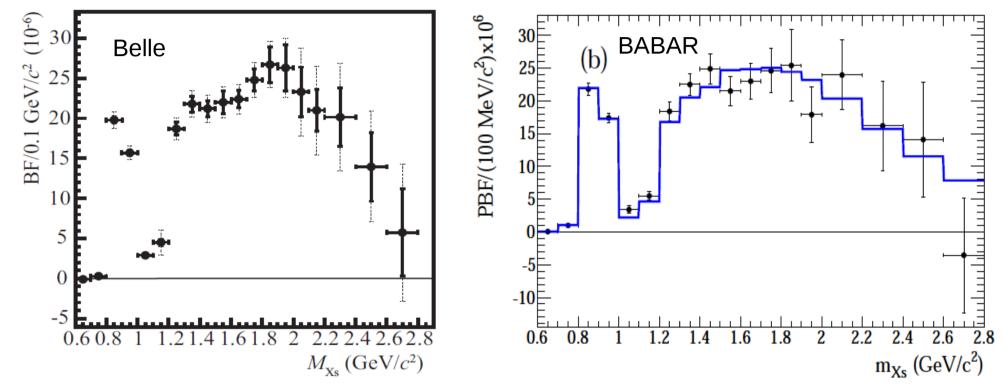

Experimental part

The B-factories


- Asymmetric e⁺e⁻ colliders @ 10.58 GeV center of mass energy
- **Aerogel Cherenkov** On resonance: SC solenoid n=1.015~1.030 $\sqrt{s} = 10.58 \text{GeV} \quad e^+e^- \to \Upsilon(4\text{S}) \to B\overline{B}$ 1.5T 3.5 GeV e+ CsI • Continuum: \sqrt{s} below $\Upsilon(4S) = e^+e^- \rightarrow q\overline{q}(q = u, d, s, c)$ TOF - Continuum is ~3 times more 8 GeV e **Central Drift** abundant than **BB** Chamber **BABAR** Detector µ / K. detection Muon/Hadron Detector Si vertex Magnet Coil Electron/Photon Detector **Cherenkov Detector** racking Chamber • Belle + BABAR: 711fb⁻¹+433fb⁻¹ on Support Tube /ertex Detector Y(4S): Over 1 billion **BB** pairs!
 - Continuum: 90fb⁻¹+44fb⁻¹

Semi-inclusive method: reconstruction

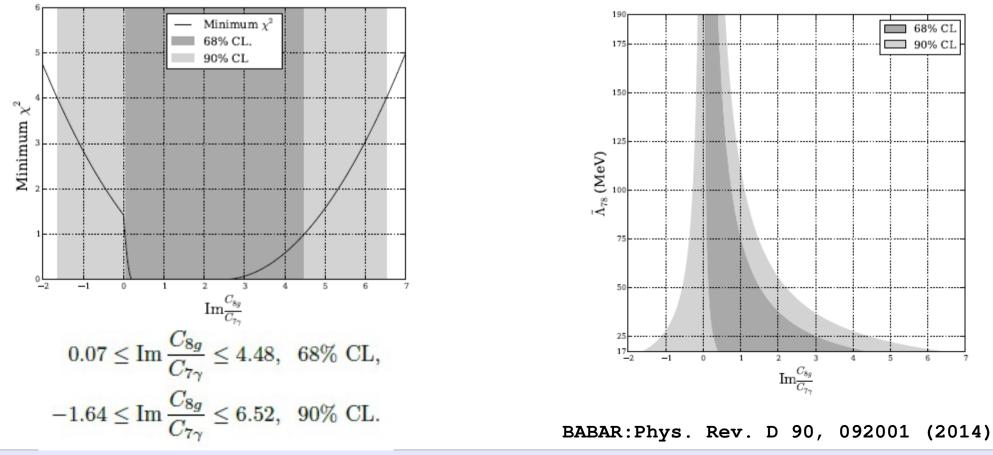
- Use of *MVAs* to reduce background
- Selection efficiencies and fraction of missing modes estimated using JETSET and PYTHIA



Belle: Phys. Rev. D 91, 052004(2015)

Semi-inclusive method: reconstruction

- BF extracted in hadronic mass $M(X_s)$ bins: $0.6 \le M_{X_s} \le 2.8 \text{ GeV}/c^2$
- Partial **BF:**

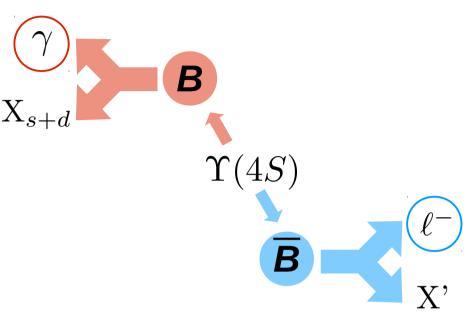


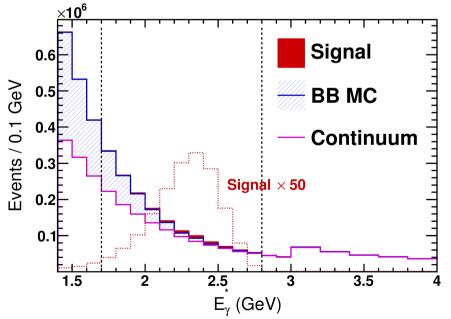
• Integrated BF >1.9GeV BABAR: $\mathcal{B}(B \to X_s \gamma) = (3.51 \pm 0.17 \pm 0.33) \times 10^{-4}$ $\mathcal{B}(B \to X_s \gamma) = (3.29 \pm 0.19 \pm 0.48) \times 10^{-4}$

• Systematics: missing modes (1%-30%), background fitting (~4%), detector response (~3%)

Semi-inclusive method: AcP and ∆AcP

- BABAR uses 16 self-tagging modes
- Consistent with SM $B \to X_s \gamma$: $-0.6\% < A_{CP}^{SM} < 2.8\%$ $A_{CP}^{meas} = (1.7 \pm 1.9 \pm 1.0)\%$
- $\Delta A_{CP} \equiv A_{CP}(B^+ \to X_s^+ \gamma) A_{CP}(B^0 \to X_s^0 \gamma)$ $\Delta A_{CP} \approx 0.12 \frac{\bar{\Lambda}_{78}}{100 \text{MeV}} \text{Im}(C_8/C_7)$, where 17 MeV $< \bar{\Lambda}_{78} < 190 \text{ MeV}$
- From $\Delta A_{CP} = (5.0 \pm 3.9 \pm 1.5)\%$ confidence intervals for *C*₈/*C*₇ can be derived



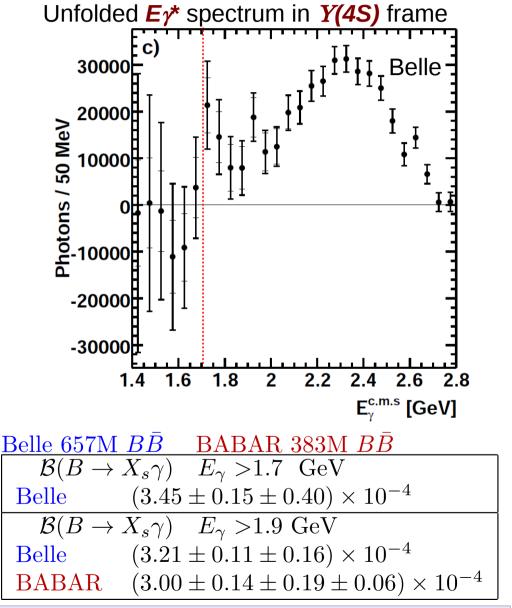

POSTOR ORECONT

Inclusive method: reconstruction

- Inclusive analysis:
 - High energy photon $E_{\gamma} > 1.7 \text{ GeV}$
 - High momentum lepton
 - Continuum suppression and flavor tagging (for *ACP*)

- Veto light meson decays $\pi^0(\eta) \to \gamma\gamma$
- Statistics are limiting factor (continuum data subtraction)
- Does not distinguish $\boldsymbol{b} \rightarrow \boldsymbol{s} \boldsymbol{\gamma}$ from $\boldsymbol{b} \rightarrow \boldsymbol{d} \boldsymbol{\gamma}$
- Large background: need for MVAs

Inclusive method: BF



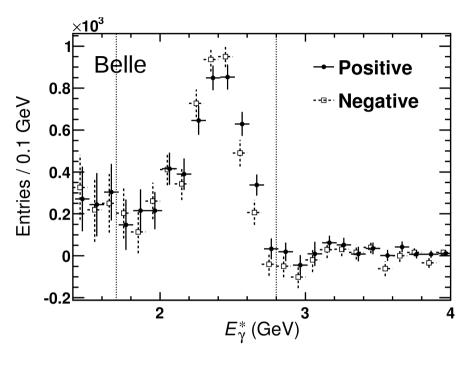
• Important issues

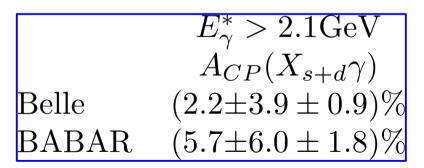
- **MVA** for continuum suppression
- Normalization of π/η background
- Unfolding
- BABAR, main systematics from:
 - BB background modeling (7.8%)
 - Selection efficiency uncertainty (3.1%)
- Belle measured **BF** with and without lepton tag (and $E_{\gamma} > 1.7$ GeV).
 - 7.5% uncertainty from continuum
 - 7.5% uncertainty from BB

Belle:Phys.Rev.Lett.103:241801(2009)

BABAR:Phys.Rev.D.86,112008 (2012)

Inclusive method: $ACP(B \rightarrow X_{s+d\gamma})$

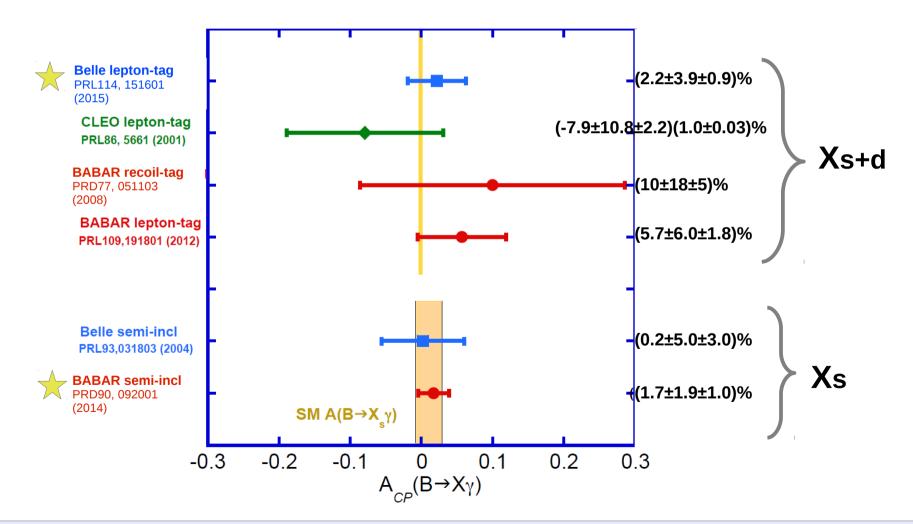

• Number of events tagged by a positive or negative lepton:


$$A_{CP}^{\text{meas}} = \frac{N(\ell^+) - N(\ell^-)}{N(\ell^+) + N(\ell^-)}$$

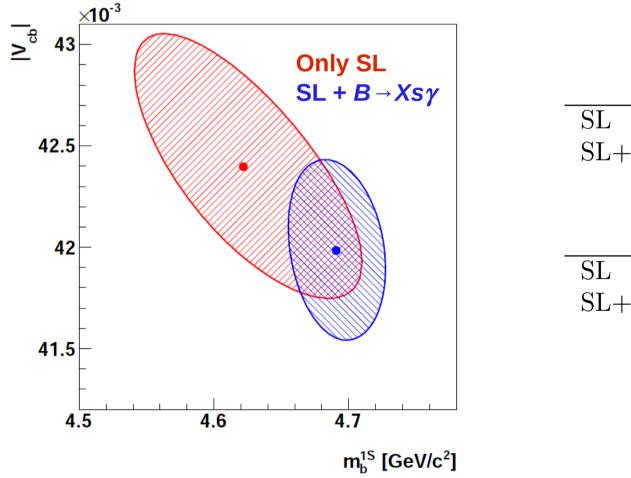
• Correct for various effects:

$$\mathbf{A}_{CP}^{\text{true}} = \frac{1}{1 - 2\omega} (A_{CP}^{\text{meas}} - A_{\text{bkg}} - A_{\text{det}})$$

- Wrong tag factor $\omega \approx 14\%$: oscillation, secondaries, fakes
- Detector asymmetry *Adet* $\approx (0.0\pm0.3)\%$: tag and probe, mapping of the whole detector, use $B \rightarrow XJ/\psi(\ell^+\ell^-)$
- Background asymmetry $\approx (0.0\pm0.7)\%$: in data E γ <1.7 GeV
- Independent of choice of $E^*\gamma$ threshold.


Belle:Phys.Rev.Lett.114,151601 (2015) BABAR:Phys.Rev.D.86,112008 (2012)

Luis Pesántez — FPCP 2015


Direct A_{CP} in $B \rightarrow X_{s+d}\gamma$ and $B \rightarrow X_s\gamma$

- Precision greatly affected by statistics \rightarrow can be improved in Belle II
 - Most systematics cancel
- No deviation from Standard Model

Using the $B \rightarrow X_S \gamma$ spectrum

- Example: 1st and 2nd moments can be used to constrain **m**_b in the **1S** scheme. Input from BABAR, Belle and CLEO $E_1 : \langle E_{\gamma} \rangle$ $E_2 : \langle (E_{\gamma} - \langle E_{\gamma} \rangle)^2 \rangle$
- More precise determination of [Vcb], respect to only semileptonic inputs

$m_b^{1{ m S}}~({ m GeV/c^2})$		
SL	4.62 ± 0.09	
$SL+B \to X_s \gamma$	4.69 ± 0.04	

$ V_{cb} $ ×	10^{3}
SL	42.40 ± 0.65
$SL+B \to X_s \gamma$	41.98 ± 0.45

Phys.Rev.D78:032016,2008

HFAG14:arXiv:1412.7515

Exclusive decays : $B_S \rightarrow \phi(K^-K^+)\gamma$

- Rare decay: $\mathcal{B}(B_s \to \phi \gamma)^{SM} = (3.9 \pm 1.1 \pm 0.5 -) \times 10^{-5}$ Phys.Rev.D75:054004,2007
- Belle's 121fb⁻¹ on Y(5S)
- NN for continuum suppression and fitting (Сив)
- 4-D extended maximum likelihood fit: *Mbc,* ΔE , **COS***θhel*, **C***NB*. (Show 2 projections)
- Find 91^{+14}_{-13} candidates, $\varepsilon = (36.1 \pm 0.1)\%$

 $\mathcal{B}(B_s \to \phi \gamma) = (3.6 \pm 0.5 (\text{st.}) \pm 0.3 (\text{sys.}) \pm 0.6 (\text{f}_s)) \cdot 10^{-5}$

Belle: PRD 91, 011101(R) (2015)

fraction of **Bs** and **bb** cross section at **Y(5S)** (17%, 4.7%), NN requirement (4.8%)

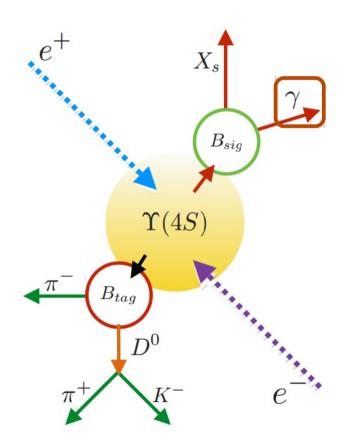
Consistent with SM and LHCb:

 $\mathcal{B}(B_s \to \phi \gamma) = (3.5 \pm 0.4) \cdot 10^{-5}$ LHCb: Nucl.Phys.B867,1 (2013)

25/05/15

Best measurement of $\left(e^+e^- \rightarrow B_s^{(*)}\bar{B}_s^{(*)}\right)$ with half the uncertainty Belle arXiv:1504.02004

Belle



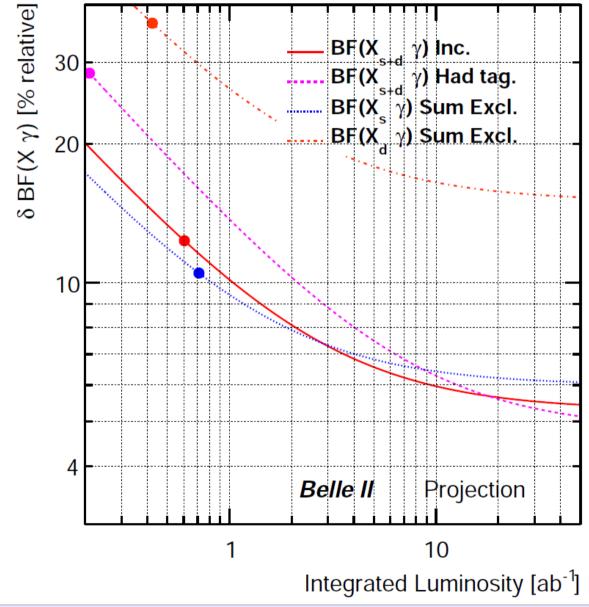
Prospects for Belle II

- POSTUL CREECULURE
- Statistical uncertainties and several systematics will be improved:

	ΔA_{CP}	$\mathrm{A}_{CP}(X_s\gamma)$	$A_{CP}(X_{s+d}\gamma)$
Now	5%	2%	4%
Belle II 50 ab^{-1}	$\sim 0.7\%$	$\sim 0.5\%$	$\sim 0.6\%$

- Total uncertainty in **BF** could be halved
 - Different approach: hadronic tag

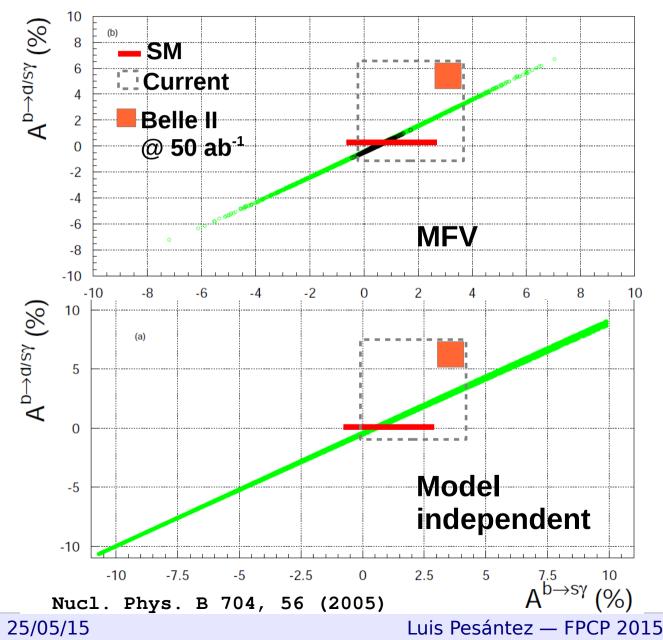
- Not yet feasible \rightarrow low efficiency
- No continuum, lower model dependence
- Measures for B⁺ and B⁰ independently
- BABAR: 210 fb⁻¹ and ~27% uncertainty Phys.Rev.D77,051103, (2008)


 $\mathcal{B}(B \to X_s \gamma) = (3.91 \pm 0.91 \pm 0.64) \times 10^{-4}$ $E_{\gamma} > 1.6 \text{ GeV}$

- Systematics: background modeling (12%), fit parameters (7.5%), detector response (11%)
- 5% uncertainty for Belle-II 50 ab^{-1}

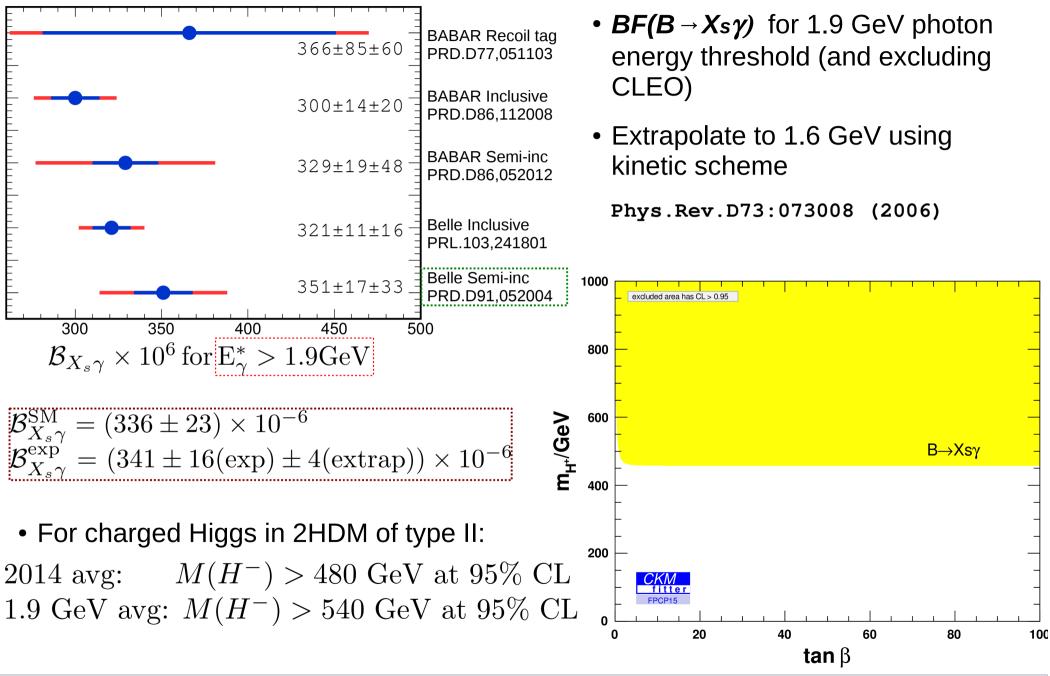
Prospects for Belle II

• Projection of uncertainty in **BF** for Belle II



New Physics

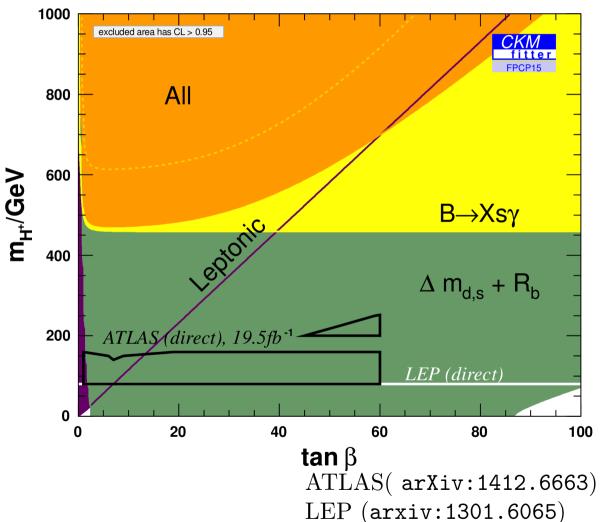
Beyond SM - MFV


- Strict proportionality between tagged and untagged Acp.
- In MFV $\sim 2\%$, more generic approaches allow for AcP as large as 10%

 If ACP≠0, current experimental precision does not suffice to distinguish between these scenarios

Beyond SM - 2HDM-II

Beyond SM - 2HDM-II


Leptonic:
$$\frac{K \to \ell \nu}{\pi \to \ell \nu} \& \frac{\tau \to K \nu}{\tau \to \pi \nu}, \frac{K \to \pi \mu \nu}{K \to \pi e \nu}, \mathcal{B}(Ds \to \mu \nu), \mathcal{B}(D \to \mu \nu), \mathcal{B}(B \to \tau \nu)$$

 $\mathcal{B}(B \to X_s \gamma) = Z \to b\bar{b}$

Box and loop: $\frac{\mathcal{B}(B \to X_s \gamma)}{\mathcal{B}(B \to X_c \ell \nu)}$, $R_b = \frac{Z \to bb}{Z \to \text{hadrons}}$, $B_{s,d}\bar{B}_{s,d}$ oscillation frequencies

• Determination of CKM parameters (A, λ, ρ, η) with limited set of inputs

- However BABAR's measurement on $B \rightarrow D^{(*)}\tau v$ rule out 2HDM-II with 99.8% CL
 - But also rules out the SM
- LHCb and Belle show new results on R(D^(*)) in the next session!

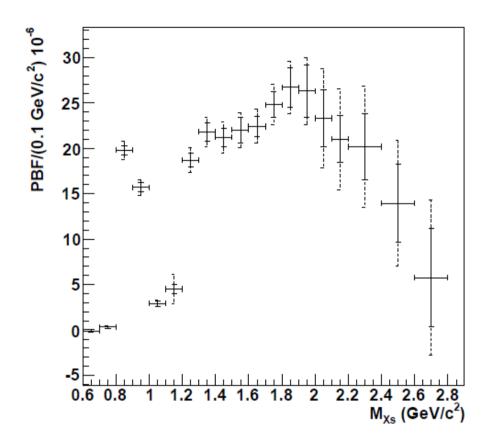
Summary & Outlook

Post of Calescent

- Flavor can provide valuable information for SM and NP
 - $-BF(B \rightarrow X_s \gamma)$ is calculated and measured with 7% precision
 - Improvements in SM calculations and experiment put *m(H-)>540 GeV*
- Belle II prospects are very exciting
 - -Direct Acp measurements greatly limited by statistics: room for improvement
 - Full hadronic tag approach will be feasible
 - Several systematics do scale with statistics
- Understanding of *fs* and *bb* cross section currently limits Y(5S) studies
 - New and more precise **B**s measurements are being produced.

BACKUP

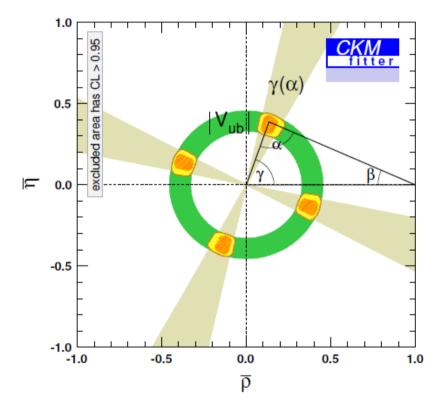
Reconstructed $B \rightarrow X_s \gamma$ modes


Mode ID	Final state	Mode ID	Final state	Mode ID	Final state
1	$K^+\pi^-$	16	$K_s \pi^+ \pi^+ \pi^- \pi^0$	31	$K^+\eta\pi^-\pi^0$
2	$K_s \pi^+$	17	$K^+\pi^0\pi^0$	32	$K_s \eta \pi^+ \pi^0$
3	$K^+\pi^0$	18	$K_s \pi^0 \pi^0$	33	KKK
4	$K_s \pi^0$	19	$K^+\pi^-\pi^0\pi^0$	34	KKK_s
5	$K^+\pi^+\pi^-$	20	$K_s \pi^+ \pi^0 \pi^0$	35	KK_sK_s
6	$K_s \pi^+ \pi^-$	21	$K^{+}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	36	$K^+K^+K^-\pi^-$
7	$K^{+}\pi^{+}\pi^{0}$	22	$K_{s}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	37	$K^+K^-K_s\pi^+$
8	$K_s \pi^+ \pi^0$	23	$K^+\eta$	38	$K^+K^+K^-\pi^0$
9	$K^+\pi^+\pi^-\pi^-$	24	$K_s\eta$		
10	$K_s \pi^+ \pi^+ \pi^-$	25	$K^+\eta\pi^-$		
11	$K_s \pi^+ \pi^0$	26	$K_s \eta \pi^+$		
12	$K_s \pi^+ \pi^0$	27	$K^+\eta\pi^0$		
13	$K^+\pi^+\pi^+\pi^-\pi^-$	28	$K_s \eta \pi^0$		
14	$K_s \pi^+ \pi^+ \pi^- \pi^-$	29	$K^+\eta\pi^+\pi^-$		
15	$K_s\pi^+\pi^+\pi^-\pi^0$	30	$K_s \eta \pi^+ \pi^-$		

Partial $B \rightarrow X_s \gamma BF$

Table 9.12: The partial branching ratio on M_{X_s}
--

$\mathcal{BR}(10^{-6})$
$-0.1\pm0.1\pm0.0$
$0.3 \pm 0.1 \pm 0.1$
$19.8 {\pm} 0.5 {\pm} 0.9$
$15.7 \pm 0.5 \pm 0.7$
$2.9 \pm 0.3 \pm 0.2$
$4.8 \pm 0.5 \pm 1.5$
$18.7 \pm 0.8 \pm 1.1$
$21.8 \pm 1.0 \pm 1.3$
$21.2 \pm 1.0 \pm 1.4$
$22.0 \pm 1.4 \pm 1.3$
$22.4 \pm 1.1 \pm 1.5$
$24.8 \pm 1.4 \pm 1.7$
$26.7 \pm 2.2 \pm 1.9$
$26.3 \pm 2.9 \pm 2.3$
$23.3 \pm 3.1 \pm 4.5$
$21.0 \pm 2.6 \pm 4.9$
$40.3 \pm 7.2 \pm 11$
$27.9 \pm 8.6 \pm 11$
$11.5 \pm 11 \pm 13$



(a) Partial branching ratio. The first solid error is the statistical one and the second dashed error is a quadratic sum of the statistical and systematic errors.

SM inputs for 2HDM-II limits

Inputs must not be sensitive to NP, so take tree-level processes where the ratio $m_{q1} \cdot m_{q2}/m_{H^+}^2$ is negligibly small:

- λ from $|V_{ud}|$ (super-allowed β decays)
- A from $|V_{cb}|$ (semileptonic $b \rightarrow c$ decays), and λ

• $\rho + i\eta$:

- from γ from $\alpha + \beta$ (don't use γ from $B \rightarrow DK$)
- $|V_{ub}|$ (semileptonic $b \rightarrow u$ decays)

Less powerful than global fit