New Physics searches at the LHC

WPI-next mini-workshop "Hints for New Physics in Heavy Flavors" Nagoya University, KMI

November 15th - 17th, 2018 KOBAYASHI-MASKAWA INSTITUTE FOR The Origin of Particles and the Universe

Paul Jackson

Outline

New physics search program at the LHC

- Status of Standard Model measurements
- Precision SM with indirect sensitivity to BSM
- New Physics searches:
 - Searches for Exotics and Supersymmetry
 - Selection of results showing excesses....that may be compatible with excesses in flavour physics
- Summary

The ATLAS and CMS experiments

- Solenoidal magnetic field (2T) in the central region – momentum measurement
- Energy meas. down to ~1° to the beamline
- High resolution silicon detectors
- Granular EM and Had calorimetry
- Independent muon spectrometer
- Good coverage permits reconstruction of missing transverse momentum through object reconstruction

Data Samples – Run 2

Exceptional LHC performance in 2016 following 13 TeV commissioning in 2015 (2015: 4.2 fb⁻¹ delivered, 3.9 fb⁻¹ collected) Collected by end of 2016 ~36 fb⁻¹

Data Samples – Run 2

Exceptional LHC performance in 2015-2018 Improved luminosity and recording efficiency throughout the run.

ATLAS Interna

2011 pp (s = 7 TeV

s = 13 TeV

70

_影100

LHC: More than nominal Luminosity

LHC design: $L = 1.0 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ Achieved (2016): $L = 1.4 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ Achieved (2018): $L = 2.1 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

More lumi makes for a more challenging environment to extract results of interest

Measuring the Standard Model with ever increasing accuracy

Standard Model - Backgrounds to new physics searches

8

Top physics – hints for new physics in heavy flavor

- Top quarks decay before fragmentation
 - Spin information is preserved
- Hadron colliders: top quarks are produced un-polarized, but
 - New physics (NP) could induce a polarization
 - e.g. NP causing forward-backward ttbar asymmetry leads → more left-handed tops
 - Correlation between top and anti-top spin can be extracted

Top physics – Spin correlations

Left-handed

coupling

Measured spin correlation can change

 W^+

Due to different decay

 Due to different production

• Spin correlation: Test the full chain from production to decay!

l⁺, q

b

00000

ν, <u></u>

h

Analysis strategy

- Highest spin analysing power: leptons from top decays
 - Use dileptonic ttbar events (eµ)
 - Very clean samples
- Leverage $\Delta \phi$ between the two leptons
 - No kinematic event reconstruction required
- Unfolded differential measurements:
 - Parton level and Particle level
 - Both inclusive and in bins of m(ttbar)

Full ttbar event reconstruction for m(ttbar)

Partic

Unfolded distributions

• Unfolded distributions compared to different MC predictions

• Data shows a shallower slope than prediction

Template fit

• Fitting spin and no-spin hypotheses to parton level distributions

ATLAS-CONF-2018-027

Template fit

• Fitting spin and no-spin hypotheses to parton level distributions

Spin-correlations higher than SM prediction by 3.7σ (3.2σ including theory uncertainties)
 ATLAS-CONF-2018-027

Di-lepton resonances

CCMS Compact Mon Solution

A dimuon invariant mass plot contains much of the history of our field.

Could there be other objects lurking in the distribution?

Di-muon resonance

arXiv:1808.01890 CERN-EP-2018-204

An excess of events above the background near a dimuon mass of 28 GeV is observed in the 8 TeV data, corresponding to local significances of 4.2 and 2.9 standard deviations in two event categories.

Event	SR1	SR2
category	Additional forward jet	Additional central jet
Muons	OS, $p_{\rm T} > 25$	GeV, $ \eta < 2.1$
$m_{\mu\mu}$	$m_{\mu\mu} >$	12 GeV
b-tagged jet	$p_{\mathrm{T}} > 30\mathrm{Ge}$	$ \Psi \leq 2.4$
Additional jet	$p_{ m T} > 30{ m GeV}$, $2.4 < \eta < 4.7$	$p_{\rm T} > 30 { m GeV}, \eta \le 2.4$
Jet veto	No other jets $p_{\rm T} > 30 \text{GeV}$, $ \eta \le 2.4$	No jets $p_{\rm T} > 30 { m GeV}$, $2.4 < \eta < 4.7$
$p_{\mathrm{T}}^{\mathrm{miss}}$	_	<40 GeV
$\Delta \phi(\mu \mu, \mathbf{jj})$	_	>2.5 rad

Di-muon resonance

arXiv:1808.01890 CERN-EP-2018-204

A mild excess of data over the background in the first event category is observed in 13 TeV data and corresponds to a local significance of 2.0 standard deviations, while the second category results in a deficit with a local significance of 1.4 standard deviations.

\sqrt{s} (TeV)	8	8		13
Event category	SR1	SR2	SR1	SR2
Local significance (s.d.)	4.2	2.9	2.0	1.4 deficit
$N_{ m S}$	22.0 ± 7.6	22.8 ± 9.5	14.5 ± 9.3	-14.9 ± 10.1

LIVE Event: 474587238 2015-10-21 06:26:57 CEST breakyourownnews.com

BREAKING NEWS

LHC DISCOVERS SUPERSYMMETRY

15:24

I KNEW IT WAS AT THAT MASS ALL ALONG, SAYS THEORIST

ATLAS Preliminary $\sqrt{s} = 7, 8, 13$ TeV

ATLAS SUSY Searches* - 95% CL Lower Limits

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit		\sqrt{s} = 7, 8 TeV	$\sqrt{s} = 13 \text{ TeV}$	Reference
(0	$\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}_{1}^{0}$	0 mono-jet	2-6 jets 1-3 jets	Yes Yes	36.1 36.1		0.9 0.71	1.55	m(𝑋̃ 1)<100 GeV m(𝑌)-m(𝑋̃ 1)=5 GeV	1712.02332 1711.03301
arche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}^0_1$	0	2-6 jets	Yes	36.1	ĩg ĩg	Forbidden	2.0 0.95-1.6	$m(\tilde{\chi}_{1}^{0}) < 200 GeV$ $m(\tilde{\chi}_{1}^{0}) = 900 GeV$	1712.02332 1712.02332
/e Se	$\tilde{g}\tilde{g},\tilde{g}{ ightarrow} q\bar{q}(\ell\ell)\tilde{\chi}^0_1$	3 e,μ ee,μμ	4 jets 2 jets	- Yes	36.1 36.1	Ĩ Ĩ		1.85 1.2	$m(ilde{\mathcal{X}}_1^0){<}800GeV$ $m(ilde{g}){-}m(ilde{\mathcal{X}}_1^0){=}50GeV$	1706.03731 1805.11381
Iclusiv	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 3 <i>e</i> , µ	7-11 jets 4 jets	Yes -	36.1 36.1	Ĩ Ĩ	0.98	1.8	m(˜1) <400 GeV m(ĝ)-m(˜1)=200 GeV	1708.02794 1706.03731
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ 3 <i>e</i> ,μ	3 <i>b</i> 4 jets	Yes -	36.1 36.1	ε̃ς ε̃		2.0 1.25	${\sf m}({ ilde \chi}_1^0){<}200{ m GeV}\ {\sf m}({ ilde g}){-}{\sf m}({ ilde \chi}_1^0){=}300{ m GeV}$	1711.01901 1706.03731
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$		Multiple Multiple Multiple		36.1 36.1 36.1	\$\vec{b}_1\$ Forbidden \$\vec{b}_1\$ Forbidden \$\vec{b}_1\$ Forbidden	0.9 0.58-0.82 0.7	${ m m}({ar \chi}_1^0)=3$ ${ m m}({ar \chi}_1^0)=200$ Ge	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}){=}300~\text{GeV},~BR(b\tilde{\chi}_{1}^{0}){=}1\\ 300~\text{GeV},~BR(b\tilde{\chi}_{1}^{0}){=}BR(\iota\tilde{\chi}_{1}^{+}){=}0.5\\ eV,~m(\tilde{\chi}_{1}^{+}){=}300~\text{GeV},~BR(\iota\tilde{\chi}_{1}^{+}){=}1 \end{array}$	1708.09266, 1711.03301 1708.09266 1706.03731
arks tion	$\tilde{b}_1\tilde{b}_1,\tilde{t}_1\tilde{t}_1,M_2=2\times M_1$		Multiple Multiple		36.1 36.1	\tilde{t}_1 \tilde{t}_1 Forbidden	0.7		${f m}(ilde{\chi}_1^0){=}60{ m GeV}\ {f m}(ilde{\chi}_1^0){=}200{ m GeV}$	1709.04183, 1711.11520, 1708.03247 1709.04183, 1711.11520, 1708.03247
gen. squa ct produc	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ or $t \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{H} LSP$	0-2 <i>e</i> , µ 0	0-2 jets/1-2 Multiple Multiple	b Yes	36.1 36.1 36.1		1.0 0.4-0.9 0.6-0.8	${f m}(ilde{\chi}^0_1){=}150{f G}$ ${f m}(ilde{\chi}^0_1){=}300{f G}$	$\begin{split} & m(\tilde{\chi}_{1}^{0}){=}1GeV \\ eV,m(\tilde{\chi}_{1}^{\pm}){-}m(\tilde{\chi}_{1}^{0}){=}5GeV,\tilde{\iota}_{1}\approx\tilde{\iota}_{L} \\ eV,m(\tilde{\chi}_{1}^{\pm}){-}m(\tilde{\chi}_{1}^{0}){=}5GeV,\tilde{\iota}_{1}\approx\tilde{\iota}_{L} \end{split}$	1506.08616, 1709.04183, 1711.11520 1709.04183, 1711.11520 1709.04183, 1711.11520
3 rd g dire	$\begin{split} \tilde{t}_1 \tilde{t}_1, \text{Well-Tempered LSP} \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} {\rightarrow} c \tilde{\chi}_1^0 \end{split}$	0 0	Multiple 2c mono-jet	Yes Yes	36.1 36.1 36.1	\vec{i}_1 \vec{i}_1 0.46 \vec{i}_1 0.43	0.48-0.84 0.85	$m(\tilde{\chi}_1^0)$ =150 G	eV, m($\tilde{\chi}_{1}^{\pm}$)-m($\tilde{\chi}_{0}^{0}$)=5 GeV, $\tilde{t}_{1} \approx \tilde{t}_{L}$ m($\tilde{\chi}_{1}^{0}$)=0 GeV m(\tilde{t}_{1},\tilde{c})-m($\tilde{\chi}_{1}^{0}$)=50 GeV m(\tilde{t}_{1},\tilde{c})-m($\tilde{\chi}_{1}^{0}$)=5 GeV	1709.04183, 1711.11520 1805.01649 1805.01649 1711.03301
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 <i>e</i> , µ	4 <i>b</i>	Yes	36.1	ĩ ₂	0.32-0.88	$m(ilde{\mathcal{X}}_1^0)$	=0 GeV, $m(\tilde{t}_1)-m(\tilde{\chi}_1^0)=180$ GeV	1706.03986
	${ ilde \chi}_1^{\pm} { ilde \chi}_2^0$ via WZ	2-3 e,μ ee,μμ	- ≥ 1	Yes Yes	36.1 36.1	$egin{array}{c} ilde{\chi}_1^{\pm}/ ilde{\chi}_2^0 & 0.6 \ ilde{\chi}_1^{\pm}/ ilde{\chi}_2^0 & 0.17 \end{array}$			$\mathfrak{m}(\tilde{\chi}_1^0)=0$ $\mathfrak{m}(\tilde{\chi}_1^\pm)$ - $\mathfrak{m}(\tilde{\chi}_1^0)=$ 10 GeV	1403.5294, 1806.02293 1712.08119
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via <i>Wh</i>	<i>ℓℓ/ℓγγ/ℓbb</i>	-	Yes	20.3	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ 0.26			$m(\tilde{\chi}_1^0)=0$	1501.07110
EW direct	$\tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^{0}, \tilde{\chi}_1^{\pm} \to \tilde{\tau}\nu(\tau\tilde{\nu}), \tilde{\chi}_2^{0} \to \tilde{\tau}\tau(\nu\tilde{\nu})$	2 τ	-	Yes	36.1		0.76	$m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^{0})=100$		1708.07875 1708.07875
Ŭ	$\ell_{\mathrm{L,R}}\ell_{\mathrm{L,R}}, \ell \! \rightarrow \! \ell \chi_1^\circ$	2 e,μ 2 e,μ	$0 \ge 1$	Yes Yes	36.1 36.1	 <i>ℓ</i> <i>ℓ</i> <i>ℓ</i>			$m(\tilde{\ell}_1)=0$ $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$	1803.02762 1712.08119
	$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	0 4 <i>e</i> , µ	$\geq 3b$ 0	Yes Yes	36.1 36.1	Ĥ 0.13-0.23 Ĥ 0.3	0.29-0.88		$ \begin{array}{l} BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 \end{array} $	1806.04030 1804.03602
ed ss	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	Yes	36.1	$ \tilde{\chi}_{1}^{\pm} = 0.46 $			Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
g-liv ticle	Stable \tilde{g} R-hadron	SMP	-	-	3.2	Ĩ		1.6	-0	1606.05129
ong	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^{\circ}$	2 2	Multiple	Voc	32.8	$\vec{g} = [\tau(\vec{g}) = 100 \text{ ns}, 0.2 \text{ ns}]$	_	1.6 2.4	$m(\tilde{\mathcal{X}}_1^0)=100 \text{ GeV}$	1710.04901, 1604.04520 1409 5542
L	$\tilde{g}\tilde{g}, \tilde{\chi}^0_1 \rightarrow eev/e\mu v/\mu\mu v$	displ. ee/eµ/µ	μ-	-	20.3	ŝ		1.3 6 <	$c\tau(\tilde{\chi}_1^0) < 1000 \text{ mm, m}(\tilde{\chi}_1^0) = 1 \text{ TeV}$	1504.05162
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	εμ,ετ,μτ	-	-	3.2	$\tilde{\nu}_{\tau}$		1.9	λ'_{311} =0.11, $\lambda_{132/133/233}$ =0.07	1607.08079
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	4 e,µ	0	Yes	36.1	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$	0.82	1.33	$m(\tilde{\chi}_1^0)$ =100 GeV	1804.03602
>	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	0 4-	-5 large- <i>R</i> j Multiple	ets -	36.1 36.1	$\tilde{g} = [m(\tilde{\chi}_1^0) = 200 \text{ GeV}, 1100 \text{ GeV}] \\ \tilde{g} = [\mathcal{X}_{112}'' = 2e-4, 2e-5]$	1.05	1.3 1.9 2.0	Large λ_{112}'' m $(\tilde{\chi}_1^0)$ =200 GeV, bino-like	1804.03568 ATLAS-CONF-2018-003
ЧЯ	$\tilde{g}\tilde{g}, \tilde{g} \to tbs / \tilde{g} \to t\bar{t}\tilde{\chi}_1^0, \tilde{\chi}_1^0 \to tbs$		Multiple		36.1	$\tilde{g} = [\lambda_{323}'' = 1, 1e-2]$		1.8 2.1	$m(\tilde{\chi}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$		Multiple		36.1	$\tilde{g} = [\lambda_{323}^{\prime\prime}] = 2e-4, 1e-2]$ 0.55	1.05		m($\tilde{\chi}_1^0$)=200 GeV, bino-like	ATLAS-CONF-2018-003
	$ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell $	0 2 <i>e</i> , µ	2 jets + 2 <i>l</i> 2 <i>b</i>	b - -	36.7 36.1	$\begin{bmatrix} \tilde{t}_1 & [qq, bs] \end{bmatrix}$ 0.42 0.67 $\begin{bmatrix} \tilde{t}_1 & \\ \end{bmatrix}$		0.4-1.45	$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$	1710.07171 1710.05544
*Onlv	a selection of the available mas	ss limits on r	new state	es or	1	0 ⁻¹	<u> </u>		Mass scale [Te\/]	

*0 phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

ATLAS Long-lived Particle Searches* - 95% CL Exclusion Status: July 2018

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.2 - 36.1) \text{ fb}^{-1} \quad \sqrt{s} = 8, \ 13 \text{ TeV}$

	Model	Signature	∫£ dt [fl	p ⁻¹]	Lifetime limit		-		Reference
	$\operatorname{RPV} \chi_1^0 \to e e v / e \mu v / \mu \mu v$	displaced lepton pair	20.3	χ_1^0 lifetime		7-740 mm		$m({{ ilde g}}){=}$ 1.3 TeV, $m(\chi_1^0){=}$ 1.0 TeV	1504.05162
	$\operatorname{GGM} \chi_1^0 \to Z \tilde{G}$	displaced vtx + jets	20.3	χ_1^0 lifetime		6-480 mm		$m({\widetilde g}){=}$ 1.1 TeV, $m(\chi_1^0){=}$ 1.0 TeV	1504.05162
	$\operatorname{GGM} \chi_1^0 \to Z \tilde{G}$	displaced dimuon	32.9	χ_1^0 lifetime		0.	029-18.0 m	$m({{\tilde{g}}}){=}$ 1.1 TeV, $m(\chi_1^0){=}$ 1.0 TeV	CERN-EP-2018-173
	GMSB	non-pointing or delayed	y 20.3	χ_1^0 lifetime		0.08-5.4 m		SPS8 with $\Lambda{=}200~\text{TeV}$	1409.5542
	AMSB $pp \rightarrow \chi_1^{\pm}\chi_1^0, \chi_1^+\chi_1^-$	disappearing track	20.3	χ_1^{\pm} lifetime		0.22-3.0 m		$m(\chi_1^{\pm})=$ 450 GeV	1310.3675
USγ	AMSB $pp \rightarrow \chi_1^{\pm}\chi_1^0, \chi_1^+\chi_1^-$	disappearing track	36.1	χ_1^{\pm} lifetime	-	0.057-1.53 m		$m(\chi_1^{\pm})=$ 450 GeV	1712.02118
Ś	AMSB $pp \rightarrow \chi_1^{\pm}\chi_1^0, \chi_1^{+}\chi_1^{-}$	large pixel dE/dx	18.4	χ_1^{\pm} lifetime		1.31-9	0 m	$m(\chi_1^{\pm})=$ 450 GeV	1506.05332
	Stealth SUSY	2 ID/MS vertices	19.5	Š lifetime			0.	12-90.6 m $m(\tilde{g}) = 500 \text{ GeV}$	1504.03634
	Split SUSY	large pixel dE/dx	36.1	ĝ lifetime		> 0.9 m		$m(ilde{g}) =$ 1.8 TeV, $m(\chi_1^0) =$ 100 GeV	CERN-EP-2018-198
	Split SUSY	displaced vtx + E_{T}^{miss}	32.8	ĝ lifetime		0.03	<mark>-13.2 m</mark>	$m({ ilde g}){=}$ 1.8 TeV, $m(\chi_1^0){=}$ 100 GeV	1710.04901
	Split SUSY	0 ℓ , 2 – 6 jets + $E_{\rm T}^{\rm miss}$	36.1	ğ lifetime	_	0.0-2.1 m		$m({ ilde g}){=}$ 1.8 TeV, $m(\chi_1^0){=}$ 100 GeV	ATLAS-CONF-2018-003
	$H \rightarrow s s$	2 low-EMF trackless jets	20.3	s lifetime		0.41-7.57	m	m(s)= 25 GeV	1501.04020
%0	H ightarrow s s	2 ID/MS vertices	19.5	s lifetime			0.31-25.4 m	m(s)= 25 GeV	1504.03634
=	FRVZ $H \rightarrow 2\gamma_d + X$	2 <i>e</i> -, <i>µ</i> -jets	20.3	γd lifetime 0-3 mm				$m(\gamma_d) = 400 \text{ MeV}$	1511.05542
s BF	FRVZ $H \rightarrow 2\gamma_d + X$	2 <i>e</i> -, μ-, π-jets	3.4	γd lifetime		0.022-1.113 m		$m(\gamma_d) = 400 \text{ MeV}$	ATLAS-CONF-2016-042
Higg	FRVZ $H ightarrow 4\gamma_d + X$	2 <i>e</i> -, μ-, π-jets	3.4	γ_d lifetime		0.038-1.63 m		$m(\gamma_d) = 400 \text{ MeV}$	ATLAS-CONF-2016-042
	$H \rightarrow Z_d Z_d$	displaced dimuon	32.9	Z _d lifetime	_		0.009-24.0 m	$m(Z_d) = 40 \text{ GeV}$	CERN-EP-2018-173
	VH with $H \rightarrow ss \rightarrow bbbb$	$1-2\ell$ + multi-b-jets	36.1	s lifetime 0-3 mm			_	$\mathcal{B}(H \rightarrow ss) = 1, m(s) = 60 \text{ GeV}$	1806.07355
	$\Phi(300 \text{ GeV}) \rightarrow s s$	2 low-EMF trackless jets	20.3	s lifetime		0.29-7.9	m	$\sigma \times \mathcal{B} = 1 \text{ pb, } m(s) = 50 \text{ GeV}$	1501.04020
-	$\Phi(300 \text{ GeV}) \rightarrow s s$	2 ID/MS vertices	19.5	s lifetime			0.19-31.9 m	$\sigma \times \mathcal{B} = 1 \text{ pb, } m(s) = 50 \text{ GeV}$	1504.03634
calai	$\Phi(600 \text{ GeV}) \rightarrow s s$	2 low-EMF trackless jets	3.2	s lifetime		0.09-2.7 m		$\sigma \times \mathcal{B} = 1 \text{ pb, } m(s) = 50 \text{ GeV}$	ATLAS-CONF-2016-103
S	$\Phi(900~{ m GeV}) ightarrow ss$	2 low-EMF trackless jets	20.3	s lifetime		0.15-4.1 m		$\sigma \times \mathcal{B} = 1 \text{ pb, } m(s) = 50 \text{ GeV}$	1501.04020
	$\Phi(900~{ m GeV}) ightarrow { m s}~{ m s}$	2 ID/MS vertices	19.5	s lifetime			0.11-18.3 m	$\sigma \times \mathcal{B} = 1 \text{ pb, } m(s) = 50 \text{ GeV}$	1504.03634
	$\Phi(1 \text{ TeV}) \rightarrow s \ s$	2 low-EMF trackless jets	3.2	s lifetime		0.	78-16.0 m	$\sigma \times \mathcal{B} = 1 \text{ pb, } m(s) = 400 \text{ GeV}$	ATLAS-CONF-2016-103
_	HV $Z'(1 \text{ TeV}) ightarrow q_{ m v} q_{ m v}$	2 ID/MS vertices	20.3	s lifetime		0.1-4.9 m		$\sigma \times \mathcal{B} = 1 \text{ pb}, m(s) = 50 \text{ GeV}$	1504.03634
Othe	HV Z' (2 TeV) $ ightarrow q_{ m V} q_{ m v}$	2 ID/MS vertices	20.3	s lifetime		0.1-1	0.1 m	$\sigma imes \mathcal{B} = 1$ pb, $m(s) = 50$ GeV	1504.03634
				0	.01 0.1	1	10	¹⁰⁰ cτ [m]	

√s = 8 TeV √s = 13 TeV

*Only a selection of the available lifetime limits on new states is shown.

 $(\gamma\beta = 1)$

21

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2018

ATLAS Preliminary $\sqrt{s} = 8, 13 \text{ TeV}$

 $\int \mathcal{L} dt = (3.2 - 79.8) \text{ fb}^{-1}$

	Model	ί, γ	Jets†	E	∫£ dt[fb	⁻¹] Limit			Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$0 e, \mu$ 2γ $-$ $\geq 1 e, \mu$ $-$ 2γ multi-channe $1 e, \mu$ $1 e, \mu$	$\begin{array}{c} 1-4 \ j \\ - \\ 2 \ j \\ \geq 2 \ j \\ \geq 3 \ j \\ - \\ = \\ 1 \ b, \geq 1 \ J, \\ \geq 2 \ b, \geq 3 \end{array}$	Yes 2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 36.1 36.1	М _D M _D Ms Mth Mth GKK mass GKK mass KK mass	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV 4.1 TeV 2.3 TeV 3.8 TeV 1.8 TeV	$\begin{split} n &= 2 \\ n &= 3 \text{ HLZ NLO} \\ n &= 6 \\ n &= 6, M_D = 3 \text{ TeV, rot BH} \\ n &= 6, M_D = 3 \text{ TeV, rot BH} \\ k/\overline{M}_{Pl} &= 0.1 \\ k/\overline{M}_{Pl} &= 1.0 \\ \Gamma/m &= 15\% \\ \text{Tier } (1,1), \mathcal{B}(A^{(1,1)} \rightarrow tt) = 1 \end{split}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 CERN-EP-2018-179 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to bt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{HVT } V' \to WV \to qqqq \mbox{ mod} \\ \text{HVT } V' \to WH / ZH \mbox{ model B} \\ \text{LRSM } W'_R \to tb \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ \hline \\ 1 \ e, \mu \\ 1 \ \tau \\ el \ B \\ 0 \ e, \mu \\ \hline \\ multi-channe \\ multi-channe \end{array}$	- 2 b ≥ 1 b, ≥ 1J/ - 2 J 9l	_ - 2j Yes Yes Yes _	36.1 36.1 36.1 79.8 36.1 79.8 36.1 36.1	Z' mass Z' mass Z' mass Z' mass W' mass W' mass V' mass V' mass V' mass	4.5 TeV 2.42 TeV 2.1 TeV 3.0 TeV 5.6 TeV 3.7 TeV 4.15 TeV 2.93 TeV 3.25 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$	1707.02424 1709.07242 1805.09299 1804.10823 ATLAS-CONF-2018-017 1801.06992 ATLAS-CONF-2018-016 1712.06518 CERN-EP-2018-142
CI	CI qqqq CI ℓℓqq CI tttt	_ 2 e, μ ≥1 e,μ	2 j _ ≥1 b, ≥1 j	_ _ Yes	37.0 36.1 36.1	Λ Λ Λ	2.57 TeV	21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09127 1707.02424 CERN-EP-2018-174
DM	Axial-vector mediator (Dirac D Colored scalar mediator (Dirac $VV_{\chi\chi}$ EFT (Dirac DM)	M) 0 e, μ c DM) 0 e, μ 0 e, μ	$\begin{array}{c} 1-4 \ j \\ 1-4 \ j \\ 1 \ J, \leq 1 \ j \end{array}$	Yes Yes Yes	36.1 36.1 3.2	m _{med} m _{med} M, 700 GeV	1.55 TeV 1.67 TeV	$\begin{split} g_q = & 0.25, g_\chi = & 1.0, m(\chi) = 1 \text{ GeV} \\ g = & 1.0, m(\chi) = 1 \text{ GeV} \\ m(\chi) < & 150 \text{ GeV} \end{split}$	1711.03301 1711.03301 1608.02372
ГО	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 µ 1 e, µ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	_ _ Yes	3.2 3.2 20.3	LQ mass 1.1 LQ mass 1.05 T LQ mass 640 GeV	TeV eV	eta=1 eta=1 eta=0	1605.06035 1605.06035 1508.04735
sHeavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht/Zt/Wb + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ BJ_{5/3} \ T_{5/3} \ T_{5/3} \rightarrow Wt + X \\ VLQ \ Y \rightarrow Wb + X \\ VLQ \ QQ \rightarrow Hb + X \\ \end{array} $	multi-channe multi-channe $(2(SS)) \ge 3 e, \mu$ $1 e, \mu$ $0 e, \mu, 2 \gamma$ $1 e, \mu$	$\begin{array}{l} \text{el} \\ \text{el} \\ \text{al} \geq 1 \ \text{b}, \geq 1 \ \text{j} \\ \geq 1 \ \text{b}, \geq 1 \ \text{j} \\ \geq 1 \ \text{b}, \geq 1 \ \text{j} \\ \geq 2 \ \text{b}, \geq 1 \ \text{j} \end{array}$	Yes Yes Yes Yes	36.1 36.1 36.1 3.2 79.8 20.3	T mass 1 B mass 1 T 5/3 mass 1 Y mass 8 B mass 1.2 Q mass 690 GeV	.37 TeV 34 TeV 1.64 TeV 1.44 TeV 1 TeV	SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ $\mathcal{B}(Y \rightarrow Wb) = 1, c(YWb) = 1/\sqrt{2}$ $\kappa_B = 0.5$	ATLAS-CONF-2018-032 ATLAS-CONF-2018-032 CERN-EP-2018-171 ATLAS-CONF-2016-072 ATLAS-CONF-2018-024 1509.04261
xcited fermion	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j -	- - - -	37.0 36.7 36.1 20.3 20.3	q* mass q* mass b* mass (* mass y* mass	6.0 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$ \frac{1 e, \mu}{2 e, \mu} \\ 2,3,4 e, \mu (SS \\ 3 e, \mu, \tau \\ 1 e, \mu \\ - \\ - \\ - \\ \sqrt{s} = 8 \text{ TeV} $	$\geq 2j$ $2j$ $\beta) -$ $1b$ $-$ $-$ $\sqrt{s} = 13$	Yes - - Yes - - - - - - - - - - - - -	79.8 20.3 36.1 20.3 20.3 20.3 7.0	N ⁰ mass 560 GeV N ⁰ mass 870 GeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1 1 -	2.0 TeV 34 TeV	$m(W_R) = 2.4$ TeV, no mixing DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell \tau) = 1$ $a_{non-res} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	ATLAS-CONF-2018-020 1506.06020 1710.09748 1411.2921 1410.5404 1504.04188 1509.08059

*Only a selection of the available mass limits on new states or phenomena is shown.

 \dagger Small-radius (large-radius) jets are denoted by the letter j (J).

 Hierarchy problem: Higgs mass subject to quadratically divergent loop corrections.
 → Incredible fine-tuning

Grand unification: Standard Model coupling constants do not unify at high scales.
 → SM does not imply a Grand Unified Theory

 Dark matter: Cosmological data suggest presence of dark matter → No explanation within Standard Model

illustration by M-H Genest

SUSY, this is what we often "claim" we're searching for...

SUSY: Strong, 3rd gen and Electroweak Production

Squark and Gluino mediated light jets

+ many more

W

 $\frac{W}{q}$

3rd generation squarks

EWKino and slepton production

D. Alves et al J. Phys. G: Nucl. Part. Phys. 39 (2012) 105005

The way in which we design, and optimize, searches at LHC.....

.....not just an organising principle, this is what we search for!

Simplified Models

What we usually show....

Experiments tend to show these plots as a summary of what has been excluded.

In all cases these limits are under very restricted conditions...

General philosophy

M_P = Parent mass M_I = Invisible mass

Recursive Jigsaw Reconstruction

New(ish) approach to reconstructing open final states

The strategy is to transform observable momenta iteratively *reference-frame to reference-frame*, traveling through each of the reference frames relevant to the topology

<u>**Recursive</u>**: At each step, specify only the relevant d.o.f. related to that transformation \Rightarrow apply a *Jigsaw Rule*.</u>

Repeat procedure recursively according to particular rules defined for each topology (the topology relevant to each reference frame)

Jigsaw: Each of these rules is factorizable/customizable/interchangeable like jigsaw puzzle pieces

Rather than obtaining one observable, get a *complete basis* of useful observables for each event

PJ, C. Rogan, Phys. Rev. D96 112007 (2017) PJ, C. Rogan, M. Santoni, Phys. Rev. D95 035031 (2017) M. Santoni, "Probing Supersymmetry with Recursive Jigsaw Reconstruction", PhD Thesis (2017) M. Santoni, JHEP 1805 058 (2018)

Recursive Jigsaw Reconstruction technique

- Original method to reconstructing final states with weakly interacting particles.
- Transform observable momenta
 reference-frame to reference-frame
- Jigsaw rules: specify the unknown d.o.f. relevant to the transformation (customizable-interchangeable like jigsaw puzzle pieces)
- The procedure is repeated **recursively**, travelling through each of the reference frames relevant to the topology

• Rather than obtaining one observable, get a complete basis of useful variables diagonalized with physical observable: angles, energies, masses ...

PJ, C. Rogan, Phys. Rev. D96 112007 (2017) PJ, C. Rogan, M. Santoni, Phys. Rev. D95 035031 (2017) M. Santoni, "Probing Supersymmetry with Recursive Jigsaw Reconstruction", PhD Thesis Uni. Adelaide (Dec 2017) M. Santoni, JHEP 1805 058 (2018)

RJR technique

- Original method to reconstructing final states with weakly interacting particles.
- Transform observable momenta
 reference-frame to reference-frame
- Jigsaw rules: specify the unknown d.o.f. relevant to the transformation (customizable-interchangeable like jigsaw puzzle pieces)
- The procedure is repeated **recursively**, travelling through each of the reference frames relevant to the topology

• Rather than obtaining one observable, get a complete basis of useful variables *diagonalized* with physical observable: angles, energies, masses ...

PJ, C. Rogan, Phys. Rev. D96 112007 (2017) PJ, C. Rogan, M. Santoni, Phys. Rev. D95 035031 (2017) M. Santoni, "Probing Supersymmetry with Recursive Jigsaw Reconstruction", PhD Thesis Uni. Adelaide (Dec 2017) M. Santoni, JHEP 1805 058 (2018)

RJR technique

- Original method to reconstructing final states with weakly interacting particles.
- Transform observable momenta
 reference-frame to reference-frame
- Jigsaw rules: specify the unknown d.o.f. relevant to the transformation (customizable-interchangeable like jigsaw puzzle pieces)
- The procedure is repeated recursively, travelling through each of the reference frames relevant to the topology

• Rather than obtaining one observable, get a complete basis of useful variables diagonalized with physical observable: angles, energies, masses ...

PJ, C. Rogan, Phys. Rev. D96 112007 (2017) PJ, C. Rogan, M. Santoni, Phys. Rev. D95 035031 (2017) M. Santoni, "Probing Supersymmetry with Recursive Jigsaw Reconstruction", PhD Thesis Uni. Adelaide (Dec 2017) M. Santoni, JHEP 1805 058 (2018)

SUSY searches with RJR

Scale Variables

where:

n : number of *visible ojects* considered as independent

m : number of *invisible ojects* considered as independent

 \mathcal{F} : frame under examination (can be PP ($\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$) or P ($\tilde{\chi}_1^{\pm}$ or $\tilde{\chi}_2^0$))

Examples used in this analysis:

$$H_{1,1}^{PP} = (\ell_1 + \ell_2 + \ell_3)^{PP} . P() + (\tilde{\chi}_{1a}^0 + \tilde{\chi}_{1b}^0 + \nu_a)^{PP} . P()$$

$$HT_{4,1}^{PP} = \ell_1^{PP} . Pt() + \ell_2^{PP} . Pt() + jet_1^{PP} . Pt() + jet_2^{PP} . Pt() + (\tilde{\chi}_{1a}^0 + \tilde{\chi}_{1b}^0)^{PP} . Pt()$$

$$H_{2,1}^{P_a} = \ell_1^{P_a} . P() + \ell_2^{P_a} . P() + \tilde{\chi}_{1}^{0P_a} . P()$$

$$H_{2,1}^{P_b} = jet_1^{P_b} . P() + jet_2^{P_b} . P() + \tilde{\chi}_{1}^{0P_b} . P()$$

PJ, C. Rogan, Phys. Rev. D96 112007 (2017)

Electroweak SUSY searches with RJR

THE UNIVERSITY ofADELAIDE

All North

600

 $m_{\widetilde{\chi}_{1}^{*}/\widetilde{\chi}_{2}^{0}}\left[\text{GeV}\right]$

700

500

3lepton Standard Tree Definitions

> 100

Region	$n_{ m leptons}$	$n_{ m jets}$ r	$v_{b-\mathrm{tag}}$	$p_{\mathrm{T}}^{\ell_1}$ [Ge	$eV] p_r^\ell$	$_{\Gamma}^{\ell_2}$ [GeV	$V] p_{\mathrm{T}}^{\ell_3}$	[GeV]
CR3 <i>ℓ</i> -VV	= 3	< 3	= 0	>	60	> 4	10	> 30
$VR3\ell$ - VV	= 3	< 3	= 0	>	60	> 4	40	> 30
SR3ℓ_High	= 3	< 3	= 0	>	60	> 6	50	> 40
$SR3\ell$ _Int	= 3	< 3	= 0	>	60	> 5	50	> 30
$SR3\ell_Low$	= 3	= 0	= 0	>	60	> 4	10	> 30
Region	$m_{\ell\ell} \ [\text{GeV}]$	m_{T}^{W} [GeV]	$H_{3,1}^{\mathrm{PP}}$	[GeV]	$\frac{p_{\rm T}^{\rm lab}}{p_{\rm T}^{\rm lab} + H}$	${}^{\mathrm{PP}}_{\mathrm{T}3,1}$	$\frac{H_{\mathrm{T}~3,1}^{\mathrm{PP}}}{H_{3,1}^{\mathrm{PP}}}$	$\frac{H_{1,1}^{\mathrm{Pb}}}{H_{2,1}^{\mathrm{Pb}}}$
CR3ℓ-VV	$\in (75, 105)$	$\in (0, 70)$		> 250		< 0.2	> 0.75	_
$VR3\ell$ - VV	$\in (75, 105)$	$\in (70, 100)$		> 250		< 0.2	> 0.75	_
SR3ℓ_High	$\in (75, 105)$ $\in (75, 105)$	> 150	1	> 550 > 450		< 0.2	> 0.75	> 0.8

> 250

Select events:

 $SR3\ell_Low$

- with 3 high pT leptons

 $\in (75, 105)$

- l+l- pair at the Z-mass
- use RJ variables to define sensitive regions of phase space

 $\oint < 0.05 \quad \oint > 0.9$

Can leverage the behavior of the physics variables we design to target signals in a more natural way.

Similar selection optimization performed for 2lepton regions

Region	$n_{ m lep}$	otons	$n_{ m jets}$	$n_{b-\mathrm{tag}}$	$p_{\mathrm{T}}^{\ell_1}$	$[{ m GeV}]$ p_{s}^{2}	$_{\Gamma}^{\ell_2}$ [GeV]	$p_{\rm T}^{\ell_3}$ [GeV]
CR3ℓ_ISR-V	VV	= 3	≥ 1	= 0		> 25	> 25	> 20
VR3ℓ_ISR-V	VV	= 3	≥ 1	= 0		> 25	> 25	> 20
$SR3\ell$ _ISR		= 3	$\in [1,3]$	= 0		> 25	> 25	> 20
Region	$m_{\ell\ell} \; [{\rm GeV}]$	m_{T}^{W} [G	eV] $\Delta \phi_{IS}^{C}$	$_{ m SR,I}^{ m M}$	$R_{\rm ISR}$	$p_{\rm T\ ISR}^{\rm CM}$ [GeV] $p_{\mathrm{T~I}}^{\mathrm{CM}}$ [GeV]	$p_{\rm T}^{\rm CM}$ [GeV]
$CR3\ell$ _ISR-VV	$\in (75, 105)$	<	100 >	$2.0 \in (0.$	55, 1.0)	> 8) > 60	< 25
$VR3\ell$ _ISR-VV	$\in (75, 105)$	>	· 60 >	$2.0 \in (0.$	55, 1.0)	> 8	> 60	> 25
$SR3\ell$ _ISR	$\in (75, 105)$	>	100 >	$2.0 \in (0.$	55, 1.0)	> 10	> 80	< 25

Complementarity between the R_{ISR} variable and $P_{T \ ISR}$ outlined in detail in: PJ, C. Rogan, M. Santoni, PRD 95 035013 (2017)

Control Regions – 3lepton

Control Regions – 2lepton

Validation Regions

Observable 2

Unblinded results

- Main background contribution is from VV (3I), VV and Z+jets (2I)
- Control and Validation Regions enriched in these processes demonstrate that the key backgrounds are well modeled
- Z+jets prediction from a dedicated photon template sample
- We see excesses, in 4 signal regions, all targeting the low mass splitting

Results – 2lepton

Signal region	SR2ℓ_High	SR2ℓ_Int	SR2ℓ_Low	SR2ℓ_ISR
Total observed events	0	1	19	11
Total background events	1.9 ± 0.8	2.4 ± 0.9	8.4 ± 5.8	$2.7^{+2.8}_{-2.7}$
Other Fit output, $Wt + t\bar{t}$ Fit output, VV Z+jets	$\begin{array}{c} 0.02 \pm 0.01 \\ 0.00 \pm 0.00 \\ 1.8 \pm 0.7 \\ 0.07 \substack{+0.78 \\ -0.07} \end{array}$	$\begin{array}{c} 0.05^{+0.12}_{-0.05} \\ 0.00 \pm 0.00 \\ 2.4 \pm 0.8 \\ 0.00^{+0.74}_{-0.00} \end{array}$	$\begin{array}{c} 0.02^{+1.07}_{-0.02} \\ 0.57 \pm 0.20 \\ 1.5 \pm 0.9 \\ 6.3 \pm 5.8 \end{array}$	$\begin{array}{r} 0.06\substack{+0.33\\-0.06}\\ 0.28\substack{+0.34\\-0.28}\\ 2.3\pm1.1\\ 0.10\substack{+2.58\\-0.10}\end{array}$
Fit input, $Wt + t\bar{t}$ Fit input, VV	0.00 1.9	0.00 2.6	0.63 1.6	0.28 2.4

arXiv:1806.02293

Results – 3lepton

Signal region	SR3ℓ_High	SR3ℓ_Int	SR3ℓ_Low	SR3ℓ_ISR
Total observed events	2	1	20	12
Total background events	1.1 ± 0.5	2.3 ± 0.5	10 ± 2	3.9 ± 1.0
Other Triboson Fit output, VV	$\begin{array}{c} 0.03^{+0.07}_{-0.03} \\ 0.19 \pm 0.07 \\ 0.83 \pm 0.39 \end{array}$	0.04 ± 0.02 0.32 ± 0.06 1.9 ± 0.5	$\begin{array}{c} 0.02^{+0.34}_{-0.02} \\ 0.25 \pm 0.03 \\ 10 \pm 2 \end{array}$	$\begin{array}{c} 0.06^{+0.19}_{-0.06} \\ 0.08 \pm 0.04 \\ 3.8 \pm 1.0 \end{array}$
Fit input, VV	0.76	1.8	9.2	3.4

arXiv:1806.02293

3lepton – ISR Signal Region

Results – Low Mass Signal Regions

Similarly, there are excess events in data compared to our prediction in the Low mass SRs. The upper right distribution *was not used* in the event selection.

3lepton – Low Mass Signal Region

0.9

Statistical interpretation

ΙΛς
RIMENT

Signal region	$\langle \epsilon \sigma \rangle_{ m obs}^{95}$ [fb]	$S^{95}_{ m obs}$	S ⁹⁵ _{exp}	$p_0(Z)$
SR3ℓ_ISR	0.42	15.3	$6.9^{+3.1}_{-2.2}$	0.001 (3.02)
SR2ℓ_ISR	0.43	15.4	$9.7^{+3.6}_{-2.5}$	0.02 (1.99)
SR3ℓ_Low	0.53	19.1	$9.5_{-1.8}^{+4.2}$	0.016 (2.13)
SR2ℓ_Low	0.66	23.7	$16.1^{+6.3}_{-4.3}$	0.08 (1.39)
SR3ℓ_Int	0.09	3.3	$4.4^{+2.5}_{-1.5}$	0.50 (0.00)
SR2ℓ_Int	0.09	3.3	$4.6^{+2.6}_{-1.5}$	0.50 (0.00)
SR3ℓ_High	0.14	5.0	$3.9^{+2.2}_{-1.3}$	0.23 (0.73)
SR2ℓ_High	0.09	3.2	$4.0^{+2.3}_{-1.2}$	0.50 (0.00)

To remain as conservative as possible, and to avoid model dependent statements, *we do not combine the significances*

arXiv:1806.02293

Excesses of 3.0σ , 2.0σ , 2.1σ and 1.4σ in the four regions targeting moderately compressed EWK SUSY.

This is the largest excess seen in an ATLAS search for Supersymmetry

Statistical interpretation

Signal region	SR2ℓ_Low	SR2ℓ_ISR
ee	9 (4.5±3.9)	3 (1.2±1.2)
μμ	10 (3.9±2.6)	8 (1.5±1.5)
Signal region	$SR3\ell_Low$	SR3ℓ_ISR
eee	6 (3.5±0.7)	3 (1.1±0.3)
ееµ	$6(2.0\pm0.4)$	$3(0.9\pm0.3)$
$\mu\mu\mu$	$7(2.7\pm0.6)$	$4(1.5\pm0.4)$
μμе	$1(1.9\pm0.4)$	2 (0.4±0.1)

The four signal regions with excesses were studied in terms of their flavour composition - looks as expected. MANY other cross-checks performed.

Improved limits at high mass compared to previous analysis.....with weaker limits at low mass due to excesses observed.

Statistical interpretation

Analysis with the best reach in Electroweak searches with intermediate W/Z bosons.

Largest excess ($\geq 3\sigma$) in any SUSY search!

ATLAS – 4 lepton

Hints in some EWK SUSY channels would suggest we should see excesses in similar phase space.

Region	$N(e,\mu)$	$N(\tau_{\rm had-vis})$	$p_{\mathrm{T}}\left(au_{\mathrm{had-vis}} ight)$	Z boson	Selection	Target
SR0A	≥ 4	= 0	> 20 GeV	veto	$m_{\rm eff} > 600 {\rm GeV}$	General
SR0B	≥ 4	= 0	> 20 GeV	veto	$m_{\rm eff} > 1100 {\rm GeV}$	RPV <i>LLĒ</i> 12k
SR0C	≥ 4	= 0	> 20 GeV	require 1st & 2nd	$\begin{array}{l} E_{\mathrm{T}}^{\mathrm{miss}} > 50 \mathrm{GeV} \\ E_{\mathrm{T}}^{\mathrm{miss}} > 100 \mathrm{GeV} \end{array}$	higgsino GGM
SR0D	≥ 4	= 0	> 20 GeV	require 1st & 2nd		higgsino GGM
SR1	= 3	≥ 1	> 30 GeV	veto	$m_{\rm eff} > 700 { m GeV}$	RPV <i>LLĒi</i> 33
SR2	= 2	≥ 2	> 30 GeV	veto	$m_{\rm eff} > 650 { m GeV}$	RPV <i>LLĒi</i> 33

arXiv:1804.03602, Phys. Rev. D 98, 032009 (2018)

New Physics interpretation

Sample	SR0A	SR0B	SROC	SR0D	SR1	SR2
Observed	13	2	47	10	8	2
SM Total	10.2 ± 2.1	1.31 ± 0.24	37 ± 9	4.1 ± 0.7	4.9 ± 1.6	2.3 ± 0.8
ZZ tīZ	2.7 ± 0.7 2.5 ± 0.6	0.33 ± 0.10 0.47 ± 0.13	28 ± 9 3.2 + 0.4	0.84 ± 0.34 1.62 ± 0.23	0.35 ± 0.09 0.54 ± 0.11	0.33 ± 0.08 0.31 ± 0.08
Higgs VVV	1.2 ± 1.2 0.79 ± 0.17	0.13 ± 0.13 0.22 ± 0.05	0.9 ± 0.8 2.7 ± 0.6	0.28 ± 0.25 0.64 ± 0.14	0.5 ± 0.5 0.18 ± 0.04	0.32 ± 0.32 0.20 ± 0.06
Reducible Other	2.4 ± 1.4 0.53 ± 0.06	$\begin{array}{c} 0.000^{+0.005}_{-0.000}\\ 0.165 \pm 0.018 \end{array}$	$\begin{array}{c} 0.9^{+1.4}_{-0.9} \\ 0.85 \pm 0.19 \end{array}$	$\begin{array}{c} 0.23^{+0.38}_{-0.23} \\ 0.45 \pm 0.10 \end{array}$	3.1 ± 1.5 0.181 ± 0.022	1.1 ± 0.7 0.055 ± 0.012
$\langle \epsilon \sigma \rangle_{obs}^{95}$ fb	0.32	0.14	0.87	0.36	0.28	0.13
S ⁹⁵ _{obs}	12	4.9	31	13	10	4.6
S 95 exp	$9.3^{+3.6}_{-2.3}$	$3.9^{+1.6}_{-0.8}$	23^{+8}_{-5}	$6.1^{+2.1}_{-1.3}$	$6.5^{+3.5}_{-1.3}$	$4.7^{+2.0}_{-1.3}$
CL_b $p_{s=0}$	0.76 0.23	0.74 0.25	0.83 0.15	0.99 0.011	0.86 0.13	0.47 0.61
Ζ	0.75	0.69	1.0	2.3	1.2	0

2.3 σ deviation from SM in 4lepton EWKino search in region sensitive to \approx 200GeV

Still to be updated with 4x more data!

GAMBIT collaboration performed a global electroweak fit using available collider and direct DM constraints

best-fit point has neutralino Our of masses $(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\chi}_3^0}, m_{\tilde{\chi}_4^0}) \approx (49.4, 141.6, 270.3, 290.2) \,\text{GeV},$ chargino masses and of $(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_2^{\pm}})$ \approx (142.1, 293.9) GeV. We find a local significance of 3.5σ for this excess. If there is indeed a supersymmetric signal resembling these properties the ATLAS and CMS experiments should be sensitive to it using the full LHC Run 2 dataset.

* GAMBIT: The Global and Modular Beyond-the-Standard-Model Inference Tool, Eur. Phys. J. C 77 (2017) 784, [arXiv:1705.07908].

New Physics interpretation

Reproduced ATLAS excesses, they show consistency with muon g-2 and DM direct detection results.

The benchmark parameter point found is very similar to the GAMBIT result.

Summary

• The search for new physics at the LHC continues, but:

- There are a few $\approx 3\sigma$ excesses in the data.
- With the invention of powerful new methods we're seeing that analyses can be designed to be sensitive to events that were previous inaccessible - exciting for future searches.
- Results from recent GAMBIT work, and other interesting pheno studies, show hints of tension between LHC results and SM prediction, may agree with flavour anomalies.
- 150 fb⁻¹ of Run2 promises a bounty of new results!!!

CHEP 2019 – Computing in High-Energy and Nuclear Physics Conference

4-8 November, 2019 Adelaide, Australia

Thanks! Some backup slides may follow

p.jackson@adelaide.edu.au

Electroweak SUSY searches with RJR

THE UNIVERSITY ofADELAIDE

A: UNICONTRACTION

600

 $m_{\widetilde{\chi}_{1}^{*}/\widetilde{\chi}_{2}^{0}}\left[\text{GeV}\right]$

700

500

HOWTO search for SUSY

If SUSY particles exist at LHC accessible energies:

R-parity conservation

- Pair-production via strong / EW interaction

Cross Section [pb]

- Direct or cascade decays to the stable lightest SUSY particle (LSP).
- Many high p_T SM decay products + large E_{T,miss} (depending on the mass spectrum)

② R-parity violation

- Multi-jets / multi-leptons signatures from LSP decay to SM particles
- Displaced vertices from late LSP decays

③ Long-lived particles

- Sparticles produced with long lifetimes due to mass degeneracy, small couplings, virtuality
- Secondary decay vertex
- Search strategy @ 13 TeV:
 - → Early data: Gluino & 1st/2nd generation squark searches have the largest potential due to enhanced cross-sections
 - → Beyond ~10 fb⁻¹: Searches for 3rd generation squarks and EW production start to exceed Run-1 sensitivity

Why SUSY at all?

SM has a snowman's chance in hell

Give me a real number between -1

and 1!

THE UNIVERSITY of ADELAIDE Friend 1

Why SUSY at all?

ofADELAIDE

Why SUSY at all?

- Fundamental symmetry between fermions and bosons introducing a set of new partner particles to the SM particles with half-spin difference.
- ✓ Opposite-sign loop corrections from SUSY particles. Quadratic divergencies cancel. → No (little) fine-tuning.
- ✓ If R-parity conserved: Lightest SUSY Particle (LSP) stable. → Natural candidate for dark matter.

✓ Unification of gauge couplings at M_{GUT} ≈ 10¹⁶ GeV

Results – ISR Signal Regions

We see different yields in data compared to our prediction in the ISR SRs, most prominently in the 3 lepton region (lower plots).

Missing Transverse Momentum

$$ec{E}_T^{miss} \equiv -\sum_i^{ ext{calo}} ec{E}_T^{\ i}$$

Infer presence of weakly interacting particles in LHC events by looking for missing transverse energy....may be composed of one or more objects, which may differ

We can learn more by using other information in an event to contextualize the missing transverse momentum \Rightarrow multiple weakly interacting particles?

The different shapes of these variables in the signal models as compared to the major backgrounds can be used in a more targeted way.

The interplay between the variables is also key - if we require one ratio to be large (for instance) it may make it **increasingly hard** for a complementary variable to have background events looking like signal events

Similarly, where we require initial-state radiation, we need complementary variables to tease out sensitivity to a signal

Largely unique selection of events compared to earlier analysis on same dataset Excesses of 3.0, 2.0, 2.1 and 1.4 σ in the 3L ISR, 2L ISR, 3L low mass and 2L low mass respectively

Exclusions for high mass reach 600 GeV and low mass points cannot be excluded due to excesses

Signal Region	$\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb]	$S_{\rm obs}^{95}$	S_{exp}^{95}	$p(s=0)\left(Z\right)$
SR3ℓ_ISR	0.42	15.3	$6.9^{+3.1}_{-2.2}$	0.001 (3.02)
SR2ℓ_ISR	0.43	15.4	$9.7^{+\overline{3.6}}_{-2.5}$	0.02 (1.99)
SR3ℓ_Low	0.53	19.1	$9.5_{-1.8}^{+4.2}$	0.016 (2.13)
SR2ℓ_Low	0.66	23.7	$16.1_{-4.3}^{+6.3}$	0.08 (1.39)

Largely unique selection of events compared to earlier analysis on same dataset Excesses of 3.0, 2.0, 2.1 and 1.4 σ in the 3L ISR, 2L ISR, 3L low mass and 2L low mass respectively

Exclusions for high mass reach 600 GeV and low mass points cannot be excluded due to excesses

Signal Region	$\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb]	$S_{\rm obs}^{95}$	S_{exp}^{95}	$p(s=0)\left(Z\right)$
SR3ℓ_ISR	0.42	15.3	$6.9^{+3.1}_{-2.2}$	0.001 (3.02)
SR2ℓ_ISR	0.43	15.4	$9.7^{+\overline{3.6}}_{-2.5}$	0.02 (1.99)
SR3ℓ_Low	0.53	19.1	$9.5_{-1.8}^{+4.2}$	0.016 (2.13)
SR2ℓ_Low	0.66	23.7	$16.1_{-4.3}^{+6.3}$	0.08 (1.39)

Overlap Plots in 2I and 3I searches

Recursive Jigsaw Reconstruction

THE UNIVERSITY

HOWTO search for SUSY

- ① Build signal regions (**SR**s) based on requirements on signal / background discriminating variables to target specific SUSY event topologies. Optimised for discovery & exclusion.
- 2 Determine Standard Model background in the SRs:

