

リニアコライダーにおけるヒッグス研究

2013/05/25 名古屋大学 新学術領域「先端加速器LHCが切り拓くテラスケールの素粒子物理学」 九州大学 先端素粒子物理研究センター 古岡 瑞樹

KYUSHU UNIVERSITY

進展①:LHCでのヒッグス発見

• 全く新しいタイプの素粒子 新たな革命の始まり

1

トップ

ボトム

タウ

タウ粒子

ートリノ

チャーム

ストレンジ

ミュー

ミュー粒子

雷子

Brand-new!!

進展①:LHCでのヒッグス発見

全く新しいタイプの素粒子
新たな革命の始まり

Brand-new!!

ILCでの測定に最適な質量 ILCの最初の目標が確定

進展②:ILC加速器技術設計完了(2012.12)

進展③:ILC測定器詳細設計完了(2012.12)

HCAL

FCAL

FTD

SET

VTX SIT FTD

ス

~15 m

Beam line

Coil

Forward

components

先進的なテクノロジーの高精細センサーを搭載

- 崩壞点検出器:高精細&低物質量pixel検出器
- 飛跡検出器(TPC):高分解能&低物質量、 MPGD読み出し
- カロリーメータ:超高精細センサー、5mm角 (ECAL)、3cm角(HCAL)

検出器 センサーサイズ	ILC	ATLAS	精細度比
崩壊点検出器	5×5 mm ²	400×50 mm ²	800倍
飛跡検出器	1×6 mm ²	13 mm ²	2.2倍
電磁カロリーメータ	シリコン 5×5 mm²	39×39 mm²	61倍

高精細検出器を束ねるParticle Flow Algorithm

カロリーメータ中で<mark>各粒子</mark>のヒットを<mark>分離</mark>し、最も良い分 解能を持つ検出器で粒子のエネルギー測定をする事により Jet Energy Resolution 最小化する (荷電粒子→Tracker、光子→ECAL、中性ハドロン→HCAL)

この先は建設 → 物理成果へ

進展③:ILC測定器詳細設計完了(2012.12)

先進的なテクノロジーの高精細センサーを搭載

- 崩壞点検出器:高精細&低物質量pixel検出器
- 飛跡検出器(TPC):高分解能&低物質量、 MPGD読み出し
- ・ <mark>カロリーメータ:超高精細</mark>センサー、5mm角 (ECAL)、3cm角(HCAL)

検出器 センサーサイズ	ILC	ATLAS	精細度比
崩壊点検出器	5×5 mm²	400×50 mm ²	800倍
飛跡検出器	1×6 mm ²	13 mm ²	2.2倍
電磁カロリーメータ	シリコン 5×5 mm²	39×39 mm²	61倍

高精細検出器を束ねるParticle Flow Algor

カロリーメータ中で<mark>各粒子</mark>のヒットを<mark>分離</mark>し、最も良 解能を持つ検出器で粒子のエネルギー測定をする事は Jet Energy Resolution 最小化する (荷電粒子→Tracker、光子→ECAL、中性ハドロン→

この先は建設 → 物理成果へ

Return Yoke
Columnation
Columnatio

Ej	RMS ₉₀ (E _j) / mean ₉₀ (E _j)
45 GeV	3.7%
100 GeV	2.8%
180 GeV	2.9%
250 GeV	2.9%

ス

ILCの物理プログラム

ILCの物理シナリオ

ILC(e⁺e⁻コライダー)での測定方法

質量、スピン/CP,結合定数などの決定 新しい物理と新しい基本原理の発見

ILCステージング計画

- 主線形加速器を延ばしていけば徐々にエネルギーを上げることができる。
 *ただしDamping Ring等、他の施設があるためコストは長さに比例しない。
- ・ 重要な物理に照準を合わせる: 250, 350, 500GeV → 1TeV

 間はenergy scan、何か見つかればそこで重点的にデータ取得

TDR parameters

E _{CM} (GeV)	250	350	500	1000
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	0.75	1.0	1.8	4.9
Integrated Luminosity (fb-1)	250	350	500	1000
Number of days *	385	405	322	233

* Peak luminosityで走り続けた場合

ルミノシティ2倍オプション有り (バンチ数1300→2600)

* Damping Ring & Beam Deliveryの改良により、衝突エミッタンスを下げられる可能性。

2013/May/25

先端加速器LHCが切り拓くテラス ケールの素粒子物理学

ヒッグス場、ヒッグス粒子 ヒッグスが果たす役割 クォーク・レプト W, Z 粒子の質量 ンの質量 同じヒッグスか? ヒッグスの質量 HWW, HZZ coupling **Higgs self-coupling** Yukawa coupling

ILCは、すべてのヒッグス結合を独立に測定する。

ILCヒッグス生成:2つのメインモード

e —

測定精度	250 fb ⁻¹	1000 fb ⁻¹	測定精度	500 fb ⁻¹	2000 fb ⁻¹
ZH断面積	2.5%	1.2%	ヒッグス全巾	~6%	~3%
HZZ結合定数	1.2%	0.6%	HWW結合定数	1.3%	0.7%

HZZ, HWW結合定数の精度:<1%

2013/May/25

ヒッグス崩壊分岐比測定

湯川結合の精度はO(1%)

2013/May/25

トップ湯川結合

Direct measurement challenging at LHC; $H \rightarrow \tau \tau$ may be possible

ヒッグス3点結合の存在 →ヒッグスポテンシャルの形を決める

拡張ヒッグスセクターの自己結合異常

ヒッグス自己結合(2)

- ZHH断面積は0.2 fb、ZHHのメインモードは6 jet (H→WWなら8 jetも)
 - 現在H→bbモードで解析

S/B	Efficiency	断面積Δσ/σ 2 ab-1	断面積Δσ/σ 4 ab-1	断面積Δσ/σ 8 ab-1
~0.5	10%	32%	<mark>∖</mark> 23%	16%
~0.75	15%	21%	15%	11%
~1.0	20%	16%	12%	8%

S/B	Efficiency	自己結合 Δλ/λ 2 ab-1	自己結合 Δλ/λ 4 ab-1	自己結合 Δλ/λ 8 ab-1
~0.5	10%	53%	37%	27%
~0.75	15%	35%	25%	18%
~1.0	20%	27%	19%	14%

解析の改善点:H→WWも含める。Jet Finder、b-tagアルゴリズムの改良

解析の改良を経て

10-20%の精度で自己結合を測定

(断面積&三点結合の寄与アップ)

様々な物理の可能性

様々な物理の可能性

Singlet Mixing

MSSM / Type II 2HDM

LHC/ILC Synergy

 LHCとILCのシナジー(global fit)で さらに精度を上げられる **Assumed Luminosities**

LHC = LHC14TeV: 300fb^{-1} HLC = ILC250: 250fb^{-1} ILC = ILC500: 500fb^{-1} ILCTeV = ILC1000: 1000fb^{-1}

2013/May/25

先端加速器LHCが切り拓 ケールの素粒子物理

Maximum deviation when nothing but the 125 GeV object would be found at LHC

26

Summary

- ILC加速器は2012年12月に技術設計書完成。
 2013年以降の建設Ready。
- ILC測定器も2012年12月に詳細設計完了。 ILC測定器でヒッグスの精密測定。
- ・ILCでヒッグスの全容解明。LHCとのシナジー でさらなる精度向上。

2013/May/25

先端加速器LHCが切り拓くテラス ケールの素粒子物理学

28

ILCヒッグス測定で迫る新物理

