

標準模型ライクなヒッグス粒子の物理

兼村晋哉 (富山大学理学部)

富山大学理学部

新学術領域「先端加速器 LHC が切り拓くテラスケールの素粒子物理学」 23-25 May 2013

このトークでは

昨年に見つかった新粒子(ヒッグス粒子 h)の 物理と、標準模型を超えた新物理模型との関 係について語る

序: 電弱対称性の自発的破れ

素粒子標準模型における2つの大きな柱

1. ゲージ原理:素粒子の相互作用 SU(3) X SU(2) X U(1)

実験でよく検証されてきた

2. 電弱ゲージ対称性の自発的破れ

 $v = \left(\frac{1}{\sqrt{2}G_F}\right)^{1/2} \simeq 246 \text{GeV}$ 既知 $ightarrow Q^A |0\rangle \neq 0$ ヒッグス機構: NGボソンを吸収してW,Zが質量獲得 カイラル対称性の破れ: クォーク・レプトンが質量獲得 セクター

ヒッグスセクターの正体は何か? よく解っていない

LHC実験で125GeVに新粒子が発見された:すべてはここから始まる!

序:標準模型のヒッグスセクタ

アイソスピン2重項<u>スカラー場</u>が I=1/2, Y=1 <u>1個</u>の最小形

 $V(\Phi) = +\mu^2 |\Phi|^2 + \lambda |\Phi|^4 \qquad \Phi = \begin{bmatrix} w^+ \\ \frac{1}{\sqrt{2}}(H+v+iz^0) \end{bmatrix}$

$$\underline{\mu^2 < 0} \qquad \longrightarrow \qquad \langle \phi \rangle = v \simeq 246 \text{GeV}$$

質量と結合定数の比にユニバーサルな関係がある

2012-2013

- LHCが126GeVに新粒子を発見
 - LEPが示唆する軽いヒッグスの 質量領域
 - スピン・パリティ 0+
 - 崩壊モードの情報が得られた
 - hγγ, hZZ*, hWW*, hττ, hbb,
 - 標準模型が予言するヒッグス 粒子の性質と矛盾しない結果
- 今の所これ以外の新粒子は発見 されていない
- 標準模型はヒッグスセクターを含め正しいことが確認されつつある

新粒子は発見前に質量が解ってた

精密測定×輻射補正計算=新粒子質量の間接測定

電弱ローパラメータ

$$\rho_{exp} = 1.0008 + 0.0007$$
t w, z t w, z

$$p = \frac{M_W}{M_Z \cos^2 \theta_W} = 1$$
輻射補正

 $\Delta \rho = 4\sqrt{2}G_F \left[\Pi_T^{33}(p^2 = 0) - \Pi_T^{11}(p^2 = 0) \right]$

トップクォークとヒッグスの効果 $\Delta \rho \simeq \alpha \Delta T \simeq \frac{3G_F}{8\sqrt{2}\pi^2} \left(m_t^2 - M_Z^2 \sin^2 \theta_W \ln \frac{m_H^2}{m_W^2} \right)$ トップは2乗 ヒッグスはログ

粒子は発見前に質量が解っていた!

トップクォークの場合

- ローパラメータ(Tパラメー タ)への寄与が<u>質量の2乗</u>
- ヒッグス質量の寄与はlog なのでとりあえず後回し
- LEP1の精密実験の結果 と比較してトップ質量は 150-200GeVに絞られた
- 1994年トップクォークがテ バトロン(ハドロンコライ ダー)で発見された!(約 175GeV)

同じことはヒッグス場でも繰り返された

ヒッグス質量の間接測定 (トップ質量は今度はインプット)

電弱パラメータはヒッグス質量のみの関数

$$\alpha \Delta T_H \propto -\ln \frac{m_H^2}{m_W^2}$$

- LEP2の精密測定と比較
- 114GeVから約150 GeV程度以下と 予想

LHCで125GeVに新粒子発見!

LHCでのヒッグス発見!

- LEP/SLC(とTevatron)の研究でヒッグスの質量 はほぼ解っていた(直接探索と間接測定)
- ・しかし、ヒッグス探索に関する限り何と言って もLHCの方が偉い
 - LEP は標準模型のヒッグスセクターを仮定してバ ウンドを得た
 - LHC は新粒子を発見し、それが標準模型のヒッグ スと矛盾しないことを明らかにした

LEPと無矛盾な重いヒッグスの可能性 もあった $\Delta m = m_A - m_{H^{\pm}}$

∆m [GeV]

付加的な新物理効果が あれば「重い」ヒッグス場 の可能性も許されてた

SK, Okada, Taniguchi, Tsumura, 2011

 $\sin(\beta - \alpha) = 1$

 $m_A^2 = m_H^2 = M^2$

LHCが決着を付けた

125GeVにヒッグスと矛盾しない新粒子 他に新粒子の兆候なし

標準模型の125GeVのヒッグスと仮定した場合、 ループレベルまで含めてSMと矛盾しない結果

自然はヒッグスセクターを含めても標準模型が良い近似!

次は、より高いエネルギー、より高い精度で新物理探索へ

次に見つかる新粒子は何であっても BSM!

Beyond the Standard Model

物理法則の統一的理解

- 大統一パラダイム
- 湯川の構造(フレーバー)
- 標準模型のヒッグスの問題
 - 階層性問題(超対称性など)
- 標準模型で説明できない様々な現象
 - バリオン数生成問題
 - ニュートリノ質量問題
 - 暗黒物質問題
 - インフレーション
 - 暗黒エネルギー

BSMの新物理模型が必要

どのスケールに?

これらの問題を解決するテラスケール新物理シナリオの中には、ヒッ グス物理が本質的な役割を果たしているモノも多い

SM Higgs = Just a guess!

- SMヒッグスはくりこみ可能性の下で3つの単純な 仮定を置いた(スカラー場、2重項1個、μ²<0)
- SMヒッグスの仮定には原理なし
 →新物理学に伴う拡張ヒッグス模型の可能性

ヒッグスセクターに関する3つの質問

 ヒッグスセクターの形(Minimal/Non-minimal)
 ヒッグスセクターの本質(素スカラー場、複合場)
 ヒッグスセクターのダイナミクス(How EWSB?)

ヒッグスセクター!

- 実験は標準模型ライクなヒッグス粒子 h を発見!
- しかし標準模型ライクなヒッグス粒子は、標準模型のヒッグス粒子とはかぎらない
- 全ての拡張ヒッグス模型は標準模型ライクなヒッ グス粒子 h を含んでいる
- まずはヒッグスセクターの形を決定したい

拡張ヒッグスセクターの可能性

いろいろなBSMの模型はNon-Minimalなヒッグスセクターを含む

- ヒッグスセクターの決定は電弱対称性の破れを明らかにし、新物 理を探る鍵
- 直接発見可能性(王道)=津村さんのトーク
 - セカンドヒッグス(重い中性ヒッグス、荷電ヒッグスなど)の直接発見
 - 重い可能性や、カラーがないのでハドロンコライダーで見つかりにくいかもしれない可能性もある
- 間接測定(LEP等でパワー証明)
 - 125GeVのヒッグス粒子の詳細測定からどれだけモノが言えるか - 見つかった粒子の測定なので確実にできる物理
- 直接と間接、両方やらねばならぬ

Higgs as a Probe of New physics

- 126GeVのヒッグス粒子(h)を徹底的に調べる
- このヒッグスの結合定数をできるだけ精密に測り、
 ズレを見いだす
- ズレのパターンから拡張ヒッグスセクターの形を
 決定できる
- ヒッグスセクターの形から新物理へ

[2] Extended Higgs

- If the Higgs sector contains more than one scalar bosons, possibility would be
 - Extra singlets (NMSSM, B-L Higgs, ...)
 - Extra doublets (SUSY, CPV, EW Baryogenesis, ...)
 - Extra triplets (Type II seesaw, LR models....)
- Basic experimental quantities:
 - Electroweak rho parameter
 - Flavor Changing Neutral Current (FCNC)

ローパラメータ

[(ex) D+T₀+T₂: Georgi-Machasek 模型]

マルチダブレット (+ シングレット) が自然?

FCNCの制御

Aoki, SK, Tsumura, Yagyu, PRD 80, 015017 (2009)

タイプごとに多様な現象論的差異

1000

2 50

2 Higgs doublet model (2HDM)

$$\begin{split} \overline{V_{\text{THDM}} = +m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - \frac{m_3^2 \left(\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1\right)}{m_2^3 \left(\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1\right)}} \\ + \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 \\ + \lambda_4 \left|\Phi_1^{\dagger} \Phi_2\right|^2 + \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2\right)^2 + (\text{h.c.}) \right] \\ \hline \Phi_1 \text{ and } \Phi_2 \Rightarrow \underbrace{h, H, A^0, H^{\pm} \oplus \text{ Goldstone bosons}}_{\uparrow \uparrow \uparrow \text{ Charged}} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = \begin{bmatrix} \cos_a - \sin_a \\ \sin_a & \cos_a \end{bmatrix} \begin{bmatrix} H \\ h_1 \end{bmatrix} \begin{bmatrix} z_0^0 \\ z_0^2 \end{bmatrix} = \begin{bmatrix} \cos_\beta - \sin_\beta \\ \sin_\beta & \cos_\beta \end{bmatrix} \begin{bmatrix} x^0 \\ A^0 \\ M^2 \end{bmatrix} \\ \begin{bmatrix} w_1^{\pm} \\ w_2^{\pm} \end{bmatrix} = \begin{bmatrix} \cos_\beta - \sin_\beta \\ \sin_\beta & \cos_\beta \end{bmatrix} \begin{bmatrix} w_1^{\pm} \\ W_2^{\pm} \end{bmatrix} \\ \hline \exp^2 \left(\lambda_1 \cos^4 \beta + \lambda_2 \sin^4 \beta + \frac{\lambda}{2} \sin^2 2\beta\right) + \mathcal{O}(\frac{v^2}{M_{\text{soft}}^2}), \\ m_H^2 = M_{\text{soft}}^2 + v^2 \left(\lambda_1 + \lambda_2 - 2\lambda\right) \sin^2 \beta \cos^2 \beta + \mathcal{O}(\frac{v^2}{M_{\text{soft}}^2}), \\ m_H^2 \pm M_{\text{soft}}^2 - \frac{\lambda_4 + \lambda_5}{2} v^2, \\ m_A^2 = M_{\text{soft}}^2 - \lambda_5 v^2. \end{bmatrix} \xrightarrow{M_{\text{soft}}^2 \text{ soft breaking scale}$$

標準模型ライク(2つのケース)

Non-decoupling effect 21

デカップリングでも影響する

- ・理論のカットオフが異
 なる
- 一般に拡張ヒッグスで は真空安定性の条件 はより高エネルギー 領域まで満たされる
- カットオフを設定した ときの質量の下限値 がリラックス

追加の項>0

標準模型ライクヒッグストの結合

- 弱ゲージ場との結合
 ヒッグス機構
- 湯川結合
 質量の起源、フレーバー構造
- 自己結合

ヒッグスダイナミクス

ループで導出される結合
 新物理の量子効果

125GeVヒッグス結合から模型を区別

<u>拡張ヒッグス模型の間の違い</u> 125GeVヒッグスの結合定数(*hγγ, hgg, hWW, hZZ, htt, hff, hhh*) に対するSMからのずれ方のパターンの違いとして出る

混合($h \Leftrightarrow \varphi$): ゲージ結合 SM ライクな状況では微妙なズレ 湯川結合 結合のタイプに激しく依存

新粒子の量子効果: ループ導出される $h \rightarrow \gamma\gamma$, $h \rightarrow gg$ に大きなずれ hhh結合にもノンデカップリング効果で大きな補正

Sfitter - Zerwas

ゲージ結合 hVV

 $L = g \sin(\beta - \alpha) hVV + g \cos(\beta - \alpha) HVV$

- 真空期待値を持ちWの質量に貢献するスカラー場との混合
- マルチダブレットの構造の場合: 真空期待値の和法則 v₁²+v₂²=v²

 $\sin^2(\beta - \alpha) < 1 \iff (g_{hVV}/g_{hVV}^{SM})^2 < 1$

エキゾチックな場合

 (高い表現のスカラー場を含む場合)
 – (g_{hvv}/g_{hvv}SM)²>1もあり得る
 – 棚橋さんのトーク

 $\frac{g_{hVV}^{\text{THDM}}}{g_{hVV}^{\text{SM}}} = \sin(\beta - \alpha)$

模型によってはH,A等が 重い必要がある (MSSM等)

デカップリングのズレから
新粒子のスケールがわ
かる
MSSMの場合(αはtanβとm_Aで決まる)
tanβ=5

$$\frac{g_{hVV}}{g_{h_{SM}VV}} \simeq 1-0.3\% \left(\frac{200 \text{ GeV}}{m_A}\right)^4$$

 $\frac{g_{htt}}{g_{h_{SM}tt}} = \frac{g_{hcc}}{g_{h_{SM}cc}} \simeq 1-1.7\% \left(\frac{200 \text{ GeV}}{m_A}\right)^2$
 $\frac{g_{hbb}}{g_{h_{SM}bb}} = \frac{g_{h\tau\tau}}{g_{h_{SM}\tau\tau}} \simeq 1+40\% \left(\frac{200 \text{ GeV}}{m_A}\right)^2$. Peskin et al (2012)
ボトム湯川、タウ湯川は超対称粒子による

ボトム湯川、タウ湯川は超対称粒子による 輻射補正で大きいズレがで得る

ー般の2HDMでは αとm_A は独立であり、デカップリングは遅い

湯川結合

- ヒッグス混合角(α, β)の効果でズレる
- 湯川結合のタイプでズレのパターンで 大きく異なる
- 標準模型ライクな場合sin²(β-α)=0.99 •

	Φ_1	Φ_2	<i>u_R</i>	d_R	ℓ_R	Q_L, L_L
Туре І	+	_	Ι	Ι	Ι	+
Type II (SUSY)	+	_	_	+	+	+
Type X (Lepton-specific)	+	_	_	_	+	+
Type Y (Flipped)	+	_		+		+

	ξ_h^u	ξ_h^d	ξ_h^ℓ		
Type-I	c_{α}/s_{β}	$c_{oldsymbol{lpha}}/s_{oldsymbol{eta}}$	c_{α}/s_{β}		
Type-II	c_{α}/s_{β}	$-s_{\alpha}/c_{\beta}$	$-s_{\alpha}/c_{\beta}$		
Type-X	c_{α}/s_{β}	c_{α}/s_{β}	$-s_{lpha}/c_{eta}$		
Type-Y	c_{α}/s_{β}	$-s_{\alpha}/c_{\beta}$	c_{α}/s_{β}		

湯川結合hffの係数

Type II

.h

Type-II Two Higgs doublet model

tth
$$\frac{g_{htt}(\text{TypeII})}{g_{htt}(\text{SM})} = \sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha)$$

bbh
$$\frac{g_{hbb}(\text{TypeII})}{g_{hbb}(\text{SM})} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha)$$

$$\tau \tau h$$
 $\frac{g_{h\tau\tau}((\text{TypeII}))}{g_{h\tau\tau}(\text{SM})} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha)$

Type-X Two Higgs doublet model

tth
$$\frac{g_{htt}(\text{TypeX})}{g_{htt}(\text{SM})} = \sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha)$$

bbh
$$\frac{g_{hbb}(\text{TypeX})}{g_{hbb}(\text{SM})} = \sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha)$$

ττh

$$\frac{g_{h\tau\tau}((\text{TypeX}))}{g_{h\tau\tau}(\text{SM})} = \sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha)$$

結合 g_{hVV} , Y_{hff} のズレのパターン

Model	μ	τ	b	С	t	g_V	c
Singlet mixing	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
2HDM-I	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
2HDM-II (SUSY)	↑	1	1	\downarrow	\downarrow	\downarrow	
2HDM-X (Lepton-specific)	↑	1	\downarrow	\downarrow	\downarrow	\downarrow	
2HDM-Y (Flipped)	\downarrow	\downarrow	1	\downarrow	\downarrow	\downarrow	

 $\cos(\beta - \alpha) < 0$

シングレットは2HDMと区別できる Y_{hff}はユニバーサルに減、g_vの減少率が異なる

トリプレット模型はユニバーサルにQuark湯川が小さい方にズレる レプトン湯川もユニバーサルにズレる、 g_v は微妙に>1になり得る

g_v>1はエキゾチック模型のサイン

拡張ヒッグス模型は h の湯川結合とゲージ結合の精密測定で区別できる

Di-photon Decay Width

SMはループで導出される 新物理の量子効果が比較 的大きい

- W' boson
- Singly/Doubly charged scalars
- New charged leptons
- ・ 様々な模型で実現できる

destructive

ストップの効果(デカップリング)
$$\frac{g_{h\gamma\gamma}}{g_{h_{\rm SM}\gamma\gamma}} \simeq 1 - 0.4\% \left(\frac{1 \text{ TeV}}{m_T}\right)^2$$

ジェネラルな拡張ヒッグス模型 (トリプレット模型)等では大きい

自己結合
$$V_{\text{Higgs}} = \frac{1}{2} \underline{m_h^2 h^2} + \frac{1}{3!} \underline{\lambda_{hhh} h^3} + \frac{1}{4!} \underline{\lambda_{hhhh} h^4} + \cdots$$

ヒッグスポテンシャルの構造を決定する上で重要

SM Case
$$\lambda_{hhh}^{\text{SMloop}} \sim \frac{3m_h^2}{v} \left(1 - \frac{N_c m_t^4}{3\pi^2 v^2 m_h^2} + \cdots \right)$$

Non-decoupling effect

物資場、ヒッグス場が拡張された模型では、hが完全にSMライクな場合 $(sin(\alpha-\beta)=1)$ でも大きなズレが出る! (ノンデカップリングな量子効果)

拡張ヒッグスの場合

標準模型ライク極限 sin(β-α)=1

 ツリーではSMと変わらない sin²(β-α)=0.99 でλ_{hhh}のズレはマイナス数%

 $\Phi = H, A, H^{\pm}$

・ 量子効果: ノンデカップリングな状況ならトップルー プと同様 m_0^4 の補正項! (If M < v)

SK, Kiyoura, Okada, Senaha, Yuan, PLB558 (2003)

自己結合のズレとバリオン数生成

 $V(\phi, T) \iff V(\phi)$ SK, Okada, Senaha (2005) 強い一次相転移 \Leftrightarrow 大きい hhh のズレ 35

自己結合とhyyとの相関

電弱バリオン数生成にモーティベートされた強結合SUSY模型 SU(2)_H×U(1)

LHC300,3000での測定可能性

			with theory systematic	s	without theory systematics		
200 fb - 1	$H \rightarrow \mu \mu$	$H \rightarrow \mu \mu$			0.505		
50010	$ttH, H \rightarrow \mu\mu$	$ttH, H \rightarrow \mu\mu$			0.719		
	$VBF, H \rightarrow \tau \tau$		0.227		0.189		
	$VBF, H \rightarrow \tau \tau$ (ext	rap)	0.146		0.114		
	$H \rightarrow ZZ$	$H \rightarrow ZZ$			0.093		
	$VBF, H \rightarrow WW$	$VBF, H \rightarrow WW$			0.662		
	$H \rightarrow WW$	$H \rightarrow WW$			0.259		
	$VH, H \rightarrow \gamma \gamma$	$VH, H \rightarrow \gamma \gamma$			0.768		
	$ttH, H \rightarrow \gamma\gamma$		0.551		0.537		
	$VBF, H \rightarrow \gamma \gamma$	$VBF, H \rightarrow \gamma\gamma$			0.309		
	$H \rightarrow \gamma \gamma (+j)$		0.160		0.120		
	$H \rightarrow \gamma \gamma$		0.145		0.081		
		with	h theory systematics	w	ithout theory systematics		
3000fb ⁻¹	$H \rightarrow \mu\mu$	0.20	07		0.164		
	$ttH, H \rightarrow \mu\mu$	0.20	60		0.230		
	$VBF, H \rightarrow \tau \tau$	0.20	02	0.	160		
	$H \rightarrow ZZ$	0.13	34		0.047		
	$VBF, H \rightarrow WW$	0.58	81	0.	0.574		
	$H \rightarrow WW$	0.289		0.259			
	$VH, H \rightarrow \gamma\gamma$	0.25	53		0.251		
	$ttH, H \rightarrow \gamma\gamma$	0.20	6		0.174		
	$VBF, H \rightarrow \gamma \gamma$	0.10	60	0.	0.105		
	$H \rightarrow \gamma \gamma (+j)$	0.1	19	0.	0.054		
	$H ightarrow \gamma \gamma$	0.12	26		0.040		
				-			

Self-coupling (*hhh*) measurement:

HH→bbyyで3σ sensitivity bbtt なども全てコンバインして最終的にλhhhは30%ではかれるかもしれない ATL-PHYS-PUB-2012-004

素粒子質量起源の解明、新物理模型の仕分け LEPがヒッグス質量を予見したように新物理の情報を得る

まとめ

- 126GeVのヒッグスらしきものの発見で、素粒子の質量起源 (電弱対称性の自発的破れのメカニズム)解明の糸口を得た SM的ヒッグス (≠ SMヒッグス)
- ヒッグスセクターの構造と性質は、標準模型を超えた新物理 理論と密接な関係にある
- 標準模型の限界の見極めと新物理(次世代ラグランジアン) 確立のためにヒッグスセクターの詳細にわたる研究が必要
 - LHC実験で標準模型にない新粒子が見つかるかどうかは、
 模型に強く依存する(14TeV LHC, HL-LHCに期待)
 - 軽いヒッグスの徹底解明によって標準模型を超えた物理の 方向性を決定できる
 - LHC実験での更なる新粒子発見加えて、今後の精密測定で 次世代ラグランジアンを特定
- ヒッグス物理による新物理探究は3000fb⁻¹のHL-LHC やILCまで含めて今後10-20年の物理!