J-PARC muon g-2/EDM実験に向けた ミューオン線形加速器の開発

^AIbaraki Univ.

Y. Nakazawa

^BNIRS, ^CKEK, ^DJAEA, ^ENagoya Univ., ^FKyushu Univ., ^GTokyo Tech, ^HUniv. of Tokyo, ^IRIKEN

H. Iinuma^A, Y. Iwata^B, E. Cicek^C, M. Otani^C, N. Kawamura^C, R. Kitamura^D,
Y. Kondo^D, N. Saito^C, Y. Sue^E, K. Sumi^E, Y. Takeuchi^F, N. Hayashizaki^G,
T. Mibe^C, T. Morishita^D, T. Yamazaki^C, M. Yoshida^C, M. Yotsuzuka^E,
T. Iijama^E, K. Inami^E, H. Ego^C, K. Suzuki^E, T. Takayanagi^D, J. Tojo^F,
K. Futatsukawa^C, H. Yasuda^H, K. Shimomura^C, Y. Miyake^C, K. Ishida^I, Y. Fukao^C

ミューオン異常磁気モーメント (g-2)

2

実験手法 ミューオンのスピン方向に依存する崩壊陽電子の時間変化を測定する

振動の周波数(ω_a)と磁場(B)の精密測定が必須

BNL/FNAL

<u>特定のγで崩壊したミューオンをそのまま利用</u>

→ ビーム拡がり(エミッタンス)が大きい (→ 系統誤差の原因) → 電場による強収束が必要不可欠

大きな磁場領域 → 均一磁場の制御が難しい

J-PARC

<u>電場収束を行わない + コンパクトな磁場領域</u>

→従来の1/1000の低エミッタンスビームが必要

J-PARC - Japan Proton Accelerator Research Complex

ニュートリノ施設

物質・生命科学実験施設 MLF

J-PARC MLF H-lineに g-2/EDM測定専用のビームラインを建設する

ハドロン実験ホール

M. Abe et al., Prog. Theor. Exp. Phys., vol. 2019, no. 5, May. 2019.

@MLF H-line

いかに加速中でのエミッタンスの増大を抑えるかが課題

ミューオン加速 電子/陽子加速器の技術を用いて、ミューオン専用の加速器を新たに開発する

崩壊損失(2.2µs)の抑制,高加速効率,安定性,速度変化に対応(DLS)..etc.

前例のないミューオン線形加速器の開発 / ミューオン加速実証が必須。

加速器開発

空洞基礎設計

これまでの開発

試作・評価試験(IH, DAW)

FWPS 2019 (全体, DAW)

- 実機製作の検討(IH, DAW)

詳細設計(IH, DAW, DLS)

FWPS

202

J

IH-DTL (Inter-digital H-mode drift tube linac)

低速度領域の加速中のミューオンの崩壊損失を抑制するためには 高加速効率 ・ 短距離加速 が必要

高周波電場でビームの加速と収束を同時に行う→ ☺ 高加速効率, 短距離加速

APFによる問題

🔅 軸上電場の電場誤差 (製作誤差, 熱膨張などに由来) がビームダイナミクスに大きく影響する

エミッタンス増大を <10 % にするには 電場誤差を <±2% に抑制する必要がある

電場補正

チューナー挿入の位置に依存して電磁場が摂動 → 軸上電場Ezを調整可能

電場補正しつつ、共振周波数も合わせるようなチューナーの条件(数,挿入量)が必須

Tuning手法の提案 逆問題を解くために、打切り特異値分解(TSVD)を応用する

高次のモードを除外することで

<u>適度な補正で実現可能な挿入量</u>となる解を選択できる

解析例

3次元電磁場解析(CST)を用いて検証

予想される電場誤差に対して 打ち切るモード数を選択し最適解を得る

要求値	
$\Delta E_{z,PP}$	< 4%
f	< 324 ± 0.1 MHz
Lt	< 50 mm (IH prototype用チューナー再利用のため)

電場・周波数を補正しつつ実現可能な挿入量を導出 また、チューナー数は 6個 が最も適していると判断した

電場補正の結果 (case study)

要求を達成することを確認した

様々なケースで検証した結果

さらに、6つのケース[backup]で電場補正と共振周波数の結果をまとめた

6つのチューナーによって実験要求を満たすことを確認できた

詳細設計が完了した。 年度内に製作完了

*PASJ2021 MOP038 Y. Takeuchi

進捗: DAW-CCL (Disk and Washer Coupled Cell Linac)

◎ 高加速効率。許容できる製作誤差が大きく、電磁場の安定性に優れる。
 ◎ 設計・解析が複雑 (実際の運用例が少ない)

詳細設計が完了した。 年度内に1st tankを製作完了

進捗: DLS (Disk Loaded Structure)

電子(β=1)とは異なり加速中の速度変化が大きい(β=0.7→0.94) → ミューオン用の設計が必須

設計手法を確立、年度内に詳細設計が完了。試作を予定している

まとめ

- ・J-PARCでは、冷却と加速による全く新しいミューオンビームを用いた ミューオンg-2精密測定を計画している
- ・これまでに、RFQによる世界初のミューオン加速を実証した。
- ・現在は、後段の加速器の詳細設計・製作に着手している。

本研究は日本学術振興会科学研究費JP25800164、JP15H03666、JP15H05742、 JP16H03987、JP16J07784、JP18H03707、JP18J22129、JP18H05226、JP19J21763、 JP20J21440、JP20H05625、JP21K18630, JP21H05088の助成を受けております。

Backup

Development items

		Prototype (1/3 model)	Real
model		6 cell	16 cell ~ 1320
		~ 250	obbobopobopobopobopobopobopobopobopobop
		Model fabricated to evaluate a fabrication accuracy and cavity performance and demonstrate the muon acceleration test.	Model used in E34 experiment
Q ₀		0.88×10^{4}	1.04×10^{4}
RF power	[kW]	55	322
E _{max}	[MV/m]	32.94 (1.85 E _k)	35.32 (1.98 E _k)
Energy	[MeV]	1.3	4.26

TE mode

Error study: summary

#	items	field variation	Expected displacement	causes	理由
1	DT radius	2% / 100 <i>µ</i> m	<100 <i>µ</i> m	fab. error	measured value by IH-proto
2	Edge	1% / 1000 <i>µ</i> m	-	fab. error	-
S	aan lenath	2% / 200 um	< 190 <i>µ</i> m	fab. error	measured value
3 gap length	2%7200µm	< 60 <i>µ</i> m	thermal expansion	simulated value	
Λ	position(z)	1% / 100 um	-	fab. error	-
4 position(2)	1767 TOO µIII	< 50 <i>µ</i> m	thermal expansion	simulated value	
5	E elect		-	fab. error	-
5	รเสท	0.5%/0.2 deg	< 0.02 deg	thermal expansion	simulated value

Case study

	#	Error model	Value	Simulated f_0	Simulated Q
Fab. error	1	Outer radius error	 DT #6: R_{out =} -300 μm DT #7: R_{out =} -200 μm 	323.383	1.0460e+04
	2	Outer radius error	 DT #3: R_{out =} -100 μm DT #4: R_{out =} -200 μm DT #7: R_{out =} +100 μm DT #13: R_{out =} -400 μm 	323.509	1.0426e+04
	3	Outer radius error	 DT #0: R_{out =} -200 μm DT #1: R_{out =} -200 μm DT #7: R_{out =} +100 μm 	323.183	1.0428e+04
Fab. error + Thermal error	4	 Outer radius error Axial(Y) shift of DT Position(Z) shift of DT 	 [R_{out} error (model 1)] DT #1: Z_{position} = -300 μm DT #9: Y_{position} = +300 μm 	323.485	1.0475e+04
	5	 Axial(Y) shift of DT Position(Z) shift of DT 	 DT #1: Z_{position} = -200 μm DT #9: Y_{position} = +200 μm DT #15: Z_{position} = +200 μm 	323.297	1.0439e+04
	6	 Outer radius error Axial(Y) shift of DT Position(Z) shift of DT 	 [R_{out} error (model 2)] DT #1: Z_{position} = -200 μm DT #9: Y_{position} = +200 μm DT #15: Z_{position} = +200 μm 	323.603	1.0426e+04

Case study; result

Data of histogram (Simulated result)

model6

m	0	d	е	4
	\mathbf{U}	u		

 field error 	L _{tuper61} = 29.7798 mm
• after tuning (sim.)	L _{tuner#2} = 29.3090 mm
F	L _{tuner#3} = 29.7535 mm
-	L _{tuner#4} = 25.7498 mm
F	L _{tuner#5} = 27.6356 mm
-	L _{tuner#6} = 26.9143 mm
F	
•	•
E • • • • • •	• • •
	• •
	•
- <u></u>	
3F	
– PP of ∆E = 2.758 [per]	f ₀ = 323.297 [MHz]
Generation Offset of ∆E = 0.313 [per]	f _{tuning} = 323.948 [MHz]
0 500	1000
	Z [mm