New B \rightarrow D^(*) τ v Result from

Two Hards

Thomas Kuhr LMU Munich

FPCP 2015-05-25

$B \rightarrow D^{(*)} \tau v$

Process with third generation quarks and leptons

- New Physics (NP) could change:
 - Branching fraction
 - Tau polarization
 - Effect could be different for D and D*
- 3.4σ deviation from SM observed by BaBar, 2HDM type II excluded
- Experimental challenge:
 2 (hadronic tau decay) or 3 (leptonic tau decay) undetected neutrinos

Aim

Measurement of branching ratio relative to corresponding decay to light leptons:

$$R = \frac{\mathcal{B}(\bar{B} \to D\tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D\ell^- \bar{\nu}_{\ell})} \qquad R^* = \frac{\mathcal{B}(\bar{B} \to D^* \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^* \ell^- \bar{\nu}_{\ell})} \qquad \ell^- = e^- \text{ or } \mu^-$$

- Reconstruction of leptonic tau decays ($\tau^- \rightarrow \ell^- vv$)
- Same detectable final state particles of signal and normalization mode
- Reduction of systematic uncertainties
- Signal and normalization mode have to be distinguished experimentally

Tagging

 → Exploit fact that a BB pair and nothing else is produced in e⁺e⁻ → Y(4S) events at B factories

- ✓ Tag B determines charge and momentum of signal B
- All remaining particles must come from signal B
- Not possible at hadron colliders

• Hierarchical B_{tag} reconstruction of 1149 channels with neural networks NIMA654,432 $\Delta E \equiv E_{tag} - E_{beam}$

• Cuts on B_{tag} quality including Fox-Wolfram moments

Signal Reconstruction

- ≻ Four $D^{(*)}\ell$ (ℓ = e- or µ-) samples:
 - $D^+ \rightarrow K^- \pi^+ \pi^+$, $K^0_{\ S} \pi^+$, $K^0_{\ S} \pi^+ \pi^0$, $K^0_{\ S} \pi^+ \pi^+$
 - $D^0 \rightarrow K^-\pi^+$, $K^-\pi^+\pi^-$, $K^-\pi^+\pi^0$, $K^0_{\ s}\pi^0$
 - $D^{*+} \rightarrow D^0 \pi^+$, $D^+ \pi^0$
 - $D^{*0} \rightarrow D^0 \pi^0$, $D^0 \gamma$
- Track selection: dr < 2 cm, |dz| < 4 cm
- Lepton ID requirement with 95/92% efficiency for e/μ
- Standard selection of $K_{s}^{0} \rightarrow \pi^{+}\pi^{-}$
- Photon selection: isolated cluster with E > 50 MeV
- π⁰ → γγ selection: E_γ > 80 MeV in endcaps,
 p^{*}(π⁰) > 200 MeV (except π⁰ from D^{*}), mass pull |S_{νν}| < 3.0

Signal Selection

- p(D^(*)) < 3 GeV/c
- Channel-dependent D mass / D*-D mass difference cut at $\pm 1.5~\sigma$
- No overlap between B_{tag} and B_{sig}
- Zero charge of $B_{tag} + B_{sig}$
- No further tracks
- No further π° (with $E_{\gamma} > 50/100/150$ MeV in barrel/forward/backward region)

$$M_{\rm miss}^2 = (p_{\rm beam} - p_{B_{\rm tag}} - p_{D^{(*)}} - p_{\ell})^2 \quad q^2 \equiv (p_B - p_{D^{(*)}})^2$$

- $-0.2 < M_{miss}^2 < 8.0 \text{ GeV}^2/c^4$
- q² > 4 GeV²/c²

Data Composition

Lepton Signal

- Correctly reconstructed normalization mode decay B → D^(*)ℓ⁻v
- Only one missing neutrino
- → M²_{miss} peaks at 0
- Well distinguishable from other components
- Yield is free parameter in the fit

Lepton Cross-Feed

- B → D*ℓ-v reconstructed as B → Dℓ-v (π° or γ missed)
- Two missing particles
- M²_{miss} shifted to higher
 values and broader
- Still distinguishable from other components
- Yield is free parameter in the fit

Tau Signal

- Correctly reconstructed $B → Dτ^-v, τ^- → ℓ^-vv$
- Three missing neutrinos
- → M²_{miss} broad
- Yield given by free parameter R:

$$Y_{\tau \text{ signal}}^{D^{+/0}\ell^{-}} = R \cdot Y_{\ell \text{ signal}}^{D^{+/0}\ell^{-}} / (2f_R^{+/0})$$

• Efficiency ratios $f_{R}^{+} = 1.69 \pm 0.09,$ $f_{D}^{0} = 1.91 \pm 0.06$ from MC

Tau Cross-Feed

- B → D^{*}τ⁻ν reconstructed as B → Dτ⁻ν (π⁰ or γ missed)
- Four missing particles
- → M²_{miss} similar to tau signal
- Yield constrained:

$$Y_{\tau \, \mathrm{CF}}^{D^{+/0}\ell^{-}} = Y_{\tau \, \mathrm{signal}}^{D^{*+/0}\ell^{-}} \cdot \frac{Y_{\ell \, \mathrm{CF}}^{D^{+/0}\ell^{-}}}{Y_{\ell \, \mathrm{signal}}^{D^{+/0}\ell^{-}}}$$

• Efficiency ratios $g^+ = 0.89 \pm 0.08$, $g^0 = 0.69 \pm 0.04$ from MC

 $\frac{1}{g^{0/+}}$

Wrong-Charge Cross-Feed

- B⁰ → D^{*+}ℓ⁻ν reconstructed as B⁻ → D⁰ℓ⁻ν (π⁺ missed)
- Only in D⁰ℓ⁻ sample
- → M²_{miss} similar to lepton cross-feed
- Yield constrained relative to D^{*}+ℓ⁻ lepton signal
- Efficiency ratio $f_{wc} = 0.107 \pm 0.004$ from MC

Wrong D^(*) Mesons

- Combinatorial D^(*) background
- M²_{miss} broad
- Yield determined from mass (difference) sidebands in data

D** Background

- $B \rightarrow D^{**}\ell^{-}v$
- One or more pions from
 D^{**} → D^(*)(п)п decay
 missed
- M²_{miss} and yield
 similar to tau signal
- Branching fractions not well known
- Yield is free parameter in the fit

Wrong Lepton

- B → DK/n with hadron misidentified as lepton
- M²_{miss} broad, yield small
- Misidentification rate well known
- Yield determined from MC

D_s Decays

- > B → D_s⁻ D with $D_s^{-} → \ell^- v(vv)$
- M²_{miss} broad, yield small
- Branching ratio well known
- Yield determined from MC

Rest

Anything else

- E.g. events with correctly identified final state particles, but mix up of signal and tag side
- M²_{miss} broad, yield small
- Yield determined from MC

Simulation

- Decay chains simulated with EvtGen
- Detector simulation with Geant3
- 10⁷ signal events generated for each reconstruction sample
- Background MC corresponding to 5 times the amount of data
 - Several corrections to describe data well

Simulation Corrections (1)

- Correct B_{tag} yield
 - Cancels in ratio R^(*), but can affect background yields
 - → Correction factors of 0.35 to 1.1 determined per B_{tag} decay mode with semileptonic B_{sig} decays PRD88, 032005
- Wrong B_{tag} yield
 - → Correction factors of 0.99 to 1.14 determined per reconstruction sample from ratio of data/MC yields in M_{bc} sidebands

Simulation Corrections (2)

- Lepton fake rate
 - Correction factors depending on momentum and polar angle
- Lepton efficiency
 - Consistent between MC and data
- Correct D yield
 - Correction factors of 0.75 to 1.09 determined per D^(*) decay mode from ratio of signal yields in data/MC from fit to D mass (D*-D mass difference)
- > Wrong D yield: Taken from sideband data

Simulation Corrections (3)

- $\succ D_{s}^{-} \rightarrow \ell^{-}v(vv)$
 - Reweighted to latest branching ratio results
- $B \rightarrow D^{**}\ell^{-}v$
 - → B decays to D₂^{*}, D₀^{*}, D₁, D₁', D(2S), D^{*}(2S) according to latest branching ratio measurements
 - → D^{**} decays to D^(*) + π, ππ, ρ, η
 - → Reweighting to LLSW model PRD57, 308
- ▷ $B \rightarrow D^{(*)}\ell^-v$
 - Reweighting to latest HQET2 parameters from HFAG

Fit Strategy

- M²_{miss} separates
 lepton signal,
 lepton cross feed,
 and tau signal well
- But tau signal and D^{**} background very similar in M²_{miss}

• Split sample at $M^2_{miss} = 0.85 \text{ GeV}^2/c^4$

- Fit M²_{miss} in low M²_{miss} sample → Constrain ℓ signal + ℓ CF
- Train NN to distinguish tau signal and (mainly) $D^{\ast\ast}$ background in high $M^2_{_{miss}}$ sample
- Fit NN distribution in high M²_{miss} sample → Constrain D^{**}

 $M^2_{miss}[GeV^2/c^4]$

One network per reconstruction sample

- Signal: tau signal
- Background: D^{**}, wrong charge CF, wrong lepton, D_s, rest

Input variables:

- M²_{miss}
- E_{ECL} : sum of energies of clusters not assigned to B_{sig} or B_{tag} \rightarrow Most powerful variable
- Momentum transfer q^2 and lepton momentum p_{ℓ}^* → Correlated with M^2_{miss}
- Number of unassigned π^0 with $|S_{yy}| < 5$
- Cos of angle between D^(*) momentum and vertex direction
- Decay channel identifiers

Network Output

- Smoothed histogram PDFs for M^2_{miss}
- Bifurcated Gaussians for O_{NB,tranfo}
- Simultaneous extended maximum likelihood fit of the four reconstruction samples
- → 12 free parameters:
 - Lepton signal yield per sample
 - Lepton cross-feed per D² sample
 - D^{**} yield per sample
 - R and R^{*} (assuming isospin symmetry)

Component	$D^+\ell^-$	$D^0\ell^-$	$D^{*+}\ell^{-}$	$D^{*0}\ell^-$	yield source
ℓ signal	\checkmark	\checkmark	\checkmark	\checkmark	fit
$\ell \ \mathrm{CF}$	\checkmark	\checkmark	-	-	fit
τ signal	\checkmark	\checkmark	\checkmark	\checkmark	fit
$\tau \ \mathrm{CF}$	\checkmark	\checkmark	-	-	constrained
wrong charge	-	\checkmark	-	-	constrained
wrong D	\checkmark	\checkmark	-	-	M_D SB
wrong D^*	-	-	\checkmark	\checkmark	ΔM_{D^*D} SB
D^{**}	\checkmark	\checkmark	\checkmark	\checkmark	fit
wrong ℓ	\checkmark	\checkmark	\checkmark	\checkmark	\mathbf{MC}
D_s	\checkmark	\checkmark	\checkmark	\checkmark	\mathbf{MC}
rest	\checkmark	\checkmark	\checkmark	\checkmark	MC

Validation

- Cross validation on MC
- 500 pseudo exp. \rightarrow no biases in fit
- M^2_{miss} split value \rightarrow no bias
- Resolution model checked with D^(*)ℓ⁻v enriched sample

pull

mean: -0.02±0.05 width: 1.02±0.03

Thomas Kuhr

80

60

FPCP 2015-05-25

data

D**h

- Dlv

rest

- D^{**} Validation
 - D^{**} validation sample: additional π^o required

Events / (0.28)

35

30 E

25

- Fit of M²_{miss}, $M^{2}_{miss.no-\pi0}$, E_{FCI} , p_{p}^{*}
- Consistent yields
- → D^{**} distributions described by MC

 $D^{+}\ell^{-}\pi^{0}$

35Ħ

30

25

data

_____D**h

D*h

-Dlv

.rest

Systematic Uncertainties

 Decay model 		R[%]	R^* [%]	correlation
uncertainties	$D^{(*(*))}\ell\nu$ shapes	4.2	1.5	0.04
• D • D **0-v	D^{**} composition	1.3	3.0	-0.63
• $P \rightarrow D \notin A$	wrong D yield	0.5	0.3	0.13
branching ratios	wrong ℓ yield	0.5	0.6	-0.66
varied by 42% for	D_s yield	0.1	0.1	-0.85
D * 35% for D *	rest yield	0.1	0.0	-0.70
D_2^{2} , 5570101 D_0^{2} ,	f_R^+	2.5	0.7	-0.98
15% for D ₁ , 36%	f_R^0	1.8	0.4	0.86
for $D + 100\%$ for	$f^+_{R^*,\mathrm{eff}}$	1.3	2.5	-0.99
$101 D_1, 100 \% 101$	$f^0_{R^*, ext{eff}}$	0.7	1.1	0.94
D ^(*) (2S)	g^+	2.2	2.0	-1.00
	g^0	1.7	1.0	-1.00
 MC statistics 	$f_{ m wc}$	0.0	0.0	0.84
DDE narametrizati	$M_{\rm miss}^2$ shape	0.6	1.0	0.00
• PDF parametrizat	$o_{\rm NB,trafo}$ shape	3.2	0.8	0.00
 Lepton ID 	lepton PID efficiency	0.5	0.5	1.00
	Σ	7.1	5.2	-0.32

Fit Result

LMU Thomas Kuhr

Fit Result

LMU Thomas Kuhr

Fit Projections High M²_{miss}

LMU Thomas Kuhr

Fit Projections E_{ECL} for $M^2_{miss} > 2 \text{ GeV}^2/c^4$

Thomas Kuhr

Fit Projections p_{ℓ}^* for $M^2_{miss} > 2 \text{ GeV}^2/c^4$

LMU Thomas Kuhr

Result

What About New Physics?

• Analysis repeated for 2HDM of type II with $tan\beta/m_{H+} =$ 0.5 c²/GeV:

 $R = 0.329 \pm 0.060 \pm 0.022$ $R^* = 0.301 \pm 0.039 \pm 0.015$

$$R_{2HDM} = 0.590 \pm 0.125$$
$$R_{2HDM}^* = 0.241 \pm 0.007$$

LMU Thomas Kuhr

And the q² Spectrum?

MU Thomas Kuhr

Summary

- Measurement with full Belle dataset
- More sophisticated fit strategy than in previous Belle analysis

$$R = 0.375^{+0.064}_{-0.063}(\text{stat.}) \pm 0.026(\text{syst.})$$
$$R^* = 0.293^{+0.039}_{-0.037}(\text{stat.}) \pm 0.015(\text{syst.})$$

- Consistent with SM and BaBar result
- → Consistent with 2HDM of type II at tan $\beta/m_{H^+} \approx 0.5 \text{ c}^2/\text{GeV}$
- Have to wait for Belle II (and LHCb)?