Belle II実験高輝度化に向けた SiPMを用いたTOPカウンターの実現可能性の検討

名古屋大学 M2 前原真心 2020/11/24

2020/11/24

Belle II実験

- ・重心系エネルギー10.58 GeVの非対称電子陽電子ビームで大量のB、D、τなどを生成
- ・瞬間最高ルミノシティ (目標値): 6.5×10³⁵ cm⁻² s⁻¹ ← Belle実験の30倍!
- ルミノシティを高くするため、ビームバックグラウンド (BG) が高くなる

TOP (Time-Of-Propagation) カウンター

- 粒子識別装置
- リングイメージ型チェレンコフ検出器
 - 同じ運動量でも粒子ごとに光路が異なる
 - ▶1光子検出の時間分解能が重要 ➡ Δt ~ 100 psが要求される
 - 検出光子数が多いほど識別性能は高い

ビームBG

- ・ルミノシティの上昇に伴ってBG光子も増加する
 - 6.5 × 10³⁵ cm⁻²s⁻¹に達する頃には ≥10 MHz/PMT

 Belle IIで50 ab⁻¹の統計量を貯めた後の さらなる高輝度化が検討されている
 >検出器は非常にBGの厳しい環境で 運用することになる

既存の光検出器

- Micro-Channel-Plate (MCP) PMT
- 時間分解能: 35 ps
 - •優れた時間分解能により高い粒子識別性能を実現27.6
- 収集効率 (CE): 50% 光子検出効率
- 量子効率 (QE): 29.3% _
 - 積算出力電荷量の増加に伴って劣化
 - Belle II 50 ab⁻¹到達後には交換が必要
 - その後更に数倍の統計量を貯めることを 検討中
 - ▶将来的な高輝度環境に向けて対策が必要

Jan/2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

FPWS2020 / 前原真心

nm)

400 |

 $\Delta E/\Delta E_0$ ()

• SiPMの懸念: MCP-PMTに比べてダークカウントが多く、TTSが大きい

SiPM (S13361-6050 series)

…など

~ 0 MHz/ch	ダークカウント	2 MHz/ch (Typ.)
35 ps	光検出器の時間分解能 (TTS)	<i>O</i> (100) ps

- ダークカウントはNIELによる放射線損傷で更に増加してしまう
- ▶ 本研究ではSiPMの導入が有効であるかを調べるため、粒子識別性能への以下の影響を シミュレーションを用いて見積もる
 - 高いビームBGとダークカウント] 本講演で報告
 - TTSの悪化
 - アフターパルス
 - パイルアップ、回復時間中のinefficiency

MCP-PMT

シミュレーション手法

- 1. イベント生成 $(B \rightarrow K^*(\rightarrow K^+\pi^-)\gamma)$
 - ・K、πの運動量が高い崩壊過程を用いて、粒子識別が難しい条件で評価を行った
- 2. 検出器シミュレーション (Geant4)
 - PDEやTTSを変更
- 3. ランダムノイズの追加
 - 光検出器の各チャンネルに擬似的な光子を入射
- 4. イベント再構成
- 5. π -K識別性能の評価: π ID efficiency と K fake rate

PDE分布の変更に伴うバックグラウンド (BG) 光子の増加による影響

• 4 × 10³⁶ cm⁻² s⁻¹の輝度を仮定する

• TTS分布は変更せず、上記BGレートにおける粒子識別性能を評価した

	Efficiency	Fake rate	
MCP-PMT @3.8 MHz/ch	89.5%	7.5%	
SiPM @13 MHz/ch	92.5%	4.7%	

▶BG光子の増加による影響以上に粒子識別性能の向上が大きい

TTS (光検出器の時間分解能)の考慮

一般的にSiPMのTTSはMCP-PMTのものよりも大きい

▶シミュレーションに用いるTTS分布を変更し、この影響を調べる

- MCP-PMT: triple / quadruple gaussianで 定義されている
- SiPM: 上記のmain componentのσを 50 ps、100 ps、150 psと変更して 調べた

10/19

TTS分布の変更に伴う粒子識別性能の評価

・黒のみMCP-PMTのPDE分布、その他はSiPMのPDE分布でシミュレーション

▶TTS分布の違いによる差は見られなかった

• $B \rightarrow K^* (\rightarrow K^+ \pi^-) \gamma$ はboostにより前方に出る粒子が多い

▶ 伝播経路が伸びる ➡ 波長分散の影響が大きく、元々時間分解能が悪い

▶ TTSの悪化が目立っていない可能性がある

▶光検出器としては150 ps前後のTTSを達成できれば良い

TTS測定ベンチ

・チャンネルサイズ3 mm角と6 mm角(MCP-PMTと同程度)の2種類を測定

2020/11/24

FPWS2020 / 前原真心

TravNo.1

TTS測定ベンチ

2020/11/24

TTS測定ベンチ

FPWS2020 / 前原真心

TravNo.1

$[3 \text{ mm} \times 3 \text{ mm}]$ TTS

- ・信号の前後1µsはVETOしている
- ・ 推奨動作電圧V_{op} (Gain=1.7×10⁶) を印加
- ・TDC分布をダブルガウシアンでフィットしてスムージングし、FWHMからσを導出

 $FWHM = 265 \pm 4 \text{ ps}$ $\sigma = 113 \pm 2 \text{ ps}$

▶TTSは粒子識別性能からの要求を 満たす

15/19

[3 mm × 3 mm] 印加電圧依存性

- ベースラインのふらつきが大きくなるのが原因だと考えている
- 波形読み出しで対処できないか検討中

$[6 \text{ mm} \times 6 \text{ mm}]$ TTS

- ・推奨動作電圧V_{op} (Gain=1.7 × 10⁶) を印加
- 3 mm×3 mmと同様にTTSを評価した
- $\succ \sigma = 165 \pm 2 \,\mathrm{ps}$
- ・2つ目のピークが見える
- 1 nsほど遅れている
 - SiPMから15 cmほど離れた場所 で反射?
 - おそらくNDフィルターが原因

[6 mm × 6 mm] 印加電圧依存性

- 3 mm x 3 mm と同様に評価した
- ・最も良いところで~ 130 ps
- V_{op} +2 V以降は140 ps以下
- ▶時間分解能の条件を満たす

まとめ

- Belle II実験TOPカウンターでは、将来の高輝度環境に向けて光検出器の置き換えを検討している
- TOPカウンターの識別性能には1光子検出の時間分解能が重要である
- シミュレーション上でMCP-PMTのパラメータをSiPMのものに変更したときの粒子識別性能の変化を 評価

▶ PDEの向上によって粒子識別性能は向上することを示した
▶ 光検出器としては150 ps程度のTTSを達成すれば良いことを示した

- ・実際にTTSの測定ベンチを構築し、□3mmと□6mmのSiPMについて測定した
- TTSの印加電圧依存性を評価した
 - □3 mm: V_{op}+2 V以降 110 ps 以下
 - □6 mm: V_{op}+2 V以降 140 ps 以下
- ▶1光子で150 ps以下の時間分解能を得られることが確認できた

Backup

PDE分布の変更

SiPM: PDE <u>HAMAMATSU Data sheet</u>

Photon detection efficiency vs. wavelength (typical example)

- ・波長依存性を加味してPDEの変更による PID性能への影響を評価する
 - 1. 左のPDE分布からデータ点を抽出 (320 nm-880 nm、20 nmごと)

光子検出効率 (PDE);検出光子数と波長分散効果の変化

- SiPMのPDE分布はMCP-PMTに比べて長波長側に寄っている 🛑 波長分散効果小 (下図左)
 - •装置全体の時間分解能は光検出器の時間分解能ではなく、波長分散で制限されている
 - ▶長波長側を使うことで装置全体の時間分解能が向上
- PDE分布の違いによる検出光子数の変化を見積もる
 - ・チェレンコフ光子数 $\propto \lambda^{-2}$ より、MCP-PMTと SiPMについて PDE $\times \lambda^{-2}$ を比較した (下図右)
 - TOPカウンター検出領域ではどの波長でもSiPMの 検出光子数が多い

SiPMは2.9倍の チェレンコフ光子を 検出できる

▶粒子識別性能の向上が 期待できる

2020/11/24

PDE分布の変更に伴うBG耐性の評価

- TTS分布はMCP-PMTのもので固定
- 前頁で示した 2.5 MHz/ch BGでMCP-PMTを用いた場合の性能 (青破線)と比較
- ▶ 放射線損傷によるBGの増加を考慮しても、30 MHz/ch までは性能に大差はない

 $B \rightarrow K^* (\rightarrow K^+ \pi^-) \gamma$ の粒子分布

- boostにより前方に出る粒子が多いことがわかる
- TOPカウンターの前方領域で生じた光子は前端のmirrorで反射して 後端の光検出器まで伝搬する
 - ≻伝播経路が伸び、波長分散の影響を強く受ける

TTS分布の変更に伴う粒子識別性能の評価

- 日本物理学会第75回年次大会 17aG22-06
- ・黒のみMCP-PMTのPDE分布、その他はSiPMのPDE分布でシミュレーション
 ▶TTS分布の違いによる差は見られなかった
- ▶光検出器としては100 ps前後のTTSを達成できれば良い

Fake rate (PDEs are SiPM's except for black points)

1光子レベルでの波形 (V_{op} @Gain=1.7 × 10⁶)

- 信号はグラウンドのふらつきに対し十分大きい
- ・鋭い立ち下がりが見られる

2020/11/24

ADC

- ・カウントレート: 0.8%
- ペデスタルが負のテールを引いており
 その影響が1光子のピークにも
 見られる

▶1光子のイベントを用いてTTSを 評価する

ペデスタル(スケール済)

