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Why dark energy?



why

• Expanding Universe

Galaxies  tend to go away from us, and it’s isotropic.
è not intrinsic velocity of each galaxy..
è expansion of ``space”, Our Universe!

– 75 –

– 75 –

Freedman et al. (2001)

Taylor expansion of 
the size of our Universe; 

Hubble parameter



why

• Accelerating or decelerating?

time

size of 
the Universe

present
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In cosmology, distant = past
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• Accelerating or decelerating?
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In cosmology, distant = past
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accelerating

è Observing more distant objects,
à earlier stage of the Universe! 



why

• Accelerating or decelerating?

or

In cosmology, distant = past

time

size of 
the Universe

decelerating

accelerating

è Observing more distant objects,
à see earlier stage of the Universe,

how our Universe evolves ! 



Dark energy

• Discovery of accelerating expansion
2011 nobel prize in physics

Observations of distant SNe
�one of the brightest objects (standard candle)

size of the Universe
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çè distance from us
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Dark energy

• Lots of  evidence ..

Note that all of the evidences are obtained by cosmological observations

Energy fraction 
of ``dark energy”

Planck



Dark energy is what?



Learning from the past..



Dark planet

• Kepler motion of planets in solar system

1. Small deviation in the Kepler motion of Uranus
2. Precession of the perihelion of Mercury

Existence of dark planets??

Based on Newtonian gravity in a system of observed objects

In early 19th, ..



Dark planet

• How to resolve?

1. Small deviation in the Kepler motion of Uranus

2. Precession of the perihelion of Mercury

• New undetected object?
• New theory?

è Discovery of Neptune (1846)

è Newton gravity à general relativity

two way;

(in 20th century)



What?

• Come back to dark energy 
Based on the General Relativity,

Unknown components ?Expansion of the Universe

Neptune case



What?

• Come back to dark energy 
Based on the General Relativity,

Expansion of the Universe

Extension of gravity theory ?
Mercury case



Dark energy is …



What?

•Unknown ``component” ?
• Cosmological constant (vacuum energy)



What?

•Unknown ``component” ?
• Cosmological constant (vacuum energy)

• Scalar field? ç idea of cosmic inflation



How?

•How to realize accelerating?
Equation for acceleration of the Universe,

``Accelerating” can be realized when the right hand side is positive!

With introducing ``equation of state ” parameter, w, 
Necessary condition for accelerating for the component is



How?

•Scalar field with
For scalar field (assuming homogeneity and isotropy)

(kinetic term + potential term)

è when,                                , effectively 

``slowly-rolling“ scalar field è accelerating !!

Cf. standard slow-roll inflation

``quintessence”

Basically characterized by the potential



How?

•Scalar field with
As an extended class of scalar dark energy,

Kinetically driven quintessence, called ``k-essence”

General function of kinetic term

See, e.g., Chiba, Okabe, Yamaguchi (2000)

For the simplest case:

Energy density; 
è On the point with 

è



What?

•Modification of gravity ?
• General relativity

• consistent with`` local” gravity test (and weak gravity regime)
• theory of massless spin-2 degree of freedom (2-tensor d.o.f)

How modified or extended?



What?

•Modification of gravity ?
• General relativity

• consistent with`` local” gravity test (and weak gravity regime)
• theory of massless spin-2 degree of freedom (2-tensor d.o.f)

How modified or extended?

Massive spin-2? è massive gravity theory

Adding additional degree of freedom? è scalar-tensor theory, 
vector-tensor theory



How?

•Modification of gravity ?
• Massive gravity theory

Effectively, the mass of graviton behaves like a cosmological constant

Fierz, Pauli (1939)
de Rham,  Gabadadze, Tolley(2010), …

mass of the graviton

Change the gravitational law at the mass scale of graviton
c.f. fifth force

see, e.g. Kobayashi et al. (2012)



How?

•Modification of gravity ?

• Scalar tensor theory

• GR (theory of massless spin-2 degree of freedom (2-tensor d.o.f))
adding a scalar d. o. f.

In some sense, scalar tensor theory is just GR + scalar field (as a matter)

Here (at least), scalar d.o.f. in scalar tensor theory is in the gravity sector,
that is,  scalar d. o. f. would be non-minimally coupled with the gravity. 

A famous example; (Jordan) Brans/Dicke theory (1961) (extension of GR with                        )

non-minimal coupling



Shedding light on the darkness..



Many attempts

• Construction of successful model (theoretical side)

• Probe from observations (observational side)
(main part of this talk)
activities in observational cosmology group, Nagoya



Theoretical side

• Cosmological constant
èshould be resolve: why so small? 

why now?

related with the string theory ?

not allowed by swampland conjecture ??

Obied, Ooguri, Spodyneiko, Vafa (2018)

from https://www.kitp.ucsb.edu/activities/stringvacua20

time (log scale)

energy density 
(log scale)

cosmological 
constant

dark matter

radiation



Theoretical side

• Quintessence (potential driven)
Lots of models …

(like an inflation zoo …)

equation of state parameter is

c.f. cosmological constant; w = -1

k-essence

would be smaller than -1 .. (violation of energy condition?)



Theoretical side

• Quintessence (potential driven)

Lots of models …

(like an inflation zoo …)

Basically, two types of quintessence model 

Thawing model Freezing model (tracker)

See, e.g., Caldwell and Linder (2005), …

e.g.,

starts slow-rolling (thawing)

around the present time 

e.g.,

fast rolling àslow rolling (freezing) 

motivated by SUGRA, …



Theoretical side

• Quintessence (potential driven)

Evolution of equation of state

Freezing model 3

FIG. 1: Evolution of w(a) for inverse power-law potentials: V = M4(M/φ)α. The upper plot corresponds to the α = 1 case
and the lower one corresponds to the α = 1/4 case. The solid (black) lines denote the numerical result, the dashed (blue) lines
denote the second order solution w2(a) given by Eq. (9), and the dotted lines denote the first order solution wws(a) Eq. (10).

we find, to all orders in ρφ(0)
/ρB or in Ωφ,

w(a) = w(0) + δw = w(0) +
(1− w2

(0))w(0)

1− 2w(0) + 4w2
(0)

Ωφ0

1− Ωφ0
a−3w(0) −

(1 − w2
(0))w(0)

1− 3w(0) + 12w2
(0)

(

Ωφ0

1− Ωφ0

)2

a−6w(0) + . . .

= w(0) +
∞
∑

n=1

(−1)n−1w(0)(1− w2
(0))

2n(n+ 1)w2
(0) − (n+ 1)w(0) + 1

(

Ωφ0

1− Ωφ0

)n

a−3nw(0) ,

= w(0) +
∞
∑

n=1

(−1)n−1w(0)(1− w2
(0))

2n(n+ 1)w2
(0) − (n+ 1)w(0) + 1

(

Ωφ(a)

1− Ωφ(a)

)n

, (8)

= w(0) +
(1− w2

(0))w(0)

1− 2w(0) + 4w2
(0)

Ωφ(a) +
(1− w2

(0))w
2
(0)(8w(0) − 1)

(1− 2w(0) + 4w2
(0))(1− 3w(0) + 12w2

(0))
Ωφ(a)

2

+
2(1− w2

(0))w
3
(0)(4w(0) − 1)(18w(0) + 1)

(1− 2w(0) + 4w2
(0))(1− 3w(0) + 12w2

(0))(1 − 4w(0) + 24w2
(0))

Ωφ(a)
3 + . . .

Eq. (8) is our main result.1 In the last equation, we have also expanded in terms of Ωφ(a) using (Ωφ(a)/(1−Ωφ(a)))n =
Ωφ(a)n(

∑

∞

m=0 Ωφ(a)m)n. Up to the second order in Ωφ, the solution becomes

w2(a) = w(0) +
(1− w2

(0))w(0)

1− 2w(0) + 4w2
(0)

Ωφ(a) +
(1− w2

(0))w
2
(0)(8w(0) − 1)

(1− 2w(0) + 4w2
(0))(1 − 3w(0) + 12w2

(0))
Ωφ(a)

2. (9)

Note that w(a) = −1 if w(0) = −1 and hence the cosmological constant is contained in our w(a). This w(a) (or w2(a))
agrees with the solution found in [8] (their Eq. (33)) up to the first order in Ωφ:

wws(a) = w(0) +
(1− w2

(0))w(0)

1− 2w(0) + 4w2
(0)

Ωφ(a). (10)

1 The infinite series in Eq. (8) can be written in terms of the hypergeometric functions.

n=1

early time present

n=1/4

Chiba (2010)

9

FIG. 4: w(a) for (a) the axion-like potential, V = M4[1 − cosφ], for (b) the logarithmic potential, V = M4 log φ, and for
(c) the quadratic potential, V = m2φ2/2. The solid (black) curve is the numerical solution, the dotted (blue) curve gives our
approximation, and the dashed (red) curve gives the approximation in [7].

(c) quadratic potential [14]:

V (φ) =
1

2
m2φ2, (44)

where M , f and m are constants. The first example is considered in [7], and the second example corresponds to the
potential without maximum/minimum, and the third example corresponds to the concave potential V ′′ > 0 so that
K < 1. We fix Ωφ0 = 0.74 and take f = 1 in the reduced Planck units and choose φi so that w0 ≃ −0.9. The results
are shown in Fig. 4.
For all cases, we find fairly good agreement with the numerical solutions: For case (a), the relative error (the

difference between our approximation and the numerical solution), |δw/w|, is less than 0.3% while it is less than 0.1%
for the approximation by [7]. For case (b), |δw/w| ! 0.3% and for case (c) it is less than 0.7%. Note that the potential
does not have a maximum for the latter two cases and the approximation of [7] is no longer available. To check the
slow-roll conditions Eq. (37) and Eq. (38), we compute Γ, V ′′/V at φi: Γ = 1.33, 0.77, 0.50; |V ′′/V | = 0.31, 0.28, 0.22,
respectively.3

B. Comparison with Other Parametrizations

Finally we compare our parametrization with other parametrizations of w(a).
The most frequently used functional form is the linear approximation of w(a) at a = 1, the so-called Chevallier-

Polarski-Linder parameterization, wlinear(a), Eq. (1) [6].
Another parametrization of w(a) closely related our approach is that by Crittenden et al.[3]. Instead of expanding

the potential, they expanded the slow-roll parameter around φ0 in linear order:

κ(φ) =
V ′

(1 + β)V
= κ0 + κ1(φ− φ0). (45)

Resulting w, denoted as wcmp(a), is written as [3]

1 + wcmp(a) =
1

3
κ2
0Ω

−2κ1/3
φ0 a−2κ1F (a)−(4κ1+6)/3

= (1 + w0)Ω
−(2κ1+3)/3
φ0 a−2κ1F (a)−(4κ1+6)/3, (46)

3 It is to be noted that the slow-roll conditions Eq. (37) and Eq. (38) are required for the consistency of the solution Eq. (31) and define
the range of validity of the solution; otherwise the expansion of the potential Eq. (18) and |1+w| ≪ 1 cannot be trusted. However, this
does not imply that Eq. (31) cannot be used for |V ′′/V | ≫ 1 (or K ≫ 1), but rather simply that we cannot trust such an extrapolation.
Interestingly, for axion case (and other hilltop quintessence model), it is shown that approximation Eq. (31) with K evaluated at the
maximum of the potential agrees excellently with the numerical solution even for K = 4 [7].

Thawing model 

early time present

Chiba (2009)



Theoretical side

• Quintessence (potential driven)

Evolution of equation of state

Freezing modelThawing model 
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The Limits of Quintessence

R. R. Caldwell
Department of Physics & Astronomy, Dartmouth College, Hanover, NH 03755

Eric V. Linder
Physics Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720

(Dated: October 29, 2018)

We present evidence that the simplest particle-physics scalar-field models of dynamical dark en-
ergy can be separated into distinct behaviors based on the acceleration or deceleration of the field as
it evolves down its potential towards a zero minimum. We show that these models occupy narrow
regions in the phase-plane of w and w′, the dark energy equation-of-state and its time-derivative
in units of the Hubble time. Restricting an energy scale of the dark energy microphysics limits
how closely a scalar field can resemble a cosmological constant. These results, indicating a desired
measurement resolution of order σ(w′) ≈ (1 + w), define firm targets for observational tests of the
physics of dark energy.

Observations and experiments at the close of the
20th century have transformed our understanding of the
physics of the Universe. A consistent picture has emerged
indicating that nearly three-quarters of the cosmos is
made of “dark energy” — some sort of gravitationally
repulsive material responsible for the accelerated expan-
sion of the Universe (for reviews see [1, 2, 3]). Proposals
for the dark energy include Einstein’s cosmological con-
stant (Λ), or a dynamical field such as quintessence. Here
we show how scalar field dynamics separates into distinct
behaviors which, through future cosmological measure-
ments, can reveal the nature of the new physics acceler-
ating our universe.

Einstein’s cosmological constant (Λ) is attributed to
the quantum zero-point energy of the particle physics
vacuum, with a constant energy density ρ, pressure p
and an equation-of-state w ≡ p/ρ = −1. In contrast,
quintessence is a proposed time-varying, inhomogeneous
field with a spatially-averaged equation-of-state w > −1
[4, 5, 6, 7, 8]. The simplest physical model consists of
a scalar field, slowly rolling in a potential characterized
by an extremely low mass. (This is similar to inflation,
the period of accelerated expansion in the early universe,
but at an energy scale many orders of magnitude lower.)
Since a scalar field evolving in a very shallow potential
may be indistinguishable from a Λ, the task of elucidat-
ing the physics of dark energy becomes difficult if ob-
servations continue to find that w is close to −1, e.g.
[9, 10, 11]. In this letter, we examine the likely behav-
ior of scalar fields and characterize them into two distinct
classes, based on their evolution in the w−w′ phase space.
These results should help define targets for observational
and experimental tests of the physics of dark energy.

Our approach is a new take on a familiar system, the
scalar field. By emphasizing the dynamics, we discover
restricted regions of the trajectories of canonical scalar
field models in “position” and “velocity” — the value
of the equation-of-state ratio w and its time variation
w′. While there is a myriad of scalar field models mo-

tivated by particle physics beyond the standard model,
this treatment allows a broad, model-independent assess-
ment of a quintessence scalar field slowly relaxing in a
potential.

The physics is straightforward: the field φ will seek to
roll towards the minimum of its potential V , according
to the Klein-Gordon equation φ̈ + 3Hφ̇ = −dV/dφ. The
rate of evolution is driven by the slope of the potential
and damped by the cosmic expansion through the Hubble

FIG. 1: The w − w′ phase space occupied by thawing and
freezing fields is indicated by the shaded regions. No strong
constraints on this range of dark energy properties exist at
present. The fading at the top of the freezing region indicates
the approximate nature of this boundary. Freezing models
start above this line, but pass below it by a red shift z ∼ 1.
The short-dashed line shows the boundary between field evo-
lution accelerating and decelerating down the potential. Fu-
ture cosmological observations will aim to discriminate be-
tween these two fundamental scenarios.
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Caldwell and Linder (2005)

To discriminate these models,
It should be important to observe
not only equation of state but also
its time variation ! 



Theoretical side

• Massive gravity
Historically, constructing consistent massive gravity has been suffering from
``ghost” (pathological d. o. f.) problem.

Fierz-Pauli theory (1939)

Massive graviton
without ghost
but at linear order 

perturbation
around Minkowski background

nonlinear theory?

Boulware,Deser (1972)

appear ghost d. o. f.

FP theory in massless limit 
does not coincide with GR..
non-linear term should be necessary. van Dam , Veltman (1970) , Zakharov (1970)
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New Cosmological Solutions in Massive Gravity

Tsutomu Kobayashi∗

Department of Physics, Rikkyo University, Toshima, Tokyo 175-8501, Japan

Masaru Siino,† Masahide Yamaguchi,‡ and Daisuke Yoshida§

Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan

We find new, simple cosmological solutions with flat, open, and closed spatial geometries, contrary
to the previous wisdom that only the open model is allowed. The metric and the Stückelberg fields
are given explicitly, showing nontrivial configurations of the Stückelberg in the usual Friedmann-
Lemâıtre-Robertson-Walker coordinates. The solutions exhibit self-acceleration, while being free
from ghost instabilities. Our solutions can accommodate inhomogeneous dust collapse represented
by the Lemâıtre-Tolman-Bondi metric as well. Thus, our results can be used not only to describe
homogeneous and isotropic cosmology but also to study gravitational collapse in massive gravity.

It is very intriguing to explore whether or not the
graviton can have a mass. The first attempt to add a
mass term to the gravity action was made by Fierz and
Pauli [1], who considered the quadratic action for the
graviton hµν in flat space with the mass term

m2
(

hµνh
µν − h2

)

. (1)

The linear theory with the Fierz-Pauli mass term is
ghost-free. However, the theory does not reproduce gen-
eral relativity in the massless limit m → 0. The extra
three degrees of freedom in a massive spin 2 survive even
in this limit, and therefore the prediction for light bend-
ing is away from that of general relativity, which clearly
contradicts solar-system tests. This is called the vDVZ
discontinuity [2].
As pointed out by Vainshtein [3], the discontinuity

can in fact be cured by going beyond the linear the-
ory. Massive gravity has a new length scale called the
Vainshtein radius, below which the nonlinearities of the
theory come in and the effect of the extra degrees of free-
dom is screened safely. The Vainshtein radius becomes
larger as m gets smaller, and thereby a smooth massless
limit is attained.
However, the very nonlinearities turned out to cause

another trouble. Boulware and Deser argued that there
appears a sixth scalar degree of freedom at nonlinear or-
der, which has a wrong sign kinetic term, i.e., the sixth
mode is a ghost [4]. The ghost issue was emphasized in
the effective field theory approach in Ref. [5]. The pres-
ence of the Boulware-Deser (BD) ghost has hindered us
from constructing a consistent theory of massive gravity.
Recently, a theoretical breakthrough in this field has

been made. Adding higher-order self-interaction terms
and tuning appropriately their coefficients, de Rham
and collaborators successfully eliminated the dangerous
scalar mode from the theory in the decoupling limit [6, 7].
Then, Hassan and Rosen established a complete proof
that the theory does not suffer from the BD ghost insta-
bility to all orders in perturbations and away from the
decoupling limit [8]. Thus, there certainly exists a non-

linear theory of massive gravity that is free of the BD
ghost.

In addition to the theoretical interests described above,
the mystery of the accelerated expansion of the Uni-
verse [9] motivates massive gravity theories as a possi-
ble alternative to dark energy. Since the attractive force
mediated by a massive graviton is Yukawa-suppressed by
a factor e−mr, massive gravity theories with m ∼ H0

(the present Hubble rate) could help if one were to avoid
dark energy. Indeed, the DGP model [10], a concrete
realization of massive gravity in the context of extra di-
mensions, admits a self-accelerating solution without the
need of dark energy [11].

Then, one may wonder whether or not the massive
gravity theory developed by de Rham and collabora-
tors [6, 7] can admit flat Friedmann-Lemâıtre-Robertson-
Walker (FLRW) cosmology. Starting from the usual
FLRW metric ansatz, it has been shown that a spatially
flat solution is prohibited in the above massive gravity
theory [12]. Though the same argument applies to the
closed model as well, this interesting fact does not hold
true for the open model, and indeed the open FLRW
solution has been obtained in Ref. [13]. The conclusion,
however, depends upon the form of the Stückelberg fields
one chooses. In other words, one can start from a non-
standard form of the cosmological metric in the unitary
gauge, and then move to the usual FLRW coordinates
with a nontrivial form of the Stückelberg fields, which
would lead one to different conclusions.

In this Letter, we show that flat, closed, and open cos-
mological solutions can indeed be realized even in mas-
sive gravity, starting from a general Painlevé-Gullstrand
(PG) metric [14, 15] in the unitary gauge. The key
trick used is that the FLRW metric can be recast in
a (less familiar) PG form [16]. Our new solutions also
include a spherical, inhomogeneous dust collapse model
described by the Lemâıtre-Tolman-Bondi (LTB) solution
represented in the PG-type coordinates. Thus, our so-
lutions can accommodate not only the flat cosmological



Theoretical side

• Massive gravity
Historically, constructing consistent massive gravity has been suffering from
``ghost” (pathological d. o. f.) problem.

de Rham, Gabadadze, Tolley (2010)

2

model1 but also gravitational collapse solutions. Many
other interesting solutions expressed in the PG coordi-
nates in general relativity are also solutions to massive
gravity.
The nonlinear massive gravity theory we consider is

described by the action [6, 7]

S =
M2

Pl

2

∫

d4x
√
−g

(

R+m2U
)

+ Sm, (2)

where R is the Einstein-Hilbert term and U is the poten-
tial for the graviton,

U := U2 + α3U3 + α4U4, (3)

with two free parameters α3 and α4, in addition to the
graviton mass m. Each term is defined as

U2 := [K]2 − [K2], (4)

U3 := [K]3 − 3[K][K2] + 2[K3], (5)

U4 := [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4],(6)

where

K ν
µ := δ ν

µ − (
√

g−1Σ) ν
µ , (7)

and rectangular brackets stand for traces. The tensor
Σµν is written in terms of four Stückelberg fields as

Σµν = ∂µφ
a∂νφ

bηab, ηab = diag(−1, 1, 1, 1). (8)

Sm denotes the action of matter which is minimally cou-
pled to gravity.
The equations of motion derived from the action are

of the form

M2
Pl

(

Gµν +m2Xµν

)

= Tµν , (9)

where Xµν represents the contribution from U due to the
graviton mass and Tµν is the matter energy-momentum
tensor. Here it should be noted that the effective energy
momentum tensor Xµν from U is determined only by
algebraic manipulation of the inverse metric matrix g−1

in K ν
µ defined by Eq. (7).

In this Letter, we work in a one-parameter family of
the above theory, where α3 and α4 are given by

α3 =
1

3
(α − 1), α4 =

1

12

(

α2 − α+ 1
)

. (10)

This parameter choice (made also in Ref. [17]) enables us
to find new solutions in massive gravity. In addition, this
choice is useful for avoiding potential ghost instabilities

1 Though inflation does not necessarily predict an exactly flat uni-
verse, such a solution is useful for describing our Universe and
investigating the cosmological perturbations.

suggested in Ref. [18], as would-be dangerous fluctuation
modes become nondynamical from the beginning.
Our metric ansatz is taken to be the general PG

form [14]:

ds2 = −V 2(t, r)dt2 + U2(t, r)
(

dr + ϵ
√

f(t, r)dt
)2

+W 2(t, r)r2dΩ2, (11)

where ϵ = ±1. We write the Stückelberg fields in the
unitary gauge as

φ0 = t, φi = rn̂i, (12)

where n̂ is the unit radial vector, n̂ =
(cosϕ sin θ, sinϕ sin θ, cos θ).
In the absence of matter, the de Sitter solution has

been constructed in the coordinate system of (11) [17]:

ds2 = −κ2dt2 + α̃2

(

dr ± H̃rdt
)2

+ α̃2r2dΩ2, (13)

where H̃ = κm/
√
3α, α̃ := α/(α+1), and κ is an integra-

tion constant. This solution is different from the de Sitter
solution found by Koyama, Niz, and Tasinato [19, 20]. In
fact, the metric (13) solves the equations of motion only
in the special case where the parameters are given by
Eq. (10).
We are going to generalize the work of Ref. [17] to

accommodate a wider class of dynamical solutions in-
cluding cosmological ones. In light of the de Sitter solu-
tion (13), we concentrate on the case satisfying

W (t, r) = α̃ :=
α

α+ 1
. (14)

The key observation here is that for any metric of the
form (11) with (14) and for the Stückelberg (12), the
tensor Xµν reduces to the effective cosmological constant
term:

Xµν =
1

α
gµν . (15)

This happens only for the special parameter choice (10).
Consequently, any PG-type solution in general relativ-
ity (with a cosmological constant) is also a solution to
massive gravity. Equation (15) implies that the identity
M2

Pl
m2∇µXµν = ∇µT µν −M2

Pl
∇µGµν = 0 is automati-

cally satisfied. Our finding thus extends the observations
made in Refs. [17, 21] to the general PG metric.
Let us demonstrate how cosmological solutions are ob-

tained using the above fact. The FLRW metric can be
rewritten in a general PG form as [15, 22]

ds2 = −κ2dt2 +
α̃2

1−Kα̃2r2/a2(t)

(

dr −
ȧ

a
rdt

)2

+α̃2r2dΩ2, (16)

non-linear massive gravity
without ghost 

2

model1 but also gravitational collapse solutions. Many
other interesting solutions expressed in the PG coordi-
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tion constant. This solution is different from the de Sitter
solution found by Koyama, Niz, and Tasinato [19, 20]. In
fact, the metric (13) solves the equations of motion only
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We are going to generalize the work of Ref. [17] to

accommodate a wider class of dynamical solutions in-
cluding cosmological ones. In light of the de Sitter solu-
tion (13), we concentrate on the case satisfying

W (t, r) = α̃ :=
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The key observation here is that for any metric of the
form (11) with (14) and for the Stückelberg (12), the
tensor Xµν reduces to the effective cosmological constant
term:

Xµν =
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α
gµν . (15)

This happens only for the special parameter choice (10).
Consequently, any PG-type solution in general relativ-
ity (with a cosmological constant) is also a solution to
massive gravity. Equation (15) implies that the identity
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Pl
∇µGµν = 0 is automati-

cally satisfied. Our finding thus extends the observations
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other interesting solutions expressed in the PG coordi-
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Sm denotes the action of matter which is minimally cou-
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of the form
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= Tµν , (9)

where Xµν represents the contribution from U due to the
graviton mass and Tµν is the matter energy-momentum
tensor. Here it should be noted that the effective energy
momentum tensor Xµν from U is determined only by
algebraic manipulation of the inverse metric matrix g−1

in K ν
µ defined by Eq. (7).
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the above theory, where α3 and α4 are given by

α3 =
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3
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This parameter choice (made also in Ref. [17]) enables us
to find new solutions in massive gravity. In addition, this
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1 Though inflation does not necessarily predict an exactly flat uni-
verse, such a solution is useful for describing our Universe and
investigating the cosmological perturbations.
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It might be difficult to obtain

stable cosmological solution 

in this theory.. 

need some fine-tuning …

D’Amico, et al. (2011)



Theoretical side

• Massive gravity

There are lots of works.

• Not so many about obtaining cosmological observational constraints
(related with dark energy) on massive gravity theory …

• Many attempts to construct consistent massive gravity theory

• Graviton mass bounds from other experiments, 
such as GW experiments, … 

(In my ``biased” opinion, )

De Fellice and Mukohyama (2016)

4

to θ = −3.828+0.875
−0.962 at 68.27% C.L.7

FIG. 2. Distribution of the parameter θ = µ2/H2
0 near θ ≈

−3.828, according to the likelihood function defined via the
χ2
MTMG. We have given flat prior to the parameter θ, in the

range −10 ≤ θ ≤ 0. Smaller negative values for θ lead to a
bad fit to the data, whereas positive values of θ, either have
a worse fit, or lead to anti-correlations to the ISW-effect, or,
for even larger values, lead Y to reach the point Y∞ = 2/θ,
at which Ḡeff switches sign and the last term in (5) diverges.
The blue line indicates the value of the maximum likelihood
point, i.e. the minimum of χ2

MTMG.

Besides, we numerically find that, for MTMG,
χ2
MTMG(θ) possesses local minima as χ2

MTMG(θmin ≈
−3.828) ≡ χ̄2

MTMG ≈ 13.259 whereas, for GR, we have
χ2
GR = χ2

MTMG(θ = 0) ≈ 24.51.
Following the Akaike Information Criterion

(AIC) [25] 8, used to compare the relative likeli-
hood of two models, we find that in this case GR is
exp[(χ̄2

MTMG + 2nfit − χ2
GR)/2] ≈ 1 × 10−2 as probable

as MTMG, where nfit = 1 is the number of extra fitting
parameter(s) in (the subhorizon limit of) MTMG. This
result is already interesting in terms of model building,
as it states that the data lead to a larger likelihood
for MTMG compared to the Λ-CDM. Moreover, from
the theoretical point of view, the RSD measurements

7 We find that, for the alllowed best-fit (θ ≈ −3.828), σ8(0) ≈

0.795.
8 In the absence of an established fundamental principle to deter-
mine the prior probability distribution in the space of theories
including gravity, we avoid detailed Baysian analysis.

do set the value of the graviton mass squared to be
µ2 = θH2

0 = −3.828+0.875
−0.962 H

2
0 . This is consistent with

the bound on the graviton mass set by the LIGO col-
laboration [19], which applies to µ2 since it is the mass
squared entering the dispersion relation of gravitational
waves. Also, this value of the graviton mass squared
means that tensor modes at the present horizon scale or
longer scales may grow now and in the future. Although
such a slow growth is at present difficult to observe, it is
certainly interesting to look for its observable signatures
in the future. It should be noted that for the best-fit
value of θ, we find that |µ| ≃ H0. This implies that in
order to fit the data we do not need to add any new
tuning/hierarchy among the physical scales in addition
to the scale of the acceleration.

Finally, in Fig. 3, we plot the data and the GR fit
(red dashed line) together with the best MTMG fit
(thick black line), whereas in Fig. 4 we show the evolu-
tion of the effective gravitational constant for the per-
turbations Ḡeff/GN , as a function of redshift and of
1/Y = ρtot/ρtot,0, where ρtot = ρm + ρΛ is the total
energy density and ρtot,0 is its present value.

FIG. 3. Fit to the data for GR (red dashed line), and MTMG
(thick black line). For the source of each data point, see Table
1.

Fig. 4 shows deviation of MTMG from GR, |Ḡeff/GN−
1| > 0.01, only for z < 5.49, which translates to ρtot <
85ρtot,0. This observation, combined with the fact that
in MTMG there is no scalar/vector degree of freedom to
screen [18], indicates that we will recover GR when the
matter density of the environment, ρenv, is much higher
than ρtot,0. For example, inside the galaxy and the so-
lar system, ρenv is high enough to suppress any devia-
tions from GR. On the other hand, as for the growth of
LSS at low redshift, corresponding to low ρenv, Figs. 3
and 4 clearly show deviations of MTMG from GR, which
greatly help reconciling the RSD data to the CMB data.

De Felice and Mukohyama (2016), Naruko, Kimura, Yamauchi (2018), …

see, e.g., de Rham et al. (2016)

Roughly, 

(                             )



Theoretical side

• Scalar tensor theory also in Nishizawa-san’s talk

è non-minimally coupled scalar field

Is there any guiding principles?

• from the first principle (string theory, or …?) (top-down)

• Based on some philosophy (respect some symmetry, stability condition, …)

è free from ghost instabilities !!

could also include the derivative coupling

In general, we can consider the Lagrangian
which has infinite terms with including higher order derivatives …   

Infinite possible theories ?



Theoretical side

• Horndeski theory
see, e.g.,  Kobayashi, 1901.07183 (review paper)

Horndeski theory and beyond 6

The generalized Galileon [19] is a further generalization of the covariant Galileon [17,

18] retaining second-order field equations. More precisely, first one determines the most

general scalar-field theory on a fixed Minkowski background which yields a second-order

field equation, assuming that the Lagrangian contains at most second derivatives of φ

and is polynomial in ∂µ∂νφ. One then promotes the theory to a covariant one in the same

way as above by adding appropriate (unique) counter terms so that the field equations
are of second order both for φ and the metric. The generalized Galileon can thus be

obtained. It should be noted that this procedure can be done in arbitrary spacetime

dimensions. In four dimensions, the Lagrangian for the generalized Galileon is given

by [19]

L = G2(φ, X)−G3(φ, X)✷φ+G4(φ, X)R +G4X

[

(✷φ)2 − φµνφµν

]

+ G5(φ, X)Gµνφµν −
G5X

6

[

(✷φ)3 − 3✷φφµνφµν + 2φµνφ
νλφµ

λ

]

, (8)

where G2, G3, G4, and G5 are arbitrary functions of φ and X . Here and hereafter we

use the notation fX := ∂f/∂X and fφ := ∂f/∂φ for a function f of φ and X .
The generalized Galileon (8) is now known as the Horndeski theory [20], i.e., the

most general scalar-tensor theory having second-order field equations in four dimensions.

However, Horndeski determined the theory starting from the different assumptions

than those made for deriving the generalized Galileon, and the original form of the

Lagrangian [20] looks very different from (8):

L = δαβγµνσ

[

κ1φ
µ
αR

νσ
βγ +

2

3
κ1Xφ

µ
αφ

ν
βφ

σ
γ + κ3φαφ

µR νσ
βγ + 2κ3Xφαφ

µφν
βφ

σ
γ

]

+ δαβµν
[

(F + 2W )R µν
αβ + 2FXφ

µ
αφ

ν
β + 2κ8φαφ

µφν
β

]

− 6 (Fφ + 2Wφ −Xκ8)✷φ+ κ9. (9)

Here, δα1α2...αn

µ1µ2...µn
:= n!δ[α1

µ1
δα2

µ2
...δαn]

µn
is the generalized Kronecker delta, and κ1, κ3, κ8, and

κ9 are arbitrary functions of φ and X . We have another function F = F (φ, X), but
this must satisfy FX = 2 (κ3 + 2Xκ3X − κ1φ) and hence is not independent. We also

have a function of φ, W = W (φ), which can be absorbed into the redefinition of F :

Fold + 2W → Fnew. Thus, we have the same number of free functions of φ and X as in

the generalized Galileon theory. Nevertheless, the equivalence between the two theories

is apparently far from trivial.

In [21] it was shown that the generalized Galileon can be mapped to the Horndeski
theory by identifying Gi(φ, X) as

G2 = κ9 + 4X

∫ X

dX ′ (κ8φ − 2κ3φφ) , (10)

G3 = 6Fφ − 2Xκ8 − 8Xκ3φ + 2

∫ X

dX ′(κ8 − 2κ3φ), (11)

G4 = 2F − 4Xκ3, (12)

G5 = −4κ1, (13)
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Horndeski theory and beyond 5

dimensions) having these properties is given by [16]

L = c1φ+ c2X − c3X✷φ

+
c4
2

{

X
[

(✷φ)2 − ∂µ∂νφ∂
µ∂νφ

]

+✷φ∂µφ∂νφ∂µ∂νφ− ∂µX∂
µX
}

+
c5
15

{

−2X
[

(✷φ)3 − 3✷φ∂µ∂νφ∂
µ∂νφ+ 2∂µ∂νφ∂

ν∂λφ∂λ∂
µφ
]

+ 3∂µφ∂µX
[

(✷φ)2 − ∂µ∂νφ∂
µ∂νφ

]

+ 6✷φ∂µX∂
µX − 6∂µ∂νφ∂µX∂νX

}

, (4)

where X := −ηµν∂µφ∂νφ/2 and c1, · · · , c5 are constants. This can be written in a more

compact form by making use of integration by parts as

L = c1φ+ c2X − c3X✷φ+ c4X
[

(✷φ)2 − ∂µ∂νφ∂
µ∂νφ

]

−
c5
3
X
[

(✷φ)3 − 3✷φ∂µ∂νφ∂
µ∂νφ+ 2∂µ∂νφ∂

ν∂λφ∂λ∂
µφ
]

. (5)

Note that the field equation is of second order even though the Lagrangian depends on

the second derivatives of the field.

The Lagrangian (5) describes a scalar-field theory on a fixed Minkowski background.

One can introduce gravity and consider a covariant version of (5) by promoting ηµν to

gµν and ∂µ to ∇µ. However, since covariant derivatives do not commute, the naive
covariantization leads to higher derivatives in the field equations, which would be

dangerous. For example, one would have derivatives of the Ricci tensor Rµν ,

c4X∇µ [∇µ∇ν∇νφ−∇ν∇µ∇νφ] = −c4X∇µ (Rµν∇νφ) , (6)

in the scalar-field equation of motion. Such higher derivative terms can be canceled

by adding curvature-dependent terms appropriately to Eq. (5). The covariant version

of (5) that leads to second-order field equations both for the scalar field and the metric

is given by [17]

L = c1φ+ c2X − c3X✷φ+
c4
2
X2R + c4X

[

(✷φ)2 − φµνφµν

]

+ c5X
2Gµνφµν −

c5
3
X
[

(✷φ)3 − 3✷φφµνφµν + 2φµνφ
νλφµ

λ

]

, (7)

where R is the Ricci tensor, Gµν is the Einstein tensor, φµ := ∇µφ, φµν := ∇µ∇νφ

and now X := −gµνφµφν/2. Here, the fourth term in the first line and the first term

in the second line are the “counter terms” introduced to remove higher derivatives

in the field equations. The counter terms are unique. This theory is called the
covariant Galileon. Since the field equations derived from the Lagrangian (7) involve

first derivatives of φ, the Galilean shift symmetry is broken in the covariant Galileon

theory. Only the second property of the Galileon, i.e., the second-order nature of the

field equations, is maintained in the course of covariantization. The covariant Galileon

theory (7) is formulated in four spacetime dimensions, but it can be extended to arbitrary

dimensions [18].
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The most general scalar-tensor theory 
having second-order field equations in 4D

are arbitrary functions of       and 

Horndeski theory and beyond 6

The generalized Galileon [19] is a further generalization of the covariant Galileon [17,

18] retaining second-order field equations. More precisely, first one determines the most

general scalar-field theory on a fixed Minkowski background which yields a second-order

field equation, assuming that the Lagrangian contains at most second derivatives of φ

and is polynomial in ∂µ∂νφ. One then promotes the theory to a covariant one in the same

way as above by adding appropriate (unique) counter terms so that the field equations
are of second order both for φ and the metric. The generalized Galileon can thus be

obtained. It should be noted that this procedure can be done in arbitrary spacetime

dimensions. In four dimensions, the Lagrangian for the generalized Galileon is given

by [19]

L = G2(φ, X)−G3(φ, X)✷φ+G4(φ, X)R +G4X

[

(✷φ)2 − φµνφµν

]

+ G5(φ, X)Gµνφµν −
G5X

6

[

(✷φ)3 − 3✷φφµνφµν + 2φµνφ
νλφµ

λ

]

, (8)

where G2, G3, G4, and G5 are arbitrary functions of φ and X . Here and hereafter we

use the notation fX := ∂f/∂X and fφ := ∂f/∂φ for a function f of φ and X .
The generalized Galileon (8) is now known as the Horndeski theory [20], i.e., the

most general scalar-tensor theory having second-order field equations in four dimensions.

However, Horndeski determined the theory starting from the different assumptions

than those made for deriving the generalized Galileon, and the original form of the

Lagrangian [20] looks very different from (8):

L = δαβγµνσ

[

κ1φ
µ
αR

νσ
βγ +

2

3
κ1Xφ

µ
αφ

ν
βφ

σ
γ + κ3φαφ

µR νσ
βγ + 2κ3Xφαφ

µφν
βφ

σ
γ

]

+ δαβµν
[

(F + 2W )R µν
αβ + 2FXφ

µ
αφ

ν
β + 2κ8φαφ

µφν
β

]

− 6 (Fφ + 2Wφ −Xκ8)✷φ+ κ9. (9)

Here, δα1α2...αn

µ1µ2...µn
:= n!δ[α1

µ1
δα2

µ2
...δαn]

µn
is the generalized Kronecker delta, and κ1, κ3, κ8, and

κ9 are arbitrary functions of φ and X . We have another function F = F (φ, X), but
this must satisfy FX = 2 (κ3 + 2Xκ3X − κ1φ) and hence is not independent. We also

have a function of φ, W = W (φ), which can be absorbed into the redefinition of F :

Fold + 2W → Fnew. Thus, we have the same number of free functions of φ and X as in

the generalized Galileon theory. Nevertheless, the equivalence between the two theories

is apparently far from trivial.

In [21] it was shown that the generalized Galileon can be mapped to the Horndeski
theory by identifying Gi(φ, X) as

G2 = κ9 + 4X

∫ X

dX ′ (κ8φ − 2κ3φφ) , (10)

G3 = 6Fφ − 2Xκ8 − 8Xκ3φ + 2

∫ X

dX ′(κ8 − 2κ3φ), (11)

G4 = 2F − 4Xκ3, (12)

G5 = −4κ1, (13)
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free from ghost instabilities associated with the higher derivative terms 
could have extra d.o.f.



Theoretical side

• Horndeski theory
see, e.g.,  Kobayashi, 1901.07183 (review paper)
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theory by identifying Gi(φ, X) as
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Lagrangian;

Due to the existence of non-minimal coupling between scalar d. o. f. and gravity

• time varying gravitational constant
• effect on the propagation of gravitational waves, … (in Nishizawa-san’s talk)  
• BH solutions?

In some sense, can be tested not only by cosmological observations
but also by local gravity test, GW experiments, and more.. 
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• Beyond ?
see, e.g.,  Kobayashi, 1901.07183 (review paper)

Horndeski theory: The most general scalar-tensor theory 
having second-order field equations in 4D

little bit strong?



Theoretical side

• Beyond ?
see, e.g.,  Kobayashi, 1901.07183 (review paper)

Horndeski theory: The most general scalar-tensor theory 
having second-order field equations in 4D

little bit strong?

Healthy extension

Degenerate Higher-Order Scalar-Tensor theories (DHOST theories)
see, e.g.,  Langlois, 1811.06271 (review paper)

Horndeski theory and beyond 25

4.1. Degenerate higher-order scalar-tensor theories

The first example of degenerate higher-order scalar-tensor (DHOST) theories beyond
Horndeski [150] was obtained by performing a disformal transformation [151]

gµν → g̃µν = C(φ, X)gµν +D(φ, X)φµφν . (108)

This is a generalization of the familiar conformal transformation, g̃µν = C(φ)gµν . The

disformal transformation (108) is invertible if

C(C −XCX + 2X2DX) ≠ 0. (109)

Since the disformal transformation contains derivatives of φ, the theory transformed

from Horndeski has higher-order field equations. Nevertheless, it is a degenerate theory

with (2 + 1) degrees of freedom because an invertible field redefinition does not change

the number of physical degrees of freedom [152, 153, 154]. This example implies the
existence of a wider class of healthy scalar-tensor theories than the Horndeski class.

Degenerate higher-order scalar-tensor theories have been constructed and

investigated systematically in [147, 155, 156, 157, 158, 159]. Let us follow Ref. [147]

and consider the extension of Horndeski’s G4 Lagrangian given by

L = f(φ, X)R+
5
∑

I=1

AI(φ, X)LI , (110)

where

L1 = φµνφ
µν , L2 = (✷φ)2, L3 = ✷φφµφνφµν

L4 = φµφµαφ
ανφν , L5 = (φµφνφµν)

2. (111)

These five constituents exhaust all the possible quadratic terms in second derivatives

of φ, and the Horndeski theory is the special case with A2 = −A1 = fX and

A3 = A4 = A5 = 0. The scalar field (respectively, the metric) corresponds to φ

(respectively, q) in the previous mechanical toy model. By inspecting the structure
of the highest derivative terms in (110),¶ one finds that the degeneracy conditions are

given by three equations relating the six functions in the Lagrangian, leaving three

arbitrary functions (except for some special cases). The degenerate theories whose

Lagrangian is of the form (110) are called quadratic DHOST theories. Note that one

is free to add to (110) the Horndeski terms G2(φ, X)−G3(φ, X)✷φ, because these two

terms are nothing to do with the degeneracy conditions.
Quadratic DHOST theories are classified into several subclasses [147, 156, 157]. Of

¶ We require the degeneracy in any coordinate systems. It is argued in [160] that one can relax this
requirement and consider theories that are degenerate when restricted to the unitary gauge.
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With so-called ``degeneracy conditions”, pathological extra d. o. f. doesn’t appear.



Theoretical side

• Scalar-tensor theory

should affect gravitational law :

• time varying gravitational constant
• effect on the propagation of gravitational waves, … (in Nishizawa-san’s talk)  
• BH solutions?
• Fifth force?
• …

Of course, would give various effects in cosmology
è Various cosmological tests for scalar tensor theory!



Cosmological observations

to probe the dark energycurrent status and future prospects
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Remarkable progress of 
cosmological observations

NASA

SNe observations
M. Betoule et al.: Joint cosmological analysis of the SNLS and SDSS SNe Ia.

sample �coh
low-z 0.12
SDSS-II 0.11
SNLS 0.08
HST 0.11

Table 9. Values of �coh used in the cosmological fits. Those val-
ues correspond to the weighted mean per survey of the values
shown in Figure 7, except for HST sample for which we use the
average value of all samples. They do not depend on a specific
choice of cosmological model (see the discussion in §5.5).

redshift
0 0.5 1

co
h

σ

0

0.05

0.1

0.15

0.2

Fig. 7. Values of �coh determined for seven subsamples of the
Hubble residuals: low-z z < 0.03 and z > 0.03 (blue), SDSS
z < 0.2 and z > 0.2 (green), SNLS z < 0.5 and z > 0.5 (orange),
and HST (red).

may a↵ect our results including survey-dependent errors in es-
timating the measurement uncertainty, survey dependent errors
in calibration, and a redshift dependent tension in the SALT2
model which might arise because di↵erent redshifts sample dif-
ferent wavelength ranges of the model. In addition, the fit value
of �coh in the first redshift bin depends on the assumed value
of the peculiar velocity dispersion (here 150km · s�1) which is
somewhat uncertain.

We follow the approach of C11 which is to use one value of
�coh per survey. We consider the weighted mean per survey of
the values shown in Figure 7. Those values are listed in Table 9
and are consistent with previous analysis based on the SALT2
method (Conley et al. 2011; Campbell et al. 2013).

6. ⇤CDM constraints from SNe Ia alone

The SN Ia sample presented in this paper covers the redshift
range 0.01 < z < 1.2. This lever-arm is su�cient to provide
a stringent constraint on a single parameter driving the evolu-
tion of the expansion rate. In particular, in a flat universe with
a cosmological constant (hereafter ⇤CDM), SNe Ia alone pro-
vide an accurate measurement of the reduced matter density
⌦m. However, SNe alone can only measure ratios of distances,
which are independent of the value of the Hubble constant today
(H0 = 100h km s�1 Mpc�1). In this section we discuss ⇤CDM
parameter constraints from SNe Ia alone. We also detail the rel-
ative influence of each incremental change relative to the C11
analysis.
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Fig. 8. Top: Hubble diagram of the combined sample. The dis-
tance modulus redshift relation of the best-fit ⇤CDM cosmol-
ogy for a fixed H0 = 70 km s�1 Mpc�1 is shown as the black
line. Bottom: Residuals from the best-fit ⇤CDM cosmology as
a function of redshift. The weighted average of the residuals in
logarithmic redshift bins of width �z/z ⇠ 0.24 are shown as
black dots.

6.1. ⇤CDM fit of the Hubble diagram

Using the distance estimator given in Eq. (4), we fit a ⇤CDM
cosmology to supernovae measurements by minimizing the fol-
lowing function:

�2 = (µ̂ � µ⇤CDM(z;⌦m))†C�1(µ̂ � µ⇤CDM(z;⌦m)) (15)

with C the covariance matrix of µ̂ described in Sect. 5.5 and
µ⇤CDM(z;⌦m) = 5 log10(dL(z;⌦m)/10pc) computed for a fixed
fiducial value of H0 = 70 km s�1 Mpc�1,13 assuming an unper-
turbed Friedmann-Lemaître-Robertson-Walker geometry, which
is an acceptable approximation (Ben-Dayan et al. 2013). The
free parameters in the fit are ⌦m and the four nuisance param-
eters ↵, �, M1

B and �M from Eq. (4). The Hubble diagram for
the JLA sample and the ⇤CDM fit are shown in Fig. 8. We find
a best fit value for ⌦m of 0.295 ± 0.034. The fit parameters are
given in the first row of Table 10.

For consistency checks, we fit our full sample excluding sys-
tematic uncertainties and we fit subsamples labeled according to
the data included: SDSS+SNLS, lowz+SDSS and lowz+SNLS.
Confidence contours for ⌦m and the nuisance parameters ↵, �
and �M are given in Fig. 9 for the JLA and the lowz+SNLS
sample fits. The correlation between ⌦m and any of the nuisance
parameters is less than 10% for the JLA sample.

The ⇤CDM model is already well constrained by the SNLS
and low-z data thanks to their large redshift lever-arm. However,
the addition of the numerous and well-calibrated SDSS-II data
to the C11 sample is interesting in several respects. Most impor-
tantly, cross-calibrated accurately with the SNLS, the SDSS-II
data provide an alternative low-z anchor to the Hubble diagram,
with better understood systematic uncertainties. This redundant

13 This value is assumed purely for convenience and using another
value would not a↵ect the cosmological fit (beyond changing accord-
ingly the recovered value of M1

B).
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sample �coh
low-z 0.12
SDSS-II 0.11
SNLS 0.08
HST 0.11

Table 9. Values of �coh used in the cosmological fits. Those val-
ues correspond to the weighted mean per survey of the values
shown in Figure 7, except for HST sample for which we use the
average value of all samples. They do not depend on a specific
choice of cosmological model (see the discussion in §5.5).
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may a↵ect our results including survey-dependent errors in es-
timating the measurement uncertainty, survey dependent errors
in calibration, and a redshift dependent tension in the SALT2
model which might arise because di↵erent redshifts sample dif-
ferent wavelength ranges of the model. In addition, the fit value
of �coh in the first redshift bin depends on the assumed value
of the peculiar velocity dispersion (here 150km · s�1) which is
somewhat uncertain.

We follow the approach of C11 which is to use one value of
�coh per survey. We consider the weighted mean per survey of
the values shown in Figure 7. Those values are listed in Table 9
and are consistent with previous analysis based on the SALT2
method (Conley et al. 2011; Campbell et al. 2013).

6. ⇤CDM constraints from SNe Ia alone

The SN Ia sample presented in this paper covers the redshift
range 0.01 < z < 1.2. This lever-arm is su�cient to provide
a stringent constraint on a single parameter driving the evolu-
tion of the expansion rate. In particular, in a flat universe with
a cosmological constant (hereafter ⇤CDM), SNe Ia alone pro-
vide an accurate measurement of the reduced matter density
⌦m. However, SNe alone can only measure ratios of distances,
which are independent of the value of the Hubble constant today
(H0 = 100h km s�1 Mpc�1). In this section we discuss ⇤CDM
parameter constraints from SNe Ia alone. We also detail the rel-
ative influence of each incremental change relative to the C11
analysis.
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6.1. ⇤CDM fit of the Hubble diagram

Using the distance estimator given in Eq. (4), we fit a ⇤CDM
cosmology to supernovae measurements by minimizing the fol-
lowing function:

�2 = (µ̂ � µ⇤CDM(z;⌦m))†C�1(µ̂ � µ⇤CDM(z;⌦m)) (15)

with C the covariance matrix of µ̂ described in Sect. 5.5 and
µ⇤CDM(z;⌦m) = 5 log10(dL(z;⌦m)/10pc) computed for a fixed
fiducial value of H0 = 70 km s�1 Mpc�1,13 assuming an unper-
turbed Friedmann-Lemaître-Robertson-Walker geometry, which
is an acceptable approximation (Ben-Dayan et al. 2013). The
free parameters in the fit are ⌦m and the four nuisance param-
eters ↵, �, M1

B and �M from Eq. (4). The Hubble diagram for
the JLA sample and the ⇤CDM fit are shown in Fig. 8. We find
a best fit value for ⌦m of 0.295 ± 0.034. The fit parameters are
given in the first row of Table 10.

For consistency checks, we fit our full sample excluding sys-
tematic uncertainties and we fit subsamples labeled according to
the data included: SDSS+SNLS, lowz+SDSS and lowz+SNLS.
Confidence contours for ⌦m and the nuisance parameters ↵, �
and �M are given in Fig. 9 for the JLA and the lowz+SNLS
sample fits. The correlation between ⌦m and any of the nuisance
parameters is less than 10% for the JLA sample.

The ⇤CDM model is already well constrained by the SNLS
and low-z data thanks to their large redshift lever-arm. However,
the addition of the numerous and well-calibrated SDSS-II data
to the C11 sample is interesting in several respects. Most impor-
tantly, cross-calibrated accurately with the SNLS, the SDSS-II
data provide an alternative low-z anchor to the Hubble diagram,
with better understood systematic uncertainties. This redundant

13 This value is assumed purely for convenience and using another
value would not a↵ect the cosmological fit (beyond changing accord-
ingly the recovered value of M1
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of the peculiar velocity dispersion (here 150km · s�1) which is
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the values shown in Figure 7. Those values are listed in Table 9
and are consistent with previous analysis based on the SALT2
method (Conley et al. 2011; Campbell et al. 2013).

6. ⇤CDM constraints from SNe Ia alone

The SN Ia sample presented in this paper covers the redshift
range 0.01 < z < 1.2. This lever-arm is su�cient to provide
a stringent constraint on a single parameter driving the evolu-
tion of the expansion rate. In particular, in a flat universe with
a cosmological constant (hereafter ⇤CDM), SNe Ia alone pro-
vide an accurate measurement of the reduced matter density
⌦m. However, SNe alone can only measure ratios of distances,
which are independent of the value of the Hubble constant today
(H0 = 100h km s�1 Mpc�1). In this section we discuss ⇤CDM
parameter constraints from SNe Ia alone. We also detail the rel-
ative influence of each incremental change relative to the C11
analysis.
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fiducial value of H0 = 70 km s�1 Mpc�1,13 assuming an unper-
turbed Friedmann-Lemaître-Robertson-Walker geometry, which
is an acceptable approximation (Ben-Dayan et al. 2013). The
free parameters in the fit are ⌦m and the four nuisance param-
eters ↵, �, M1

B and �M from Eq. (4). The Hubble diagram for
the JLA sample and the ⇤CDM fit are shown in Fig. 8. We find
a best fit value for ⌦m of 0.295 ± 0.034. The fit parameters are
given in the first row of Table 10.

For consistency checks, we fit our full sample excluding sys-
tematic uncertainties and we fit subsamples labeled according to
the data included: SDSS+SNLS, lowz+SDSS and lowz+SNLS.
Confidence contours for ⌦m and the nuisance parameters ↵, �
and �M are given in Fig. 9 for the JLA and the lowz+SNLS
sample fits. The correlation between ⌦m and any of the nuisance
parameters is less than 10% for the JLA sample.

The ⇤CDM model is already well constrained by the SNLS
and low-z data thanks to their large redshift lever-arm. However,
the addition of the numerous and well-calibrated SDSS-II data
to the C11 sample is interesting in several respects. Most impor-
tantly, cross-calibrated accurately with the SNLS, the SDSS-II
data provide an alternative low-z anchor to the Hubble diagram,
with better understood systematic uncertainties. This redundant

13 This value is assumed purely for convenience and using another
value would not a↵ect the cosmological fit (beyond changing accord-
ingly the recovered value of M1
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The Limits of Quintessence

R. R. Caldwell
Department of Physics & Astronomy, Dartmouth College, Hanover, NH 03755

Eric V. Linder
Physics Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720

(Dated: October 29, 2018)

We present evidence that the simplest particle-physics scalar-field models of dynamical dark en-
ergy can be separated into distinct behaviors based on the acceleration or deceleration of the field as
it evolves down its potential towards a zero minimum. We show that these models occupy narrow
regions in the phase-plane of w and w′, the dark energy equation-of-state and its time-derivative
in units of the Hubble time. Restricting an energy scale of the dark energy microphysics limits
how closely a scalar field can resemble a cosmological constant. These results, indicating a desired
measurement resolution of order σ(w′) ≈ (1 + w), define firm targets for observational tests of the
physics of dark energy.

Observations and experiments at the close of the
20th century have transformed our understanding of the
physics of the Universe. A consistent picture has emerged
indicating that nearly three-quarters of the cosmos is
made of “dark energy” — some sort of gravitationally
repulsive material responsible for the accelerated expan-
sion of the Universe (for reviews see [1, 2, 3]). Proposals
for the dark energy include Einstein’s cosmological con-
stant (Λ), or a dynamical field such as quintessence. Here
we show how scalar field dynamics separates into distinct
behaviors which, through future cosmological measure-
ments, can reveal the nature of the new physics acceler-
ating our universe.

Einstein’s cosmological constant (Λ) is attributed to
the quantum zero-point energy of the particle physics
vacuum, with a constant energy density ρ, pressure p
and an equation-of-state w ≡ p/ρ = −1. In contrast,
quintessence is a proposed time-varying, inhomogeneous
field with a spatially-averaged equation-of-state w > −1
[4, 5, 6, 7, 8]. The simplest physical model consists of
a scalar field, slowly rolling in a potential characterized
by an extremely low mass. (This is similar to inflation,
the period of accelerated expansion in the early universe,
but at an energy scale many orders of magnitude lower.)
Since a scalar field evolving in a very shallow potential
may be indistinguishable from a Λ, the task of elucidat-
ing the physics of dark energy becomes difficult if ob-
servations continue to find that w is close to −1, e.g.
[9, 10, 11]. In this letter, we examine the likely behav-
ior of scalar fields and characterize them into two distinct
classes, based on their evolution in the w−w′ phase space.
These results should help define targets for observational
and experimental tests of the physics of dark energy.

Our approach is a new take on a familiar system, the
scalar field. By emphasizing the dynamics, we discover
restricted regions of the trajectories of canonical scalar
field models in “position” and “velocity” — the value
of the equation-of-state ratio w and its time variation
w′. While there is a myriad of scalar field models mo-

tivated by particle physics beyond the standard model,
this treatment allows a broad, model-independent assess-
ment of a quintessence scalar field slowly relaxing in a
potential.

The physics is straightforward: the field φ will seek to
roll towards the minimum of its potential V , according
to the Klein-Gordon equation φ̈ + 3Hφ̇ = −dV/dφ. The
rate of evolution is driven by the slope of the potential
and damped by the cosmic expansion through the Hubble

FIG. 1: The w − w′ phase space occupied by thawing and
freezing fields is indicated by the shaded regions. No strong
constraints on this range of dark energy properties exist at
present. The fading at the top of the freezing region indicates
the approximate nature of this boundary. Freezing models
start above this line, but pass below it by a red shift z ∼ 1.
The short-dashed line shows the boundary between field evo-
lution accelerating and decelerating down the potential. Fu-
ture cosmological observations will aim to discriminate be-
tween these two fundamental scenarios.

For quintessence model,

Caldwell and Linder (2005)
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may be indistinguishable from a Λ, the task of elucidat-
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Freezing model might be favored??
but,..



Any other?

l Evolution of matter inhomogeneities in the Universe
In cosmology, we treat the spatial inhomogeneities of matter distributions,
(including galaxy distributions on large scales), as perturbations 
on the background homogeneous and isotropic Universe (FLRW Universe). 

Such a matter inhomogeneity evolves
through the gravitational interaction! 

Univ. of Chicago

valuable information about 
the ``cosmological” gravitational law!!



Any other?

l Evolution of matter inhomogeneities in the Universe

Basic equations (fluid approximation);

5

Since matter is assumed to be minimally coupled to gravity, the fluid equations are the same as the standard ones,
and hence under the quasi-static approximation the matter density fluctuations �(t,x) and the velocity field u
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At linear order, these equations are combined to give

�̈ + 2H �̇ +
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� = 0, (32)

where we moved to Fourier space. The e↵ects of modified gravity come into play through the gravitational potential
� which is determined by solving Eqs. (23)–(25).

Let us then solve Eqs. (23)–(25) to express �,  , and Q in terms of � and its time derivatives. We will follow
the same procedure as that used in [42]. This procedure is feasible thanks to the degeneracy of the theory. Solving
Eqs. (23) and (24) for � and  and substituting these solutions into Eq. (25), one finds that Q̈ and Q̇ terms are
canceled due to the degeneracy, and hence Q can be expressed in the form

�
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, (33)

where the explicit expressions for the time-dependent coe�cients Q and ⌫Q are presented in Appendix A. Finally,
substituting this back into Eqs. (23) and (24), the gravitational potentials � and  can be expressed in terms of �, �̇,
and �̈ as
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The explicit expressions for the time-dependent coe�cients µi, ⌫i, and i (i = �, ) are also shown in Appendix A.
Within the Horndeski theory we have µi = ⌫i = 0 and in the GLPV theory we still have µ = 0. That is, µ first
appears in DHOST theories beyond GLPV. Equation (34) allows us to eliminate � from Eq. (32) and we obtain the
closed-form equation for � as
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3

2
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2
� = 0, (36)

where the additional friction & and the e↵ective gravitational coupling (multiplied by 8⇡M2) ⌅� are written in terms
of µ� , ⌫� , and � as
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1� µ�
, (37)
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These two functions characterize modification of gravity. The evolution equation (36) has essentially the same form as
that in DHOST theories with c

2

GW
= 1 [40] and in the GLPV theory [17, 43]. Whether or not c2

GW
= 1 does not play

an important role in determining the qualitative form of Eq. (36). In the case of the Horndeski theory (↵H = �1 = 0),
the additional friction term vanishes, & = 0, and the result of Ref. [44] is recovered.

Equation (36) tells us that, even in DHOST theories under the quasi-static approximation, the evolution of the
matter density fluctuations is independent of the wavenumber, so that as usual we can write the growing solution to
Eq. (36) as

�(t,k) = D+(t)�L(k), (39)

where �L(k) represents the initial density field. The e↵ect of the modified evolution of the density perturbations is
thus imprinted in the growth factor, D+(t). Introducing the linear growth rate, f := d lnD+/d ln a, the evolution
equation can be written as
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; continuity equation

; Euler equation

gravitational potential
è Linearized evolution equation (in Fourie space);

5

Since matter is assumed to be minimally coupled to gravity, the fluid equations are the same as the standard ones,
and hence under the quasi-static approximation the matter density fluctuations �(t,x) and the velocity field u

i(t,x)
obey

�̇ +
1

a
@i[(1 + �)ui] = 0, (30)

u̇
i +Hu

i +
1

a
u
j
@ju

i = �
1

a
@
i�. (31)

At linear order, these equations are combined to give

�̈ + 2H �̇ +
k
2

a2
� = 0, (32)

where we moved to Fourier space. The e↵ects of modified gravity come into play through the gravitational potential
� which is determined by solving Eqs. (23)–(25).

Let us then solve Eqs. (23)–(25) to express �,  , and Q in terms of � and its time derivatives. We will follow
the same procedure as that used in [42]. This procedure is feasible thanks to the degeneracy of the theory. Solving
Eqs. (23) and (24) for � and  and substituting these solutions into Eq. (25), one finds that Q̈ and Q̇ terms are
canceled due to the degeneracy, and hence Q can be expressed in the form

�
k
2

a2H2
Q = Q� + ⌫Q

�̇

H
, (33)

where the explicit expressions for the time-dependent coe�cients Q and ⌫Q are presented in Appendix A. Finally,
substituting this back into Eqs. (23) and (24), the gravitational potentials � and  can be expressed in terms of �, �̇,
and �̈ as

�
k
2

a2H2
� = �� + ⌫�

�̇

H
+ µ�

�̈

H2
, (34)

�
k
2

a2H2
 =  � + ⌫ 

�̇

H
+ µ 

�̈

H2
. (35)

The explicit expressions for the time-dependent coe�cients µi, ⌫i, and i (i = �, ) are also shown in Appendix A.
Within the Horndeski theory we have µi = ⌫i = 0 and in the GLPV theory we still have µ = 0. That is, µ first
appears in DHOST theories beyond GLPV. Equation (34) allows us to eliminate � from Eq. (32) and we obtain the
closed-form equation for � as

�̈ + (2 + &)H �̇ �
3

2
⌦m⌅�H

2
� = 0, (36)

where the additional friction & and the e↵ective gravitational coupling (multiplied by 8⇡M2) ⌅� are written in terms
of µ� , ⌫� , and � as

& =
2µ� � ⌫�

1� µ�
, (37)

⌅� =
2

3⌦m

�

1� µ�
. (38)

These two functions characterize modification of gravity. The evolution equation (36) has essentially the same form as
that in DHOST theories with c

2

GW
= 1 [40] and in the GLPV theory [17, 43]. Whether or not c2

GW
= 1 does not play

an important role in determining the qualitative form of Eq. (36). In the case of the Horndeski theory (↵H = �1 = 0),
the additional friction term vanishes, & = 0, and the result of Ref. [44] is recovered.

Equation (36) tells us that, even in DHOST theories under the quasi-static approximation, the evolution of the
matter density fluctuations is independent of the wavenumber, so that as usual we can write the growing solution to
Eq. (36) as

�(t,k) = D+(t)�L(k), (39)

where �L(k) represents the initial density field. The e↵ect of the modified evolution of the density perturbations is
thus imprinted in the growth factor, D+(t). Introducing the linear growth rate, f := d lnD+/d ln a, the evolution
equation can be written as

df

d ln a
+

✓
2 + & +

d lnH

d ln a

◆
f + f

2
�

3

2
⌦m⌅� = 0. (40)

In GR (Newtonian), Poisson equation for gravitational potential;

; gravitational law
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However,  in scalar-tensor theory (even in Horndeski theory),

would be changed

5

Since matter is assumed to be minimally coupled to gravity, the fluid equations are the same as the standard ones,
and hence under the quasi-static approximation the matter density fluctuations �(t,x) and the velocity field u

i(t,x)
obey

�̇ +
1

a
@i[(1 + �)ui] = 0, (30)

u̇
i +Hu

i +
1

a
u
j
@ju

i = �
1

a
@
i�. (31)

At linear order, these equations are combined to give

�̈ + 2H �̇ +
k
2

a2
� = 0, (32)

where we moved to Fourier space. The e↵ects of modified gravity come into play through the gravitational potential
� which is determined by solving Eqs. (23)–(25).

Let us then solve Eqs. (23)–(25) to express �,  , and Q in terms of � and its time derivatives. We will follow
the same procedure as that used in [42]. This procedure is feasible thanks to the degeneracy of the theory. Solving
Eqs. (23) and (24) for � and  and substituting these solutions into Eq. (25), one finds that Q̈ and Q̇ terms are
canceled due to the degeneracy, and hence Q can be expressed in the form

�
k
2

a2H2
Q = Q� + ⌫Q

�̇

H
, (33)

where the explicit expressions for the time-dependent coe�cients Q and ⌫Q are presented in Appendix A. Finally,
substituting this back into Eqs. (23) and (24), the gravitational potentials � and  can be expressed in terms of �, �̇,
and �̈ as

�
k
2

a2H2
� = �� + ⌫�

�̇

H
+ µ�

�̈

H2
, (34)

�
k
2

a2H2
 =  � + ⌫ 

�̇

H
+ µ 

�̈

H2
. (35)

The explicit expressions for the time-dependent coe�cients µi, ⌫i, and i (i = �, ) are also shown in Appendix A.
Within the Horndeski theory we have µi = ⌫i = 0 and in the GLPV theory we still have µ = 0. That is, µ first
appears in DHOST theories beyond GLPV. Equation (34) allows us to eliminate � from Eq. (32) and we obtain the
closed-form equation for � as

�̈ + (2 + &)H �̇ �
3

2
⌦m⌅�H

2
� = 0, (36)

where the additional friction & and the e↵ective gravitational coupling (multiplied by 8⇡M2) ⌅� are written in terms
of µ� , ⌫� , and � as

& =
2µ� � ⌫�

1� µ�
, (37)

⌅� =
2

3⌦m

�

1� µ�
. (38)

These two functions characterize modification of gravity. The evolution equation (36) has essentially the same form as
that in DHOST theories with c

2

GW
= 1 [40] and in the GLPV theory [17, 43]. Whether or not c2

GW
= 1 does not play

an important role in determining the qualitative form of Eq. (36). In the case of the Horndeski theory (↵H = �1 = 0),
the additional friction term vanishes, & = 0, and the result of Ref. [44] is recovered.

Equation (36) tells us that, even in DHOST theories under the quasi-static approximation, the evolution of the
matter density fluctuations is independent of the wavenumber, so that as usual we can write the growing solution to
Eq. (36) as

�(t,k) = D+(t)�L(k), (39)

where �L(k) represents the initial density field. The e↵ect of the modified evolution of the density perturbations is
thus imprinted in the growth factor, D+(t). Introducing the linear growth rate, f := d lnD+/d ln a, the evolution
equation can be written as

df

d ln a
+

✓
2 + & +

d lnH

d ln a

◆
f + f

2
�

3

2
⌦m⌅� = 0. (40)

; non-trivial time dependence!!

e.g., time-dependent gravitational constant, …

see, e.g.,  Kobayashi, 1901.07183 (review paper)
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However,  in scalar-tensor theory (even in Horndeski theory),

would be changed

Furthermore, in DHOST theories,

5

Since matter is assumed to be minimally coupled to gravity, the fluid equations are the same as the standard ones,
and hence under the quasi-static approximation the matter density fluctuations �(t,x) and the velocity field u

i(t,x)
obey

�̇ +
1

a
@i[(1 + �)ui] = 0, (30)
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i +Hu
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At linear order, these equations are combined to give

�̈ + 2H �̇ +
k
2

a2
� = 0, (32)

where we moved to Fourier space. The e↵ects of modified gravity come into play through the gravitational potential
� which is determined by solving Eqs. (23)–(25).

Let us then solve Eqs. (23)–(25) to express �,  , and Q in terms of � and its time derivatives. We will follow
the same procedure as that used in [42]. This procedure is feasible thanks to the degeneracy of the theory. Solving
Eqs. (23) and (24) for � and  and substituting these solutions into Eq. (25), one finds that Q̈ and Q̇ terms are
canceled due to the degeneracy, and hence Q can be expressed in the form

�
k
2

a2H2
Q = Q� + ⌫Q

�̇

H
, (33)

where the explicit expressions for the time-dependent coe�cients Q and ⌫Q are presented in Appendix A. Finally,
substituting this back into Eqs. (23) and (24), the gravitational potentials � and  can be expressed in terms of �, �̇,
and �̈ as

�
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a2H2
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H2
, (34)
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a2H2
 =  � + ⌫ 

�̇

H
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. (35)

The explicit expressions for the time-dependent coe�cients µi, ⌫i, and i (i = �, ) are also shown in Appendix A.
Within the Horndeski theory we have µi = ⌫i = 0 and in the GLPV theory we still have µ = 0. That is, µ first
appears in DHOST theories beyond GLPV. Equation (34) allows us to eliminate � from Eq. (32) and we obtain the
closed-form equation for � as

�̈ + (2 + &)H �̇ �
3

2
⌦m⌅�H

2
� = 0, (36)

where the additional friction & and the e↵ective gravitational coupling (multiplied by 8⇡M2) ⌅� are written in terms
of µ� , ⌫� , and � as

& =
2µ� � ⌫�

1� µ�
, (37)

⌅� =
2

3⌦m

�

1� µ�
. (38)

These two functions characterize modification of gravity. The evolution equation (36) has essentially the same form as
that in DHOST theories with c

2

GW
= 1 [40] and in the GLPV theory [17, 43]. Whether or not c2

GW
= 1 does not play

an important role in determining the qualitative form of Eq. (36). In the case of the Horndeski theory (↵H = �1 = 0),
the additional friction term vanishes, & = 0, and the result of Ref. [44] is recovered.

Equation (36) tells us that, even in DHOST theories under the quasi-static approximation, the evolution of the
matter density fluctuations is independent of the wavenumber, so that as usual we can write the growing solution to
Eq. (36) as

�(t,k) = D+(t)�L(k), (39)

where �L(k) represents the initial density field. The e↵ect of the modified evolution of the density perturbations is
thus imprinted in the growth factor, D+(t). Introducing the linear growth rate, f := d lnD+/d ln a, the evolution
equation can be written as

df

d ln a
+

✓
2 + & +

d lnH

d ln a

◆
f + f

2
�

3

2
⌦m⌅� = 0. (40)

see, e.g.,  Kobayashi, 1901.07183 (review paper)

New contribution coming from the time derivatives 
of density contrast would appear .. 
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see, e.g.,  Kobayashi, 1901.07183 (review paper)

Measure

the ``linear” growth of matter (DM) density contrast (inohomogeneities),

to find the cosmological gravitational law 

and test the scalar-tensor theories ! 

usually, parameterized as

a is a scale factor (time coordinate)

or

In GR, 
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Figure 18. Parameter contours for f�8, DA and H for the predictions by
the 5 companion papers using the same DR14Q dataset for traditional RSD
analyses. Blue contours show the results presented in this work in configu-
ration space, and red contours show the predictions by Hou et al. (2018) in
configuration space too using a second RSD modeling. The Fourier Space
based analyses are shown in green contours for the results by Gil-Marin
et al. (2018) using a third RSD modeling, in magenta contours for the re-
sults by Ruggeri et al. (2018) and in orange contours for Zhao et al. (2018),
both using redshift weighting techniques but with a different model.

Figure 19. Evolution of the BAO distances with redshift compared to the
prediction from the flat ⇤-CDM model with Planck parameters. The Hub-
ble distance DH is related to the Hubble parameter H by DH = c/H

and DM = (1 + z)DA where DM is the comoving angular diameter dis-
tance. The BAO results from this work using the eBOSS DR14 quasars are
represented by the * marker and are compared to previous analyses using
galaxies and Ly-↵ forests to probe different epochs.
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Figure 20. Left : Cosmological constraints in the ⌦⇤ vs ⌦m plane. Right:
Cosmological constraints in the w vs ⌦m plane. The inner and outer con-
tours show the 68 and 95% confidence-level two-dimensional marginalised
constraints. All contours are showed assuming a flat ⇤CDM-model. The
blue contour represents the cosmological constraints using BOSS DR12
galaxies, the red contour shows the gain when adding the eBOSS quasar
sample and the green contour also includes the results from Ly-↵ measure-
ments. All results are consistent with a ⇤CDM Universe.

Figure 21. Measurements of f�8(z) with redshift compared to the predic-
tion from the flat ⇤-CDM+GR model with Planck parameters. The f�8(z)

result presented in this work for the quasar sample is represented by the *
marker and is obtained using 3-multipole fit. The error bar represents the to-
tal systematic error that includes the statistical precision and the systematic
error related to the RSD modeling used in this analysis.

The GR prediction that � = 0.55 can not be accurately
tested given the statistical precision of the eBOSS quasar sample
only. Combining our data to the measurement of ⌦m from Planck
produces � = �0.2 ± 1.2. The lack of precision arises because
in the eBOSS quasar redshift range, ⌦m is close to 1 and the
sensitivity to � is therefore reduced as can be seen from the black
curves in Figure 21, which shows theoretical predictions on f�8

for different values of �.

As for the cosmological distances, the growth rate measure-
ment uncertainty should be reduced by a factor ⇠2 once the final
eBOSS sample will be complete. However, the clustering measure-
ments using the current eBOSS quasar sample represent the most
precise f�8 measurements to date in the almost unexplored redshift
range 1 < z < 2.

MNRAS 000, 1–25 (2017)

Zarrouk et al. (2018)
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Fig. 17. Constraints on the growth rate f(z)σ8(z) as a function of redshift at 0 < z < 1.55. The constraint obtained from our FastSound sample at 1.19 <

z < 1.55 is plotted as the big red point. The previous results include the 6dFGS, 2dFGRS, SDSS main galaxies, SDSS LRG, BOSS LOWZ , WiggleZ, BOSS
CMASS, VVDS, and VIPERS surveys at z < 1. A theoretical prediction for fσ8 from ΛCDM and general relativity with the amplitude determined by minimizing
χ2 is shown as the red solid line. The data points used for the χ2 minimization are denoted as the filled-symbol points while those which are not used are
denoted as the open-symbol points. The predictions for fσ8 from modified gravity theories with the amplitude determined in the same way are shown as the
thin lines with different line types; f(R) gravity model (dot-short-dashed), the covariant Galileon model (dashed), the extended Galileon model (dotted), DGP
model (dot-dashed), and the early, time varying gravitational constant model (black solid).

modification of gravity manifests itself in the observations of
RSD. Provided that the stability condition 0 < Rf,RR/f,R ≤ 1

(where f,R=df/dR) is satisfied, the solution finally approaches
a de Sitter solution characterized by Rf,R = 2f (Amendola
et al. 2007). In this case the the effective gravitational coupling
in f(R) gravity is given by (Tsujikawa 2007; de Felice et al.
2011b)

Geff =
G0

f,R

1+4r/3
1+ r

, r =

(

k
amφ

)2

. (26)

where m2
φ ≃ f,R/(3f,RR) and we have that the f(R) model

(25) exhibits the gravitational interaction stronger than that in
the ΛCDM model at low redshifts.
As an example, we choose n=2 and λ= 2 and compute the

χ2 statistics by changing the normalization of fσ8 as we have
done for GR above. The resulting fσ8 as a function of z with the
best fitting amplitude at the scale k−1 = 30 h−1 Mpc is shown
as the dot-dashed line in figure 17. Because the f(R) gravity
model exhibits stronger gravity than GR, fitting the f(R)model
to the RSD measurements gives fσ8 smaller than the ΛCDM
model at higher redshift.

6.2.2 Dvali-Gabadadze-Porrati braneworld
An alternative model we consider is the Dvali-Gabadadze-
Porrati (DGP) braneworld (Dvali et al. 2000), in which a 3-
brane is embedded in a 5-dimensional (5D) Minkowski bulk
spacetime with an infinitely large extra dimension. In the ef-
fective 4-dimensional (4D) picture, the Friedmann equation on
the flat FLRW brane is given byH2− ϵH/rc = κ2

4ρm/3, where
ϵ = ±1 and rc = κ2

(5)/(2κ
2
(4)) is a length scale determined by

the ratio of 5D and 4D gravitational constants κ(5) and κ(4). For
the branch ϵ=+1, there is a de Sitter solution characterized by
the Hubble parameter HdS = 1/rc. We include this model be-
cause it realizes (as we shall see) Geff < G; unfortunately it
is associated with the existence of ghosts (Nicolis & Rattazzi
2004).
On the scale of surveys we have that the effective Newton’s

constant satisfies (Lue et al. 2004, Koyama & Maartens 2006):

Geff =

[

1+
1

3β(t)

]

G0 , β(t)≡1−2Hrc

(

1+
Ḣ
3H2

)

.(27)

SinceHrc≫1 and Ḣ/H2≃−3/2 in the deep matter era, it fol-
lows that |β|≫1 and henceGeff ≃G. As the background trajec-
tory approaches the de Sitter solution characterized byHrc = 1

and Ḣ = 0, we have that β = −1 and Geff = 2G/3. The DGP
model gives rise to weaker gravity due to the gravitational leak-
age to the extra dimension.
Since the DGP model predicts a weaker gravitational in-

teraction on cosmological scales, fitting the amplitude of
f(z)σ8(z) to RSD measurements without using the bound of
σ8(0) from CMB measurements gives rise to f(z)σ8(z) larger
than that of the ΛCDM model at high redshifts (z > 1). The
best-fit curve of the DGP model is plotted as the dot-long-
dashed line in Fig. 17, which exhibits a notable deviation from
the ΛCDM model and f(R) gravity at the redshift associated
with the FastSound measurement.

6.2.3 Galileons
Another class of models that modify gravity are based around a
scalar field, φ that satisfies a Galilean shift symmetry: ∂µφ →

models 
in ST theory
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Fig. 17. Constraints on the growth rate f(z)σ8(z) as a function of redshift at 0 < z < 1.55. The constraint obtained from our FastSound sample at 1.19 <

z < 1.55 is plotted as the big red point. The previous results include the 6dFGS, 2dFGRS, SDSS main galaxies, SDSS LRG, BOSS LOWZ , WiggleZ, BOSS
CMASS, VVDS, and VIPERS surveys at z < 1. A theoretical prediction for fσ8 from ΛCDM and general relativity with the amplitude determined by minimizing
χ2 is shown as the red solid line. The data points used for the χ2 minimization are denoted as the filled-symbol points while those which are not used are
denoted as the open-symbol points. The predictions for fσ8 from modified gravity theories with the amplitude determined in the same way are shown as the
thin lines with different line types; f(R) gravity model (dot-short-dashed), the covariant Galileon model (dashed), the extended Galileon model (dotted), DGP
model (dot-dashed), and the early, time varying gravitational constant model (black solid).

modification of gravity manifests itself in the observations of
RSD. Provided that the stability condition 0 < Rf,RR/f,R ≤ 1

(where f,R=df/dR) is satisfied, the solution finally approaches
a de Sitter solution characterized by Rf,R = 2f (Amendola
et al. 2007). In this case the the effective gravitational coupling
in f(R) gravity is given by (Tsujikawa 2007; de Felice et al.
2011b)

Geff =
G0

f,R

1+4r/3
1+ r

, r =

(

k
amφ

)2

. (26)

where m2
φ ≃ f,R/(3f,RR) and we have that the f(R) model

(25) exhibits the gravitational interaction stronger than that in
the ΛCDM model at low redshifts.
As an example, we choose n=2 and λ= 2 and compute the

χ2 statistics by changing the normalization of fσ8 as we have
done for GR above. The resulting fσ8 as a function of z with the
best fitting amplitude at the scale k−1 = 30 h−1 Mpc is shown
as the dot-dashed line in figure 17. Because the f(R) gravity
model exhibits stronger gravity than GR, fitting the f(R)model
to the RSD measurements gives fσ8 smaller than the ΛCDM
model at higher redshift.

6.2.2 Dvali-Gabadadze-Porrati braneworld
An alternative model we consider is the Dvali-Gabadadze-
Porrati (DGP) braneworld (Dvali et al. 2000), in which a 3-
brane is embedded in a 5-dimensional (5D) Minkowski bulk
spacetime with an infinitely large extra dimension. In the ef-
fective 4-dimensional (4D) picture, the Friedmann equation on
the flat FLRW brane is given byH2− ϵH/rc = κ2

4ρm/3, where
ϵ = ±1 and rc = κ2

(5)/(2κ
2
(4)) is a length scale determined by

the ratio of 5D and 4D gravitational constants κ(5) and κ(4). For
the branch ϵ=+1, there is a de Sitter solution characterized by
the Hubble parameter HdS = 1/rc. We include this model be-
cause it realizes (as we shall see) Geff < G; unfortunately it
is associated with the existence of ghosts (Nicolis & Rattazzi
2004).
On the scale of surveys we have that the effective Newton’s

constant satisfies (Lue et al. 2004, Koyama & Maartens 2006):

Geff =

[

1+
1

3β(t)

]

G0 , β(t)≡1−2Hrc

(

1+
Ḣ
3H2

)

.(27)

SinceHrc≫1 and Ḣ/H2≃−3/2 in the deep matter era, it fol-
lows that |β|≫1 and henceGeff ≃G. As the background trajec-
tory approaches the de Sitter solution characterized byHrc = 1

and Ḣ = 0, we have that β = −1 and Geff = 2G/3. The DGP
model gives rise to weaker gravity due to the gravitational leak-
age to the extra dimension.
Since the DGP model predicts a weaker gravitational in-

teraction on cosmological scales, fitting the amplitude of
f(z)σ8(z) to RSD measurements without using the bound of
σ8(0) from CMB measurements gives rise to f(z)σ8(z) larger
than that of the ΛCDM model at high redshifts (z > 1). The
best-fit curve of the DGP model is plotted as the dot-long-
dashed line in Fig. 17, which exhibits a notable deviation from
the ΛCDM model and f(R) gravity at the redshift associated
with the FastSound measurement.

6.2.3 Galileons
Another class of models that modify gravity are based around a
scalar field, φ that satisfies a Galilean shift symmetry: ∂µφ →

models 
in ST theorySome class of ST theory 

might be excluded !
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Fig. 18. Constraints on the growth rate fσ8 as a function of redshift compared to the ΛCDM model with the best fitting models from the CMB experiments.
The data points are the same as those in figure 17. Theoretical predictions with 68% confidence intervals based on WMAP9 and Planck CMB measurements
are shown as the green and red shaded regions, respectively. The early, time varying gravitational constant models with Ġ/G = 3.5× 10−11[year−1] and
7.0× 10−11[year−1] are respectively shown as the blue and magenta lines.

∂µφ+ bµ in Minkowski space-time. One can obtain general
Lagrangians of “Galileons” (Nicolis et al. 2009) and, in particu-
lar, do so in curved space-time leading to “covariant Galileons”
(Deffayet et al. 2009). The analytic estimation of Geff and
the full numerical integration of cosmological perturbations for
the covariant Galileon were first carried out by de Felice et al.
(2011a). In the massless limit (mφ → 0), the effective grav-
itational coupling can be schematically expressed in the form
(Tsujikawa 2015; Pèrenon et al. 2015)

Geff =
c2t

16πqt
(1+Qs) , (28)

where Qs describes the scalar-matter interaction, qt is as-
sociated with the no-ghost condition of tensor perturbations
(Kobayashi et al. 2011), which is required to be positive and
the quantity c2t corresponds to the tensor propagation speed
squared, which needs to be positive to avoid the Laplacian in-
stability. Using conditions for avoiding ghosts and Laplacian
instabilities of both scalar and tensor perturbations, it follows
that Qs ≥ 0 (Tsujikawa 2015).
In figure 17 we plot f(z)σ8(z) with the best-fit amplitude

constrained by the RSD data for the covariant Galileon as the
dotted dashed line. Here, we chose the parameters (α,β) =
(1.347, 0.442) of the model presented in Okada et al. (2013)
as an example; these parameter values satisfy the theoreti-
cally consistent conditions (such as the absence of ghosts and
Laplacian instabilities). The curve of f(z)σ8(z) constrained
by the RSD data alone (without using the CMB constraint on
σ8(0)) exhibits significant difference from those of the ΛCDM
and f(R) gravity at high redshifts (z > 1). Thus, the FastSound
data is very useful to distinguish the covariant Galileon from
other modified gravity theories. One can generalize the covari-

ant Galileon to the extended Galileon (De Felice & Tsujikawa
2012). In this case the growth rate of δm is typically greater
than that in the ΛCDM model, but it is not as large as that
of the covariant Galileon (Okada et al. 2013). In Fig. 17 we
show the best-fit curve of f(z)σ8(z) for the extended Galileon
as a dot-dashed line. Here we adopted the parameters (α,β) =
(3.0,1.434) (see Okada et al. 2013). The difference from the
ΛCDM model is not so large, but it will be possible to discrim-
inate between the two models in future high-precision observa-
tions.

6.2.4 Early, time varying gravitational constant model

Finally, we step back from considering specific models that
arise from fundamental Lagrangians; we now take our equation
(22) and assume a simple functional for ξ such that it changed
at early times (for example at z ∼ 102) and then remained con-
stant (Baker et al. 2014; Leonard et al. 2015). This leads to
a slow and steady modification of the growth rate all the way
up-to Λ domination. The cumulative will change the overall
amplitude of fσ8 for z < 2 such that, depending on how we
normalize the overall amplitude of fluctuations, we will either
be completely consistent or inconsistent with RSD measure-
ments. Normalizing to the the RSDs render such a theory ef-
fectively indistinguishable from ΛCDM as we can see in figure
17 where we show such a theory with a red-colored line with
Ġ/G= 3.5× 10−11[year−1]. This degeneracy comes from the
fact that we obtained the best-fit curve of f(z)σ8(z) without
employing the CMB bound of σ8(0).

give a tight constraint 
on time variation of gravitational constant.
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Fig. 5. Marginalized posterior contours in the ⌦m-�8 plane (left) and in the ⌦m-S8(↵ = 0.45) plane (right), where S8(↵) ⌘ �8(⌦m/0.3)↵, in the fiducial
⇤CDM model. Both 68% and 95% credible levels are shown. For comparison, we plot cosmic shear results from KiDS-450 with correlation function (CF)
estimators (Hildebrandt et al. 2017) and with quadratic estimators (QE) (Köhlinger et al. 2017) and DES Y1 (Troxel et al. 2018b) with the same set of
cosmological parameters and priors as adopted in this paper, as well as WMAP9 (Hinshaw et al. 2013) (yellow) and Planck 2015 CMB constraints without CMB
lensing (Planck Collaboration et al. 2016) (purple).

Fig. 6. The 68% credible interval on S8(↵ = 0.5) from the HSC first-year data in the ⇤CDM model as well as from several literature.

shear are known to be degenerate in the ⌦m-�8 plane. Cosmic
shear can tightly constrain a combination of cosmological pa-
rameters S8(↵) ⌘ �8(⌦m/0.3)

↵, which we adopt to quantify
cosmological constraints from the HSC first year data. By car-
rying out a linear fit of the logarithm of the posterior samples
of ⌦m and �8, we find that the tightest constraints for S8 are
obtained with ↵ = 0.45. However, the previous studies by
DES (Troxel et al. 2018a) and KiDS (Hildebrandt et al. 2017;
Köhlinger et al. 2017) have presented constraints on S8 with
↵ = 0.5. To present best constraints as well as constraints that
can be directly compared with these previous cosmic shear re-
sults, in this paper we present our results of S8 both for ↵=0.45

and ↵ = 0.5.

In Figure 5, we show our marginalized constraints in ⌦m-
�8 and ⌦m-S8(↵ = 0.45) planes. As expected, there is no
strong correlation between ⌦m and S8. We find S8(↵=0.45)=

0.800
+0.029
�0.028 and ⌦m = 0.162

+0.086
�0.044. Our HSC first-year cos-

mic shear analysis places a 3.6% fractional constraint on S8,
which is comparable to the results of DES (Troxel et al. 2018a)
and KiDS (Hildebrandt et al. 2017). For comparison, we find a
slightly degraded constraint on S8(↵ = 0.5) = 0.780

+0.030
�0.033 for

↵ = 0.5. We compare our constraints in the ⌦m-�8 and ⌦m-
S8(↵ = 0.5) planes with cosmic shear results from DES Y1
(Troxel et al. 2018b) and also from KiDS-450 with two differ-
ent methods, correlation functions (CF; Hildebrandt et al. 2017)
and quadratic estimators (QE; Köhlinger et al. 2017). Note that
the plotted results from DES Y1 use the same set of cosmo-
logical parameters and priors as adopted in this paper, and are
different from the fiducial constraints in Troxel et al. (2018b).
For the KiDS results, we show the same constraints as shown in
the literature but not corrected for the noise covariance (Troxel
et al. 2018b). We also note that there are also some differences

a new constraint on the growth !
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on quintessence scenarios

Updated observational constraints on quintessence dark energy models
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The recent GW170817 measurement favors the simplest dark energy models, such as a single
scalar field. Quintessence models can be classified in two classes, freezing and thawing, depending
on whether the equation of state decreases towards �1 or departs from it. In this paper we put
observational constraints on the parameters governing the equations of state of tracking freezing,
scaling freezing and thawing models using updated data, from the Planck 2015 release, joint light-
curve analysis and baryonic acoustic oscillations. Because of the current tensions on the value
of the Hubble parameter H0, unlike previous authors, we let this parameter vary, which modifies
significantly the results. Finally, we also derive constraints on neutrino masses in each of these
scenarios.

I. INTRODUCTION

The recent acceleration of the expansion of the Uni-
verse remains a mystery. This puzzle gave rise to the
concept of dark energy (DE), an additional constituent
in the Universe of unknown nature. From observations,
the only property we are sure of is that, if it exists, it
must have an equation of state very close to w = �1.
A most natural way of going beyond the cosmological
constant description of DE (for which w = �1 through-
out cosmic history) is to consider a canonical minimally
coupled scalar field, dubbed quintessence. It is all the
more important to focus on this simple description that
the recent observation of the binary neutron star merger
GW170817 by the LIGO-VIRGO Collaboration and its
associated electromagnetic counterpart by Fermi [1] im-
plies that gravitational waves travel at a speed extremely
close to that of light, which favors the simplest models
for dark energy and modified gravity, as discussed in [2]
and [3] for instance.

Many quintessence models have been proposed al-
ready; see, for example, [4] for a review. A convenient
and e�cient way of analyzing the variety of cosmologi-
cal dynamics of quintessence is a dynamical system ap-
proach, cf. [5]. Instead of having to consider each model
separately, we may classify them into essentially two
classes, namely freezing and thawing models, depending
on whether the equation of state decreases towards �1
or departs from it as the scale factor grows [6]. In addi-
tion, freezing models can themselves be subdivided into
so-called tracking and scaling models, depending on the
details of the dynamics. In this paper, following previous
works, we constrain the parameters arising in three ana-
lytic expressions for the equation of state, correspond-
ing to, respectively, tracking freezing, scaling freezing
and thawing dynamics, so that our analysis covers most
quintessence potentials. Figure 1 shows the typical pro-
files of the equations of state we considered.

Now, by construction, quintessence necessarily has an
equation of state that cannot go below �1. However in
this paper we consider both the case of quintessence, in-
deed putting the prior w � �1 in our analysis, but we
also extend the study to phantom DE, i.e. fluids hav-
ing equations of state below �1 [see e.g. 7–9, for studies
discussing the viability of such cases].

An important feature of the present study is that, com-
pared to previous authors, we let the crucial Hubble pa-
rameter H0 vary. Doing so is all the more important
nowadays that there are currently tensions between the
supernovae [10] and Planck results [11] in determining
its precise value. Most recently an independent mea-
sure was brought in by the LIGO-VIRGO collaboration,
which confirms that it must be around 70, but that mea-
surement is not yet competitive with the two aforemen-
tioned ones [12].

This paper is organized as follows. In Sec. II,
after very briefly reviewing the equations governing
quintessence dark energy, we first present each of the
three parametrizations (tracking, scaling and thawing)
that we considered, and then expose the method and
data we used for the analysis. In Sec. III we show and
discuss the observational constraints we obtain on the pa-
rameters intervening in these parametrizations, by con-
sidering them one after the other. Finally, we present
observational constraints on the sum of neutrino masses
by performing again the previous analysis but without
assuming only massless neutrinos.

II. SETUP

A. Quintessence

Quintessence is a canonical scalar field � minimally
coupled to gravity. Considering, in addition, nonrela-
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from the Planck 2015 results together with the baryon acoustic oscillations (BAO)
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variation of the effective gravitational constant by more than 10%, that is, the time vari-
ation of the effective gravitational constant between the recombination and the present
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1. Introduction

The existence of scalar fields whose vacuum expectation values determine the physical con-

stants is generically predicted by the recent attempts toward unifying all elementary forces

in nature based on string theory [1]. In this context, scalar-tensor theories of gravity are

a natural alternative to the Einstein gravity since they arise from the low-energy limit of

string theory. In the scalar-tensor theories of gravity, a scalar field couples to the Ricci scalar,

which provides a natural framework for realizing the time variation of the gravitational con-

stant via the dynamics of the scalar field. In the Jordan-Brans-Dicke theory of gravity [2, 3],

which is the simplest example of scalar-tensor theories, a constant coupling parameter ω is

introduced. In more general scalar-tensor theories [4–6], ω is promoted to a function of the

Brans-Dicke scalar field φ. In the limit ω → ∞, the Einstein gravity is recovered and the

gravitational constant becomes a constant in time.

The coupling parameter ω has been constrained by several solar system experiments. For

instance, the weak-field experiment conducted in the Solar System by the Cassini mission

c⃝ The Author(s) 2012. Published by Oxford University Press on behalf of the Physical Society of Japan.
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has put strong constraints on the post-Newtonian deviation from the Einstein gravity, where

ω is constrained as ω > 43000 at a 2 σ level [7, 8].

On cosmological scales, the possibility of constraining the Brans-Dicke theory by tem-

perature and polarization anisotropies of the cosmic microwave background (CMB) was

suggested in [9], and Nagata et al. [10] first placed constraints on a general scalar-tensor the-

ory called the harmonic attractor model including the Jordan-Brans-Dicke theory [11, 12]. In

this model the scalar field has a quadratic effective potential of positive curvature in the Ein-

stein frame, and the Einstein gravity is an attractor that naturally suppresses any deviations

from the Einstein gravity in the present epoch. Nagata et al. reported that the present-day

value of ω is constrained as ω > 1000 at a 2 σ level by analyzing the CMB data from the

Wilkinson Microwave Anisotropy Probe (WMAP). Moreover, the gravitational constant at

the recombination epoch Grec relative to the present gravitational constant G0 is constrained

as Grec/G0 < 1.05 (2 σ). These constraints basically come from the fact that the size of the

sound horizon at the recombination epoch, which determines the characteristic angular scale

in the angular power spectrum of CMB anisotropies, depends on the amounts of matter and

baryon contents and on the strength of gravity at that epoch. Recently, we have analyzed

the CMB power spectra data from Planck 2015 [13] in the harmonic attractor model to

put constraints on the deviations from general relativity [14]. We find a constraint on ω as

ω > 2000 at 95.45% confidence level (C.L.), and an order-of-magnitude improvement on the

change of G: Grec/G0 < 1.0056 (1.0115) at 95.45% C.L. ( 99.99% C.L.) [14]— see also [15]

for the analysis in the Brans-Dicke gravity (a constant ω) model and [16, 17] for the analysis

in the induced gravity dark energy model.

Acoustic peaks in the CMB power spectrum are transferred to peaks in baryons through the

coupling between photons and baryons through the Thomson scattering, and these acoustic

peaks are later imprinted on the matter power spectrum; they are known as baryon acoustic

oscillations (BAO). BAO have been measured by a number of galaxy redshift surveys. Since

the BAO measurements are basically geometrical, like CMB acoustic peaks, they can be

used to break parameter degeneracies in the analysis based solely on the CMB data. In this

paper, we further improve the constraints on the scalar-tensor theory by including the recent

measurements of BAO [18–20].

The remainder of the paper is organized as follows. In Sect. 2 we explain the scalar-tensor

cosmological model, and we describe our method for constraining the scalar-tensor coupling

parameters in Sect. 3. In Sect. 4, we compare the model with the CMB data and BAO data.

The prior dependence of the analysis is also discussed. We summarize our results in Sect. 5.

2. Model

The action describing a general massless scalar-tensor theory in the Jordan frame is given

by [21]

S =
1

16πG0

∫

d4x
√
−g

[

φR−
ω(φ)

φ
(∇φ)2

]

+ Sm[ψ, gµν ], (1)

where G0 is the present-day Newtonian gravitational constant and Sm[ψ, gµν ] is the matter

action, which is a function of the matter variable ψ and the metric gµν . We regard this

“Jordan frame metric” as defining the lengths and times actually measured by laboratory

rods and clocks, since in the action Eq. (1) matter is universally coupled to gµν [22, 23].

The function ω(φ) is the dimensionless coupling parameter, which depends on the scalar

2/16

field φ. The deviation from the Einstein gravity depends on the asymptotic value of φ at

spatial infinity. According to the cosmological attractor scenario [11, 12], the dynamics of φ

in the Friedmann universe is analogous to that of a particle attracted toward the minimum

of its effective potential with a friction (the Hubble friction in the Friedmann universe) in

the Einstein frame. The effective potential corresponds to the logarithm of the conformal

factor. Since a potential near a minimum is generically parabolic, we study the case where

the effective potential is quadratic. This setup corresponds to ω(φ) of the following form:

2ω(φ) + 3 =
{

α0
2 − β ln(φ/φ0)

}−1
, (2)

where φ0 is the present value of φ and α0 and β are model parameters. See Appendix A for

details.

The background equations for a Friedmann universe are

ρ′ = −3
a′

a
(ρ+ p), (3)

(

a′

a

)2

+K =
8πG0 ρ a2

3φ
−

a′

a

φ′

φ
+
ω

6

(

φ′

φ

)2

, (4)

φ′′ + 2
a′

a
φ′ =

1

2ω + 3

{

8πG0 a
2(ρ− 3p)− φ′2

dω

dφ

}

, (5)

where a is the cosmological scale factor and the prime notation denotes a derivative with

respect to the conformal time, ρ and p are the total energy density and pressure, respectively,

and K denotes a constant spatial curvature.

The effective gravitational constant measured by Cavendish-type experiments is given by

[22]

G(φ) =
G0

φ

2ω(φ) + 4

2ω(φ) + 3
. (6)

The present value of φ must yield the present-day Newtonian gravitational constant and

satisfy the expression G(φ0) = G0. Thus, we have

φ0 =
2ω0 + 4

2ω0 + 3
= 1 + α0

2, (7)

where ω0 is the present value of ω(φ).

Typical evolutions of φ and G(φ) are shown in Figs. 1 and 2, respectively. Here h = 0.68

and Ωmh2 = 0.14 are assumed, where h is the dimensionless Hubble parameter and Ωm is

the matter density parameter. In the radiation-dominated epoch, φ becomes almost constant

because the pressure of the relativistic component in Eq. (5) is p = ρ/3. After the matter-

radiation equality, φ begins to increase up to the present value φ0. The variation in the value

of φ alters the Hubble parameter in the early universe from its value under the Einstein

gravity through Eq. (4). Therefore, we expect that observational data during the matter-

dominated era, such as CMB and especially BAO, are useful in putting constraints on the

scalar-tensor gravity.

Typical CMB temperature anisotrpy spectra are shown in Fig. 3. Here, h = 0.6782, Ωbh2 =

0.02227, Ωch2 = 0.1185, τreio = 0.067, ln(1010As) = 3.064, ns = 0.9684, TCMB = 2.7255 K,

Neff = 3.046 are assumed for the parameters of the ΛCDM model where Ωb and Ωc are the

density parameters for baryon and cold dark matter components, respectively, τreio is the

3/16

constraint on the deviation of 
the gravitational constant between
at the present and  the recombination time 
from CMB observation;  
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1. Introduction

The existence of scalar fields whose vacuum expectation values determine the physical con-

stants is generically predicted by the recent attempts toward unifying all elementary forces

in nature based on string theory [1]. In this context, scalar-tensor theories of gravity are

a natural alternative to the Einstein gravity since they arise from the low-energy limit of

string theory. In the scalar-tensor theories of gravity, a scalar field couples to the Ricci scalar,

which provides a natural framework for realizing the time variation of the gravitational con-

stant via the dynamics of the scalar field. In the Jordan-Brans-Dicke theory of gravity [2, 3],

which is the simplest example of scalar-tensor theories, a constant coupling parameter ω is

introduced. In more general scalar-tensor theories [4–6], ω is promoted to a function of the

Brans-Dicke scalar field φ. In the limit ω → ∞, the Einstein gravity is recovered and the

gravitational constant becomes a constant in time.

The coupling parameter ω has been constrained by several solar system experiments. For

instance, the weak-field experiment conducted in the Solar System by the Cassini mission
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given by

log10(α0
2) < −3.9− 20β2 (95.45%), (15)

log10(α0
2) < −2.8− 20β2 (99.99%), (16)

where the numbers in parentheses denote the confidence level. These results can be translated

into the present-day value of the coupling parameter ω at β = 0 using Eq. (2) as

ω > 3254 (95.45%), (17)

ω > 307 (99.99%). (18)

These limits are little changed compared with those obtained by the Planck data alone:

ω > 3224 (303) at 95.45% C.L. ( 99.99% C.L.).

Fig. 6 Contours at 95.45% and 99.99% confidence levels in the log10(α0
2)–β plane for

the scalar-tensor ΛCDM models with the other parameters marginalized, using the Planck

data only (red) or the Planck+BAO data (blue). The black dashed line shows the function

log10(α0
2) = −3.9 − 20β2 and the gray solid line shows the bound from the Solar System

experiment.

Table 1 shows the 68.27% confidence limits of the standard cosmological parameters in the

scalar-tensor ΛCDM model. These parameters are still consistent with those of the Planck

results [13] in the standard ΛCDM model. Table 2 shows the 95.45% confidence limits of the

parameters log10(α0
2) and β.

Next, we consider the variation of the gravitational constant in the recombination epoch.

We define Grec ≡ G(φrec) and put constraints on Grec/G0, after marginalizing over the other

parameters. Here, φrec is the value of φ at the recombination epoch when the visibility

function takes its maximum value. We compute the marginalized posterior distribution of

Grec/G0 as shown in Fig. 7 (for flat models). We find that Grec/G0 is constrained as

Grec/G0 − 1 < 1.9× 10−3 (95.45%), (19)

Grec/G0 − 1 < 5.5× 10−3 (99.99%). (20)

8/16
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Figure 9. Constraints on ⌦m0 and w from SNe sample corrected for magnification (red dotted) and not corrected (blue dashed). From
inner to outer lines, they are 68.3%, 95.5% and 99.7% confidence regions of ⌦m0 and w, respectively. The blue circles and red crosses
show the best-fit values for no correction and correction.

Figure 10. (Upper) Hubble residual, �µ for uncorrected (blue circle) and corrected (red cross) using Mizuki (left panel) and DEmP (right
panel). Dashed lines indicate the overall dispersion of �µ, and thick points with errorbars are binned data averaged over every 15 data

points. The error bars are
p
h�µ2 i/N , where N = 15. (Bottom) Reduced �2 below a certain redshift which is defined in equation (35).
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ABSTRACT
E↵ect of gravitational magnification on the measurement of distance modulus of type

Ia supernovae is presented. We investigate a correlation between magnification and

Hubble residual to explore how the magnification a↵ects the estimation of cosmological

parameters. We estimate magnification of type Ia supernovae in two distinct methods:

one is based on convergence mass reconstruction under the weak lensing limit and the

other is based on the direct measurement from galaxies distribution. Both magnifica-

tion measurements are measured from Subaru Hyper Suprime-Cam survey catalogue.

For both measurements, we find no significant correlation between Hubble residual

and magnification. Furthermore, we correct for the apparent supernovae fluxes ob-

tained by Supernova Legacy Survey 3-year sample using direct measurement of the

magnification. We find ⌦m0 = 0.287+0.104
�0.085 and w = �1.161+0.595

�0.358 for supernovae sam-

ples corrected for lensing magnification when we use photometric redshift catalogue

of Mizuki, while ⌦m0 = 0.253+0.113
�0.087 and w = �1.078+0.498

�0.297 for DEmP photo-z catalogue.

Therefore, we conclude that the e↵ect of magnification on the supernova cosmology is

negligibly small for the current surveys; however, it has to be considered for the future

supernova survey like LSST.

Key words: keyword1 – keyword2 – keyword3

1 INTRODUCTION

Type Ia supernova (SN) is a useful tool to probe cosmologi-
cal model. The absolute magnitude of SN at the cosmological
distance is empirically well calibrated with the local SN and
due to the brightness, it can be observed up to high redshift
z & 1. Several SNe surveys over wide range of redshift are
carried out in this two decades for cosmological study (Riess
et al. 1999; Filippenko et al. 2001; Astier et al. 2006; Frieman
et al. 2008; Dawson et al. 2009; Grogin et al. 2011). Since
late 1990s, distant SNe Ia surveys have suggested that the
Universe is accelerating expanding (Garnavich et al. 1998;
Riess et al. 1998; Perlmutter et al. 1999). The accelerat-
ing expansion of the Universe requires the existence of dark
energy within the context of general relativity or possible

? E-mail: sakakibara.hinako@f.mbox.nagoya-u.ac.jp
† E-mail: atsushi.nishizawa@iar.nagoya-u.ac.jp

extension of the theory of gravity. Lately, other cosmolog-
ical probes such as cosmic microwave background (CMB;
Komatsu et al. 2011; Planck Collaboration et al. 2015) and
baryon acoustic oscillation (BAO; Percival et al. 2010; Alam
et al. 2017) also prefer the cosmological model consistent
with what obtained by the SNe observations.

With the SNe Ia, we can constrain the cosmological
models by use of distance modulus over their redshifts by
comparing the di↵erence between apparent and absolute
magnitude to the theoretical prediction which simply can
be described by the luminosity distance (Astier et al. 2006;
Kessler et al. 2009; Guy et al. 2010; Suzuki et al. 2012; Gane-
shalingam et al. 2013; Rest et al. 2014). When we look at
the distance modulus around the best predicted curve, it is
prominently observed that there is a large scatter around the
prediction. Apart from the statistical fluctuation, the scat-
ters originate both from intrinsic diversity of the SNe, and
the flux magnification due to the gravitational lensing by the

© 2018 The Authors
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Figure 2. (Left) An example of SN near bright star. Cyan arrow shows the position of SN. (Right) An example of galaxies we use to
calculate magnification. Cyan arrow and yellow circles show the position of SN and lens galaxies, respectively. Magenta shaded circles
are virial radii of lens galaxies.

where Ds,Dl and Dls are angular diameter distances from
observer to source, lens and from lens to source. The shear
and convergence can be analytically calculated, once as-
sumed the mass profile of the galaxy (Takada & Jain
2003a,b). Then the magnification at the sky position sep-
arated from center of galaxy by ✓ can be calculated as

µlens(✓) =
1

[1 � (✓)]2 � �2(✓)
. (26)

To complete our model, we assume that the galaxy has
an NFW profile given as (Navarro et al. 1996)

⇢(r) = ⇢s

(rcvir/rvir)(1 + rcvir/rvir)2
, (27)

where rvir, cvir and ⇢s are virial radius, concentration parame-
ter and overall amplitude. All those parameters are uniquely
determined upon the model calibrated with the N-body sim-
ulation given the virial mass, Mvir. The virial radius is often
referred as the radius where the total enclosed mass is equal
to the 200 times of critical density of the Universe and it is
related to the virial mass by

rvir =
✓

3M200c
4⇡�200(z)

◆1/3
, (28)

where �200 ' 200⇢cr(z). The concentration parameter is re-
lated to mass using a suite of N-body simulation (Du↵y et al.
2008),

c200(z) = A(M200c/Mpivot)B(1 + z)C, (29)

where Mpivot = 2 ⇥ 1012
h
�1

M� and the best fit parameters
for the NFW profile are A = 5.71, B = �0.084 and C = �0.47.
These relations are valid over wide redshift ranges, 0 < z < 2
and over mass ranges 11 < log(M/M�h

�1) < 15.
The halo mass of each galaxy is estimated from the stel-

lar mass obtained from the photometric redshift of HSC. As
we described in section 2.2, we have two independent stel-
lar mass measurements. We will use both of them to see
how much the impact of di↵erent measurements of the stel-
lar mass is. Given the stellar mass of the galaxy, the halo

mass can be derived from the stellar to halo mass relation
(Behroozi et al. 2010). In order to consider the photo-z un-
certainty, the critical surface mass density is weighted by the
photo-z probability function as (Mandelbaum et al. 2008)

⌃�1
cr !

D
⌃�1

cr
E
=

π zs

0
P(zl)⌃�1

cr (zl, zs)dzlπ
P(z)dz

(30)

Total amount of magnification can then be evaluated
by multiplying over all the foreground galaxies,

log µtot
lens =

’
i

log µlens,i(✓i) +M, (31)

where µlens,i is the magnification by i-th galaxy, and M is
an average magnification of the Universe. The average mag-
nification M can be determined so that hlog µtot

lensi = 0. In
our analysis, we calculate the magnification with equation
(31) for 1000 random line of sights within the entire SNLS3
and HSC overlapped regions for every redshifts from 0.05
to 1.15 with �z = 0.1 interval. We note that the eq. (31)
is only correct when the individual magnification is small
and deflection can be negligible. Using an updated version
of the textscgravlens software (Keeton 2001), we calculate
the e↵ects of using a full multiplane lensing formalism and
find that they are small, confirming that we can safely use
the approximation of eq. (31) (see McCully et al. 2014, for
more detailed discussion).

5.2.2 Foreground Selection

Here we describe the method to select the foreground galax-
ies. First we have to remove the host galaxy of the SN. To
identify the host galaxy, we introduce the weighted angu-
lar separation ✓w ⌘ ✓/Mi , where ✓ is a geometrical angular
separation between SN and candidate galaxy and Mi is the
absolute magnitude of the candidate in i-band, which is de-
rived from the photometric redshift (Mizuki). We anticipate
that the larger absolute magnitude galaxy has more chance

MNRAS 000, 1–13 (2018)

Due to the existence of matter between SN and us,
gravitational lensing effect might appear in the brightness of SN.

corrected constraint

1901.10129

should be important for more precise measurement of SNe !
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ABSTRACT
We measure the scale dependence and redshift dependence of 21 cm line emitted from the
neutral hydrogen gas at redshift 1 < z < 5 using full cosmological hydrodynamic simulations
by taking the ratios between the power spectra of Hi–dark matter cross correlation and dark
matter auto-correlation. The neutral hydrogen distribution is computed in full cosmological
hydrodynamic simulations including star formation and supernova feedback under a uniform
ultra-violet background radiation. We find a significant scale dependence of Hi bias at z > 3
on scales of k & 1hMpc�1, but it is roughly constant at lower redshift z < 3. The redshift
evolution of Hi bias is relatively slow compared to that of QSOs at similar redshift range.
We also measure a redshift space distortion (RSD) of Hi gas to explore the properties of Hi
clustering. Fitting to a widely applied theoretical prediction, we find that the constant bias
is consistent with that measured directly from the real-space power spectra, and the velocity
dispersion is marginally consistent with the linear perturbation prediction. Finally we com-
pare the results obtained from our simulation and the Illustris simulation, and conclude that
the detailed astrophysical e↵ects do not a↵ect the scale dependence of Hi bias very much,
which implies that the cosmological analysis using 21 cm line of Hi will be robust against
the uncertainties arising from small-scale astrophysical processes such as star formation and
supernova feedback.

cosmology: theory – galaxies: formation – radio lines: general
– intergalactic medium – hydrodynamics

1 INTRODUCTION

The acceleration of the Universe has been one of the greatest mys-
teries since it was first discovered by the observations of type Ia su-
pernovae (Perlmutter et al. 1999). One of the most natural explana-
tions of the accelerated expansion is the dark energy in the regime
of general relativity or modified theory of gravity (e.g. Clifton et al.
2012, for review). Because the acceleration only becomes e↵ective
at the late epoch of z . 1, the most promising probe of dark energy
or modified gravity is the large-scale structure of the Universe.

Baryon acoustic oscillation (BAO) is recognized as a useful
technique which is least a↵ected by the systematics to constrain
the dark energy models (e.g. Albrecht et al. 2006). After the first
detection of BAO by the clustering of luminous red galaxies (LRG)
in the Sloan Digital Sky Survey (SDSS) (Eisenstein et al. 2005),
significant attention has been paid to constrain the dark energy us-
ing BAO in the power spectrum and correlation function (e.g. Ross
et al. 2015; Beutler et al. 2011). As the BAO is a measurement

of the oscillation peak scales, an accurate prediction of the peak
scales is required. It is well known that the oscillation peak scale is
readily changed by the non-linear clustering of matter (Nishimichi
et al. 2007) or the non-trivial couplings among di↵erent fluctua-
tion modes due to galaxy bias (e.g. Cole et al. 2005; Dalal et al.
2008; McDonald & Roy 2009). Another important aspect of the
BAO is the combination of parallel and perpendicular components
to the line of sight (Alcock & Paczynski 1979). Although the AP-
test makes the BAO a more powerful tool to constrain cosmologi-
cal parameters, the systematic e↵ect due to redshift space distortion
(RSD) has to be taken into account as it is degenerate with the AP
e↵ect.

As we can observe galaxies only in redshift space, the dis-
tance to the galaxies are contaminated by the peculiar velocities of
galaxies; on large scales, galaxies are coherently attracted toward
the overdensity regions which makes the anisotropic two dimen-
sional correlation function squashed, while on small scales, non-
linear random motion makes correlation function elongated along
the line of sight (e.g. Matsubara 2004). The RSD is important not
only for correctly understanding the distortion of the correlation
function to utilize the AP e↵ects in the BAO, but also to gain an in-
dependent cosmological information from the BAO. Since the RSD
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Figure 2. Hi bias defined by the cross correlation (Eq. 6) measured from the Illustris-3 simulation (left) and the Osaka simulation (right). In both panels, the
lines correspond to z = 5, 4, 3, 2, and 1 from top to bottom, respectively. The solid curves are the best-fitting models defined by Eq. (8). The error bars are the
standard deviation of b(k) within each bin divided by the number of modes available, �/

p
Nk , which means the standard deviation of the estimated mean. The

positions of data points and error bars are slightly shifted for the same bin in order to avoid complete overlap of error bars.

the discrepancy is less than 10% which is well within the 1-� statis-
tical error. For the reason that we explained in § 1, we use Illustris-3
for our fiducial comparison.

At 1 < z < 3, since the Universe is almost perfectly ionized
(Fan et al. 2006; Becker et al. 2015) and the amount of the neutral
hydrogen in the IGM is negligibly small, the majority of Hi gas
is confined in the high-density regions such as inside the galactic
halos (e.g. Nagamine et al. 2004a,b). Nevertheless, compared to the
bias of QSOs, the Hi bias is still lower (e.g. Laurent et al. 2017).
This implies that the Hi gas is more broadly distributed than QSOs,
or in other words, the QSOs reside only in extremely high-density
environment.

3.2 Scale dependence of Hi bias

It is known that the scale dependence of bias may shift the scale of
BAO peak, and therefore, an accurate modeling is crucial for pre-
cisely constraining the cosmological parameters. To find the signa-
ture of scale dependence of Hi bias, here we introduce the linear
function of k as

bHi(k) = b0 + b1k, (8)

where b0 and b1 are free parameters. Here we introduce the k-
dependence of bias simply as ‘b1k’ to discriminate between the
constant and scale-dependent bias. It is known that the k-dependent
term is induced by the relative velocity of baryon and dark matter
(Schmidt 2016). We fit the measured Hi bias from simulations with
Eq. (8) to quantify the scale dependence. We find the best-fitting
parameters by a usual Metropolitan-Hastings MC method with the

likelihood

L = exp

2
666666664�

1
2

ki<kmaxX

i

⇣
b̂Hi,i � bHi(ki)

⌘2

�2
i

3
777777775 , (9)

where kmax is the maximum wavenumber for the fitting. We first
choose kmax so that the fluctuation of dark matter is not too large,

k2
max

6⇡2

Z kmax

0
dkPlin(k, z) = C, (10)

with C = 0.7. This criterion is empirically derived, such that the
dark matter power spectrum of N-body simulation and prediction
of higher-order perturbation theory agrees within 1% (Nishimichi
et al. 2009; Taruya et al. 2009). This is slightly conservative for our
study, but it reasonably suggests the scale where structure becomes
quasi-linear and the Hi bias supposedly having a scale dependence.

Figure 3 shows the best-fitting parameters for the Hi bias.
Since we do not apply any priors on the parameters, Eq. (9) gives a
posterior distribution for each parameters. The statistical errors in
Fig. 3 is properly computed from this full posterior such that 68%
probability is included within the range of the errorbars. As one
can see, both the constant bias and scale-dependent components
are consistent between two di↵erent simulations. We find that the
scale dependence of Hi bias at z < 3 is insignificant and consistent
with constant bias. On the other hand, at z > 3, we find a significant
scale dependence of the bias.

In summary, we find that from Fig. 2, the Hi bias on small
scales behaves quite di↵erently between Osaka and Illustris sim-
ulations because of di↵erent prescriptions for star formation and
AGN/SN feedback. On the other hand, from Fig. 3, we find that
the bias on large scales is consistent with each other within statis-
tical errors, which implies that the details of astrophysics (e.g. star
formation and AGN/SN feedback) does not a↵ect the large-scale
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We explore the use of galaxy bispectrum induced by the nonlinear gravitational evolution as a
possible probe to test general scalar-tensor theories with second-order equations of motion. We
find that time dependence of the leading second-order kernel is approximately characterized by one
parameter, the second-order index, which is expected to trace the higher-order growth history of
the Universe. We show that our new parameter can significantly carry new information about the
non-linear growth of structure. We forecast future constraints on the second-order index as well as
the equation-of-state parameter and the growth index.

I. INTRODUCTION

It is one of the biggest challenges of modern cosmology to understand the physical origin of the present cosmic
acceleration of the Universe. The origin of the cosmic acceleration is expected to be connected to fundamental theory
beyond the current standard model of particle physics. It might eventually require the presence of a new type of
energy, usually called dark energy. As another possibility, the accelerated expansion might arise due to a modification
of general relativity (GR) on cosmological scales. A variety of theoretical scenarios have been proposed in literature
and carefully compared with observational data (see Refs. [1–3] for reviews).
Among many varieties of current cosmological observational data, measuring the growth rate of the density fluctu-

ations, f(a), is believed to be a powerful tool to test the nature of the dark energy or the modification of the theory
of gravity responsible for the present cosmic acceleration. the growth rate of large-scale structure is mainly measured
by observing galaxy peculiar velocities along the line of sight through redshift-space distortion (RSD) measurements
[4, 5]. To compare the observational data and theoretical predictions efficiently, it should be useful to introduce a phe-
nomenological parameter. A minimal approach to test the theory of gravity from the measurement of the growth rate
of large-scale structure is to introduce an additional parameter called gravitational growth index, γ, defined through
the growth rate [6, 7]:

f(a) = Ω̃γ
m(a) , (1)

where Ω̃m(a) denotes the matter density fraction of the total energy density at a cosmic scale factor a. In the standard
cosmological model responsible for the present cosmic acceleration, called Λ cold dark matter (ΛCDM) model with
GR, we expect the growth index to be approximately constant with γ ≈ 0.545. Although the current constraints on
the growth index have been reported [8–10], at the moment, there is no evidence for a departure from the standard
ΛCDM model. However, since there are numerous different ways of modeling the landscape of cosmological models,
it is further required to consider new possible parametrizations as the signature of the modified gravity theory.
In this paper, we focus on the quasi-nonlinearity of the growth of large-scale structure as a way to provide new insight

into the modified theory of gravity. As an observable for such a nonlinearity, we investigate the bispectrum of the biased
object such as a dark matter halo or galaxy which are frequently discussed as a useful tool to constrain the higher-
order statistical nature of cosmological perturbations (see e.g., Ref. [11] for constraining non-local types of primordial
non-Gaussianity). Even if the primordial perturbations are Gaussian, the non-zero halo/galaxy bispectrum should
be generated from the late-time nonlinear gravitational evolution of the density fluctuations and such a nonlinearity
should have new information about the modification of the gravity theory, which would not be imprinted on the
growth index in the linear perturbation theory. As examples, Refs. [12, 13] have discussed the bispectrum of the
matter density fluctuations in Horndeski theory which has been known as a most general scalar-tensor theory with
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Basic equations (fluid approximation) for evolution of the matter density contrast;

5

Since matter is assumed to be minimally coupled to gravity, the fluid equations are the same as the standard ones,
and hence under the quasi-static approximation the matter density fluctuations �(t,x) and the velocity field u

i(t,x)
obey

�̇ +
1

a
@i[(1 + �)ui] = 0, (30)

u̇
i +Hu

i +
1

a
u
j
@ju

i = �
1

a
@
i�. (31)

At linear order, these equations are combined to give

�̈ + 2H �̇ +
k
2

a2
� = 0, (32)

where we moved to Fourier space. The e↵ects of modified gravity come into play through the gravitational potential
� which is determined by solving Eqs. (23)–(25).

Let us then solve Eqs. (23)–(25) to express �,  , and Q in terms of � and its time derivatives. We will follow
the same procedure as that used in [42]. This procedure is feasible thanks to the degeneracy of the theory. Solving
Eqs. (23) and (24) for � and  and substituting these solutions into Eq. (25), one finds that Q̈ and Q̇ terms are
canceled due to the degeneracy, and hence Q can be expressed in the form

�
k
2

a2H2
Q = Q� + ⌫Q

�̇

H
, (33)

where the explicit expressions for the time-dependent coe�cients Q and ⌫Q are presented in Appendix A. Finally,
substituting this back into Eqs. (23) and (24), the gravitational potentials � and  can be expressed in terms of �, �̇,
and �̈ as

�
k
2

a2H2
� = �� + ⌫�

�̇

H
+ µ�

�̈

H2
, (34)

�
k
2

a2H2
 =  � + ⌫ 

�̇

H
+ µ 

�̈

H2
. (35)

The explicit expressions for the time-dependent coe�cients µi, ⌫i, and i (i = �, ) are also shown in Appendix A.
Within the Horndeski theory we have µi = ⌫i = 0 and in the GLPV theory we still have µ = 0. That is, µ first
appears in DHOST theories beyond GLPV. Equation (34) allows us to eliminate � from Eq. (32) and we obtain the
closed-form equation for � as

�̈ + (2 + &)H �̇ �
3

2
⌦m⌅�H

2
� = 0, (36)

where the additional friction & and the e↵ective gravitational coupling (multiplied by 8⇡M2) ⌅� are written in terms
of µ� , ⌫� , and � as

& =
2µ� � ⌫�

1� µ�
, (37)

⌅� =
2

3⌦m

�

1� µ�
. (38)

These two functions characterize modification of gravity. The evolution equation (36) has essentially the same form as
that in DHOST theories with c

2

GW
= 1 [40] and in the GLPV theory [17, 43]. Whether or not c2

GW
= 1 does not play

an important role in determining the qualitative form of Eq. (36). In the case of the Horndeski theory (↵H = �1 = 0),
the additional friction term vanishes, & = 0, and the result of Ref. [44] is recovered.

Equation (36) tells us that, even in DHOST theories under the quasi-static approximation, the evolution of the
matter density fluctuations is independent of the wavenumber, so that as usual we can write the growing solution to
Eq. (36) as

�(t,k) = D+(t)�L(k), (39)

where �L(k) represents the initial density field. The e↵ect of the modified evolution of the density perturbations is
thus imprinted in the growth factor, D+(t). Introducing the linear growth rate, f := d lnD+/d ln a, the evolution
equation can be written as

df

d ln a
+

✓
2 + & +

d lnH

d ln a

◆
f + f

2
�

3

2
⌦m⌅� = 0. (40)

; continuity equation

; Euler equation

gravitational potential

è Linearized evolution equation (in Fourie space);

5

Since matter is assumed to be minimally coupled to gravity, the fluid equations are the same as the standard ones,
and hence under the quasi-static approximation the matter density fluctuations �(t,x) and the velocity field u

i(t,x)
obey

�̇ +
1

a
@i[(1 + �)ui] = 0, (30)

u̇
i +Hu

i +
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i = �
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At linear order, these equations are combined to give

�̈ + 2H �̇ +
k
2

a2
� = 0, (32)

where we moved to Fourier space. The e↵ects of modified gravity come into play through the gravitational potential
� which is determined by solving Eqs. (23)–(25).

Let us then solve Eqs. (23)–(25) to express �,  , and Q in terms of � and its time derivatives. We will follow
the same procedure as that used in [42]. This procedure is feasible thanks to the degeneracy of the theory. Solving
Eqs. (23) and (24) for � and  and substituting these solutions into Eq. (25), one finds that Q̈ and Q̇ terms are
canceled due to the degeneracy, and hence Q can be expressed in the form

�
k
2

a2H2
Q = Q� + ⌫Q

�̇

H
, (33)

where the explicit expressions for the time-dependent coe�cients Q and ⌫Q are presented in Appendix A. Finally,
substituting this back into Eqs. (23) and (24), the gravitational potentials � and  can be expressed in terms of �, �̇,
and �̈ as

�
k
2

a2H2
� = �� + ⌫�

�̇

H
+ µ�

�̈

H2
, (34)
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k
2

a2H2
 =  � + ⌫ 
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H
+ µ 
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H2
. (35)

The explicit expressions for the time-dependent coe�cients µi, ⌫i, and i (i = �, ) are also shown in Appendix A.
Within the Horndeski theory we have µi = ⌫i = 0 and in the GLPV theory we still have µ = 0. That is, µ first
appears in DHOST theories beyond GLPV. Equation (34) allows us to eliminate � from Eq. (32) and we obtain the
closed-form equation for � as

�̈ + (2 + &)H �̇ �
3

2
⌦m⌅�H

2
� = 0, (36)

where the additional friction & and the e↵ective gravitational coupling (multiplied by 8⇡M2) ⌅� are written in terms
of µ� , ⌫� , and � as

& =
2µ� � ⌫�

1� µ�
, (37)

⌅� =
2

3⌦m

�

1� µ�
. (38)

These two functions characterize modification of gravity. The evolution equation (36) has essentially the same form as
that in DHOST theories with c

2

GW
= 1 [40] and in the GLPV theory [17, 43]. Whether or not c2

GW
= 1 does not play

an important role in determining the qualitative form of Eq. (36). In the case of the Horndeski theory (↵H = �1 = 0),
the additional friction term vanishes, & = 0, and the result of Ref. [44] is recovered.

Equation (36) tells us that, even in DHOST theories under the quasi-static approximation, the evolution of the
matter density fluctuations is independent of the wavenumber, so that as usual we can write the growing solution to
Eq. (36) as

�(t,k) = D+(t)�L(k), (39)

where �L(k) represents the initial density field. The e↵ect of the modified evolution of the density perturbations is
thus imprinted in the growth factor, D+(t). Introducing the linear growth rate, f := d lnD+/d ln a, the evolution
equation can be written as

df

d ln a
+

✓
2 + & +

d lnH

d ln a

◆
f + f

2
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3

2
⌦m⌅� = 0. (40)

In GR (Newtonian), Poisson equation for gravitational potential;

; gravitational law
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We explore the use of galaxy bispectrum induced by the nonlinear gravitational evolution as a
possible probe to test general scalar-tensor theories with second-order equations of motion. We
find that time dependence of the leading second-order kernel is approximately characterized by one
parameter, the second-order index, which is expected to trace the higher-order growth history of
the Universe. We show that our new parameter can significantly carry new information about the
non-linear growth of structure. We forecast future constraints on the second-order index as well as
the equation-of-state parameter and the growth index.

I. INTRODUCTION

It is one of the biggest challenges of modern cosmology to understand the physical origin of the present cosmic
acceleration of the Universe. The origin of the cosmic acceleration is expected to be connected to fundamental theory
beyond the current standard model of particle physics. It might eventually require the presence of a new type of
energy, usually called dark energy. As another possibility, the accelerated expansion might arise due to a modification
of general relativity (GR) on cosmological scales. A variety of theoretical scenarios have been proposed in literature
and carefully compared with observational data (see Refs. [1–3] for reviews).
Among many varieties of current cosmological observational data, measuring the growth rate of the density fluctu-

ations, f(a), is believed to be a powerful tool to test the nature of the dark energy or the modification of the theory
of gravity responsible for the present cosmic acceleration. the growth rate of large-scale structure is mainly measured
by observing galaxy peculiar velocities along the line of sight through redshift-space distortion (RSD) measurements
[4, 5]. To compare the observational data and theoretical predictions efficiently, it should be useful to introduce a phe-
nomenological parameter. A minimal approach to test the theory of gravity from the measurement of the growth rate
of large-scale structure is to introduce an additional parameter called gravitational growth index, γ, defined through
the growth rate [6, 7]:

f(a) = Ω̃γ
m(a) , (1)

where Ω̃m(a) denotes the matter density fraction of the total energy density at a cosmic scale factor a. In the standard
cosmological model responsible for the present cosmic acceleration, called Λ cold dark matter (ΛCDM) model with
GR, we expect the growth index to be approximately constant with γ ≈ 0.545. Although the current constraints on
the growth index have been reported [8–10], at the moment, there is no evidence for a departure from the standard
ΛCDM model. However, since there are numerous different ways of modeling the landscape of cosmological models,
it is further required to consider new possible parametrizations as the signature of the modified gravity theory.
In this paper, we focus on the quasi-nonlinearity of the growth of large-scale structure as a way to provide new insight

into the modified theory of gravity. As an observable for such a nonlinearity, we investigate the bispectrum of the biased
object such as a dark matter halo or galaxy which are frequently discussed as a useful tool to constrain the higher-
order statistical nature of cosmological perturbations (see e.g., Ref. [11] for constraining non-local types of primordial
non-Gaussianity). Even if the primordial perturbations are Gaussian, the non-zero halo/galaxy bispectrum should
be generated from the late-time nonlinear gravitational evolution of the density fluctuations and such a nonlinearity
should have new information about the modification of the gravity theory, which would not be imprinted on the
growth index in the linear perturbation theory. As examples, Refs. [12, 13] have discussed the bispectrum of the
matter density fluctuations in Horndeski theory which has been known as a most general scalar-tensor theory with
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Basic equations (fluid approximation) for evolution of the matter density contrast;
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Since matter is assumed to be minimally coupled to gravity, the fluid equations are the same as the standard ones,
and hence under the quasi-static approximation the matter density fluctuations �(t,x) and the velocity field u
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obey

�̇ +
1

a
@i[(1 + �)ui] = 0, (30)
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At linear order, these equations are combined to give

�̈ + 2H �̇ +
k
2

a2
� = 0, (32)

where we moved to Fourier space. The e↵ects of modified gravity come into play through the gravitational potential
� which is determined by solving Eqs. (23)–(25).

Let us then solve Eqs. (23)–(25) to express �,  , and Q in terms of � and its time derivatives. We will follow
the same procedure as that used in [42]. This procedure is feasible thanks to the degeneracy of the theory. Solving
Eqs. (23) and (24) for � and  and substituting these solutions into Eq. (25), one finds that Q̈ and Q̇ terms are
canceled due to the degeneracy, and hence Q can be expressed in the form

�
k
2

a2H2
Q = Q� + ⌫Q

�̇

H
, (33)

where the explicit expressions for the time-dependent coe�cients Q and ⌫Q are presented in Appendix A. Finally,
substituting this back into Eqs. (23) and (24), the gravitational potentials � and  can be expressed in terms of �, �̇,
and �̈ as

�
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2

a2H2
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�̇

H
+ µ�

�̈
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, (34)
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. (35)

The explicit expressions for the time-dependent coe�cients µi, ⌫i, and i (i = �, ) are also shown in Appendix A.
Within the Horndeski theory we have µi = ⌫i = 0 and in the GLPV theory we still have µ = 0. That is, µ first
appears in DHOST theories beyond GLPV. Equation (34) allows us to eliminate � from Eq. (32) and we obtain the
closed-form equation for � as

�̈ + (2 + &)H �̇ �
3

2
⌦m⌅�H

2
� = 0, (36)

where the additional friction & and the e↵ective gravitational coupling (multiplied by 8⇡M2) ⌅� are written in terms
of µ� , ⌫� , and � as

& =
2µ� � ⌫�

1� µ�
, (37)

⌅� =
2

3⌦m

�

1� µ�
. (38)

These two functions characterize modification of gravity. The evolution equation (36) has essentially the same form as
that in DHOST theories with c

2

GW
= 1 [40] and in the GLPV theory [17, 43]. Whether or not c2

GW
= 1 does not play

an important role in determining the qualitative form of Eq. (36). In the case of the Horndeski theory (↵H = �1 = 0),
the additional friction term vanishes, & = 0, and the result of Ref. [44] is recovered.

Equation (36) tells us that, even in DHOST theories under the quasi-static approximation, the evolution of the
matter density fluctuations is independent of the wavenumber, so that as usual we can write the growing solution to
Eq. (36) as

�(t,k) = D+(t)�L(k), (39)

where �L(k) represents the initial density field. The e↵ect of the modified evolution of the density perturbations is
thus imprinted in the growth factor, D+(t). Introducing the linear growth rate, f := d lnD+/d ln a, the evolution
equation can be written as

df

d ln a
+
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⌦m⌅� = 0. (40)

; continuity equation

; Euler equation

gravitational potentialinclude non-linear terms!
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Since matter is assumed to be minimally coupled to gravity, the fluid equations are the same as the standard ones,
and hence under the quasi-static approximation the matter density fluctuations �(t,x) and the velocity field u

i(t,x)
obey

�̇ +
1

a
@i[(1 + �)ui] = 0, (30)
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@ju
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a
@
i�. (31)

At linear order, these equations are combined to give

�̈ + 2H �̇ +
k
2

a2
� = 0, (32)

where we moved to Fourier space. The e↵ects of modified gravity come into play through the gravitational potential
� which is determined by solving Eqs. (23)–(25).

Let us then solve Eqs. (23)–(25) to express �,  , and Q in terms of � and its time derivatives. We will follow
the same procedure as that used in [42]. This procedure is feasible thanks to the degeneracy of the theory. Solving
Eqs. (23) and (24) for � and  and substituting these solutions into Eq. (25), one finds that Q̈ and Q̇ terms are
canceled due to the degeneracy, and hence Q can be expressed in the form

�
k
2

a2H2
Q = Q� + ⌫Q

�̇

H
, (33)

where the explicit expressions for the time-dependent coe�cients Q and ⌫Q are presented in Appendix A. Finally,
substituting this back into Eqs. (23) and (24), the gravitational potentials � and  can be expressed in terms of �, �̇,
and �̈ as

�
k
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H
+ µ�

�̈

H2
, (34)

�
k
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a2H2
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�̇

H
+ µ 
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H2
. (35)

The explicit expressions for the time-dependent coe�cients µi, ⌫i, and i (i = �, ) are also shown in Appendix A.
Within the Horndeski theory we have µi = ⌫i = 0 and in the GLPV theory we still have µ = 0. That is, µ first
appears in DHOST theories beyond GLPV. Equation (34) allows us to eliminate � from Eq. (32) and we obtain the
closed-form equation for � as

�̈ + (2 + &)H �̇ �
3
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2
� = 0, (36)

where the additional friction & and the e↵ective gravitational coupling (multiplied by 8⇡M2) ⌅� are written in terms
of µ� , ⌫� , and � as
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, (37)
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�

1� µ�
. (38)

These two functions characterize modification of gravity. The evolution equation (36) has essentially the same form as
that in DHOST theories with c

2

GW
= 1 [40] and in the GLPV theory [17, 43]. Whether or not c2

GW
= 1 does not play

an important role in determining the qualitative form of Eq. (36). In the case of the Horndeski theory (↵H = �1 = 0),
the additional friction term vanishes, & = 0, and the result of Ref. [44] is recovered.

Equation (36) tells us that, even in DHOST theories under the quasi-static approximation, the evolution of the
matter density fluctuations is independent of the wavenumber, so that as usual we can write the growing solution to
Eq. (36) as

�(t,k) = D+(t)�L(k), (39)

where �L(k) represents the initial density field. The e↵ect of the modified evolution of the density perturbations is
thus imprinted in the growth factor, D+(t). Introducing the linear growth rate, f := d lnD+/d ln a, the evolution
equation can be written as

df

d ln a
+
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⌦m⌅� = 0. (40)

Furthermore, in general, in scalar-tensor theories, non-trivial non-linear terms
would appear in the Poisson equation for gravitational potential

5

∇ and ϵ stand for the spatial derivatives and any of Φ , Ψ , and the perturbation of the scalar field δφ, respectively.
Under these assumptions, the basic equations up to the second-order (i.e., n = 1, 2) perturbations are given by [12, 17]

∇2 (FTΨ− GTΦ−A1Q) =
B1

2a2H2
Q(2) +

B3

a2H2

(
∇2Φ∇2Q−∇i∇jΦ∇i∇jQ

)
, (29)

∇2 (GTΨ +A2Q) =
a2

2
ρmδ −

B2

2a2H2
Q(2) −

B3

a2H2

(
∇2Ψ∇2Q−∇i∇jΨ∇i∇jQ

)
, (30)

∇2 (A0Q−A1Ψ−A2Φ) = −
B0

a2H2
Q(2) +

B1

a2H2

(
∇2Ψ∇2Q−∇i∇jΨ∇i∇jQ

)

+
B2

a2H2

(
∇2Φ∇2Q−∇i∇jΦ∇i∇jQ

)
+

B3

a2H2

(
∇2Φ∇2Ψ−∇i∇jΦ∇i∇jΨ

)
, (31)

where we have parameterized the scalar field perturbations as Q ≡ Hδφ/φ̇ and Q(2) =
(
∇2Q

)2 − (∇i∇jQ)2. The
coefficients GT , FT , Ai , and Bi are written in terms of the Horndeski functions K and Ga. The explicit forms of
these coefficients are summarized in Appendix A. In the standard ΛCDM model with GR, FT and GT can be reduced
to M2

pl and all of Ai and Bi become zero, and hence Eq. (29) and Eq. (30) respectively give Ψ = Φ and the standard
Poisson equation. From the above three equations, the Fourier components of the metric perturbations and the scalar
field perturbation, Φ, Ψ, and Q, can be formally written as [18, 19]

−
k2

a2H2
ϵ(t,k) = κϵ(t, k)δ(t,k) +

∫
d3k1d3k2

(2π)3
δ3D(k1 + k2 − k)γ2,ϵ(k1,k2; t)δ(t,k1)δ(t,k2) + · · · , (32)

up to the second order in the matter density perturbations. Each time dependent coefficient in the linear term, κϵ,
can be expressed as

κΦ(t) =
ρm(A0FT −A2

1)

2H2(A0G2
T + 2A1A2GT +A2

2FT)
, (33)

κΨ(t) =
ρm(A0GT −A1A2)

2H2(A0G2
T + 2A1A2GT +A2

2FT)
, (34)

κQ(t) =
ρm(A1GT −A2FT)

2H2(A0G2
T + 2A1A2GT +A2

2FT)
. (35)

Moreover, comparing the second-order contributions of Eqs. (29)-(31) with Eq. (32), we obtain the nonlinear interac-
tion term for Φ as

γ2,Φ(k1,k2; t) = τΦ(t)

(
1−

(k1 · k2)2

k21k
2
2

)
, (36)

where the time-dependent coefficient τΦ is

τΦ(t) =
H2

ρm

(
2B0κ

3
Q − 3B1κΨκ

2
Q − 3B2κΦκ

2
Q − 6B3κΦκΨκQ

)
. (37)

In the similar way, we can obtain κ and τ for Ψ and Q. However, since we consider matter which is minimal-coupled
to the metric, the effect of the gravity theory on the evolution of the matter perturbations appears only through the
gravitational potential Φ as same as in the GR case. Therefore, only κ and τ for Φ are required to evaluate the
evolution of the matter perturbation in the second-order perturbation theory. Note that, although these coefficients,
κ and τ , should be in general treated as the scale-dependent terms when the scalar potential terms are taken into
account to accommodate chameleon-type models such as f(R) gravity [19], we only consider the Vainshtein-type
models in which κ and τ are shown to depend only on the time.
Next we consider the matter perturbation evolution. In the case of minimal-coupling, the evolution equations for

the matter perturbations are same as in the case of GR. Then, the modification of the gravity theory in the growth
of the matter density fluctuations would appear through κΦ and γ2,Φ (or τΦ) given in the above discussion. Here, we
focus on the galaxy bispectrum which can probe the nonlinear (second-order) gravitational evolution of the matter
density fluctuations, and it is described by the second-order perturbative kernels F2 and G2 defined in Eqs. (7) and (8).
It has been found that in Horndeski theory these kernels are provided in the more suggestive forms as [12, 13]

F2(k1,k2) =

(
1 +

k1 · k2(k21 + k22)

2k21k
2
2

)
−

2

7
λ(t)

(
1−

(k1 · k2)2

k21k
2
2

)
, (38)

G2(k1,k2) =

(
1 +

k1 · k2(k21 + k22)

2k21k
2
2

)
−

4

7
λθ(t)

(
1−

(k1 · k2)2

k21k
2
2

)
, (39)

e.g., second order in the perturbation  
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We explore the use of galaxy bispectrum induced by the nonlinear gravitational evolution as a
possible probe to test general scalar-tensor theories with second-order equations of motion. We
find that time dependence of the leading second-order kernel is approximately characterized by one
parameter, the second-order index, which is expected to trace the higher-order growth history of
the Universe. We show that our new parameter can significantly carry new information about the
non-linear growth of structure. We forecast future constraints on the second-order index as well as
the equation-of-state parameter and the growth index.

I. INTRODUCTION

It is one of the biggest challenges of modern cosmology to understand the physical origin of the present cosmic
acceleration of the Universe. The origin of the cosmic acceleration is expected to be connected to fundamental theory
beyond the current standard model of particle physics. It might eventually require the presence of a new type of
energy, usually called dark energy. As another possibility, the accelerated expansion might arise due to a modification
of general relativity (GR) on cosmological scales. A variety of theoretical scenarios have been proposed in literature
and carefully compared with observational data (see Refs. [1–3] for reviews).
Among many varieties of current cosmological observational data, measuring the growth rate of the density fluctu-

ations, f(a), is believed to be a powerful tool to test the nature of the dark energy or the modification of the theory
of gravity responsible for the present cosmic acceleration. the growth rate of large-scale structure is mainly measured
by observing galaxy peculiar velocities along the line of sight through redshift-space distortion (RSD) measurements
[4, 5]. To compare the observational data and theoretical predictions efficiently, it should be useful to introduce a phe-
nomenological parameter. A minimal approach to test the theory of gravity from the measurement of the growth rate
of large-scale structure is to introduce an additional parameter called gravitational growth index, γ, defined through
the growth rate [6, 7]:

f(a) = Ω̃γ
m(a) , (1)

where Ω̃m(a) denotes the matter density fraction of the total energy density at a cosmic scale factor a. In the standard
cosmological model responsible for the present cosmic acceleration, called Λ cold dark matter (ΛCDM) model with
GR, we expect the growth index to be approximately constant with γ ≈ 0.545. Although the current constraints on
the growth index have been reported [8–10], at the moment, there is no evidence for a departure from the standard
ΛCDM model. However, since there are numerous different ways of modeling the landscape of cosmological models,
it is further required to consider new possible parametrizations as the signature of the modified gravity theory.
In this paper, we focus on the quasi-nonlinearity of the growth of large-scale structure as a way to provide new insight

into the modified theory of gravity. As an observable for such a nonlinearity, we investigate the bispectrum of the biased
object such as a dark matter halo or galaxy which are frequently discussed as a useful tool to constrain the higher-
order statistical nature of cosmological perturbations (see e.g., Ref. [11] for constraining non-local types of primordial
non-Gaussianity). Even if the primordial perturbations are Gaussian, the non-zero halo/galaxy bispectrum should
be generated from the late-time nonlinear gravitational evolution of the density fluctuations and such a nonlinearity
should have new information about the modification of the gravity theory, which would not be imprinted on the
growth index in the linear perturbation theory. As examples, Refs. [12, 13] have discussed the bispectrum of the
matter density fluctuations in Horndeski theory which has been known as a most general scalar-tensor theory with
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Can we observe (perturbatively) second order effects ?
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BY assuming the linear perturbation is a Gaussian,
second order effect should appear as non-Gaussianity! 

Gaussianity of the linear perturbation is supported in the inflationary genesis scenario

Non-Gaussianity can be detected as higher order correlation function !

e.g., 3-point correlation function in real space çè bispectrum in Fourier space
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We explore the use of galaxy bispectrum induced by the nonlinear gravitational evolution as a
possible probe to test general scalar-tensor theories with second-order equations of motion. We
find that time dependence of the leading second-order kernel is approximately characterized by one
parameter, the second-order index, which is expected to trace the higher-order growth history of
the Universe. We show that our new parameter can significantly carry new information about the
non-linear growth of structure. We forecast future constraints on the second-order index as well as
the equation-of-state parameter and the growth index.

I. INTRODUCTION

It is one of the biggest challenges of modern cosmology to understand the physical origin of the present cosmic
acceleration of the Universe. The origin of the cosmic acceleration is expected to be connected to fundamental theory
beyond the current standard model of particle physics. It might eventually require the presence of a new type of
energy, usually called dark energy. As another possibility, the accelerated expansion might arise due to a modification
of general relativity (GR) on cosmological scales. A variety of theoretical scenarios have been proposed in literature
and carefully compared with observational data (see Refs. [1–3] for reviews).
Among many varieties of current cosmological observational data, measuring the growth rate of the density fluctu-

ations, f(a), is believed to be a powerful tool to test the nature of the dark energy or the modification of the theory
of gravity responsible for the present cosmic acceleration. the growth rate of large-scale structure is mainly measured
by observing galaxy peculiar velocities along the line of sight through redshift-space distortion (RSD) measurements
[4, 5]. To compare the observational data and theoretical predictions efficiently, it should be useful to introduce a phe-
nomenological parameter. A minimal approach to test the theory of gravity from the measurement of the growth rate
of large-scale structure is to introduce an additional parameter called gravitational growth index, γ, defined through
the growth rate [6, 7]:

f(a) = Ω̃γ
m(a) , (1)

where Ω̃m(a) denotes the matter density fraction of the total energy density at a cosmic scale factor a. In the standard
cosmological model responsible for the present cosmic acceleration, called Λ cold dark matter (ΛCDM) model with
GR, we expect the growth index to be approximately constant with γ ≈ 0.545. Although the current constraints on
the growth index have been reported [8–10], at the moment, there is no evidence for a departure from the standard
ΛCDM model. However, since there are numerous different ways of modeling the landscape of cosmological models,
it is further required to consider new possible parametrizations as the signature of the modified gravity theory.
In this paper, we focus on the quasi-nonlinearity of the growth of large-scale structure as a way to provide new insight

into the modified theory of gravity. As an observable for such a nonlinearity, we investigate the bispectrum of the biased
object such as a dark matter halo or galaxy which are frequently discussed as a useful tool to constrain the higher-
order statistical nature of cosmological perturbations (see e.g., Ref. [11] for constraining non-local types of primordial
non-Gaussianity). Even if the primordial perturbations are Gaussian, the non-zero halo/galaxy bispectrum should
be generated from the late-time nonlinear gravitational evolution of the density fluctuations and such a nonlinearity
should have new information about the modification of the gravity theory, which would not be imprinted on the
growth index in the linear perturbation theory. As examples, Refs. [12, 13] have discussed the bispectrum of the
matter density fluctuations in Horndeski theory which has been known as a most general scalar-tensor theory with
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FIG. 2: Forecast 1σ and 2σ marginalized contours in (γ, ξ) plane for SKA1MID(blue), SKA2(red) and Euclid(green), marginal-
izing over the equation-of-state parameter and bias parameters. For comparison, we also plot the kinetic gravity braiding model
(purple boxes), and the large ξ model (orange triangle).

TABLE I: Summary of the 1σ constraints on the equation-of-state parameter , the gravitational growth index γ and the
second-order index ξ marginalized over the linear and nonlinear bias parameters.

survey ∆wDE ∆γ ∆ξ
SKA1MID 0.135 0.067 0.060

SKA2 0.0085 0.0087 0.0094
Euclid 0.016 0.021 0.018

In Fig. 2, we show the 1σ and 2σ confidence regions of the gravitational growth index γ and the second-order
index ξ. The results of our Fisher analysis marginalizing over the bias parameters are summarized in Table I. For
comparison, we also plot the predicted values of {γ, ξ} for the kinetic gravity braiding model [35] (n = 1, 2, 3) as
purple boxes and the large ξ model with p = 1, derived in Appendix B as orange triangle. Although the constraint
from galaxy bispectrum on the gravitational growth index γ is relatively weaker than the expected constraints by
galaxy power spectrum, the precise measurement conducted by future galaxy surveys can constrain ξ significantly. In
particular, we can distinguish the models in which the expansion history and the linear growth rate are almost same
as the fiducial mode but the different nonlinear evolution is given.

VI. CONCLUSION

In this paper, we have discussed the potential power of the bispectrum of biased objects as a possible new probe to
test the theory of gravity beyond the linear-order perturbation. To investigate the impact of the galaxy bispectrum,
we have performed the generalization of the redshift-space galaxy bispectrum to the wider class of gravity theory
based on the standard cosmological perturbation theory. Since the modification of gravity theory typically changes
the clustering property of large-scale structure, measuring the galaxy bispectrum induced by the late-time nonlinear
gravitational evolution of the density fluctuations can be used to test the gravity theory through the evolution of the
linear growth rate and the second-order kernels. Among them, in order to focus on the time-evolving coefficient λ
in the second-order kernel, we have introduced the second-order index ξ defined in Eq. (69), as a good candidate to
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FIG. 2: Forecast 1σ and 2σ marginalized contours in (γ, ξ) plane for SKA1MID(blue), SKA2(red) and Euclid(green), marginal-
izing over the equation-of-state parameter and bias parameters. For comparison, we also plot the kinetic gravity braiding model
(purple boxes), and the large ξ model (orange triangle).

TABLE I: Summary of the 1σ constraints on the equation-of-state parameter , the gravitational growth index γ and the
second-order index ξ marginalized over the linear and nonlinear bias parameters.

survey ∆wDE ∆γ ∆ξ
SKA1MID 0.135 0.067 0.060

SKA2 0.0085 0.0087 0.0094
Euclid 0.016 0.021 0.018

In Fig. 2, we show the 1σ and 2σ confidence regions of the gravitational growth index γ and the second-order
index ξ. The results of our Fisher analysis marginalizing over the bias parameters are summarized in Table I. For
comparison, we also plot the predicted values of {γ, ξ} for the kinetic gravity braiding model [35] (n = 1, 2, 3) as
purple boxes and the large ξ model with p = 1, derived in Appendix B as orange triangle. Although the constraint
from galaxy bispectrum on the gravitational growth index γ is relatively weaker than the expected constraints by
galaxy power spectrum, the precise measurement conducted by future galaxy surveys can constrain ξ significantly. In
particular, we can distinguish the models in which the expansion history and the linear growth rate are almost same
as the fiducial mode but the different nonlinear evolution is given.

VI. CONCLUSION

In this paper, we have discussed the potential power of the bispectrum of biased objects as a possible new probe to
test the theory of gravity beyond the linear-order perturbation. To investigate the impact of the galaxy bispectrum,
we have performed the generalization of the redshift-space galaxy bispectrum to the wider class of gravity theory
based on the standard cosmological perturbation theory. Since the modification of gravity theory typically changes
the clustering property of large-scale structure, measuring the galaxy bispectrum induced by the late-time nonlinear
gravitational evolution of the density fluctuations can be used to test the gravity theory through the evolution of the
linear growth rate and the second-order kernels. Among them, in order to focus on the time-evolving coefficient λ
in the second-order kernel, we have introduced the second-order index ξ defined in Eq. (69), as a good candidate to
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We explore the use of galaxy bispectrum induced by the nonlinear gravitational evolution as a
possible probe to test general scalar-tensor theories with second-order equations of motion. We
find that time dependence of the leading second-order kernel is approximately characterized by one
parameter, the second-order index, which is expected to trace the higher-order growth history of
the Universe. We show that our new parameter can significantly carry new information about the
non-linear growth of structure. We forecast future constraints on the second-order index as well as
the equation-of-state parameter and the growth index.

I. INTRODUCTION

It is one of the biggest challenges of modern cosmology to understand the physical origin of the present cosmic
acceleration of the Universe. The origin of the cosmic acceleration is expected to be connected to fundamental theory
beyond the current standard model of particle physics. It might eventually require the presence of a new type of
energy, usually called dark energy. As another possibility, the accelerated expansion might arise due to a modification
of general relativity (GR) on cosmological scales. A variety of theoretical scenarios have been proposed in literature
and carefully compared with observational data (see Refs. [1–3] for reviews).
Among many varieties of current cosmological observational data, measuring the growth rate of the density fluctu-

ations, f(a), is believed to be a powerful tool to test the nature of the dark energy or the modification of the theory
of gravity responsible for the present cosmic acceleration. the growth rate of large-scale structure is mainly measured
by observing galaxy peculiar velocities along the line of sight through redshift-space distortion (RSD) measurements
[4, 5]. To compare the observational data and theoretical predictions efficiently, it should be useful to introduce a phe-
nomenological parameter. A minimal approach to test the theory of gravity from the measurement of the growth rate
of large-scale structure is to introduce an additional parameter called gravitational growth index, γ, defined through
the growth rate [6, 7]:

f(a) = Ω̃γ
m(a) , (1)

where Ω̃m(a) denotes the matter density fraction of the total energy density at a cosmic scale factor a. In the standard
cosmological model responsible for the present cosmic acceleration, called Λ cold dark matter (ΛCDM) model with
GR, we expect the growth index to be approximately constant with γ ≈ 0.545. Although the current constraints on
the growth index have been reported [8–10], at the moment, there is no evidence for a departure from the standard
ΛCDM model. However, since there are numerous different ways of modeling the landscape of cosmological models,
it is further required to consider new possible parametrizations as the signature of the modified gravity theory.
In this paper, we focus on the quasi-nonlinearity of the growth of large-scale structure as a way to provide new insight

into the modified theory of gravity. As an observable for such a nonlinearity, we investigate the bispectrum of the biased
object such as a dark matter halo or galaxy which are frequently discussed as a useful tool to constrain the higher-
order statistical nature of cosmological perturbations (see e.g., Ref. [11] for constraining non-local types of primordial
non-Gaussianity). Even if the primordial perturbations are Gaussian, the non-zero halo/galaxy bispectrum should
be generated from the late-time nonlinear gravitational evolution of the density fluctuations and such a nonlinearity
should have new information about the modification of the gravity theory, which would not be imprinted on the
growth index in the linear perturbation theory. As examples, Refs. [12, 13] have discussed the bispectrum of the
matter density fluctuations in Horndeski theory which has been known as a most general scalar-tensor theory with
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TABLE I: Summary of the 1σ constraints on the equation-of-state parameter , the gravitational growth index γ and the
second-order index ξ marginalized over the linear and nonlinear bias parameters.

survey ∆wDE ∆γ ∆ξ
SKA1MID 0.135 0.067 0.060

SKA2 0.0085 0.0087 0.0094
Euclid 0.016 0.021 0.018

In Fig. 2, we show the 1σ and 2σ confidence regions of the gravitational growth index γ and the second-order
index ξ. The results of our Fisher analysis marginalizing over the bias parameters are summarized in Table I. For
comparison, we also plot the predicted values of {γ, ξ} for the kinetic gravity braiding model [35] (n = 1, 2, 3) as
purple boxes and the large ξ model with p = 1, derived in Appendix B as orange triangle. Although the constraint
from galaxy bispectrum on the gravitational growth index γ is relatively weaker than the expected constraints by
galaxy power spectrum, the precise measurement conducted by future galaxy surveys can constrain ξ significantly. In
particular, we can distinguish the models in which the expansion history and the linear growth rate are almost same
as the fiducial mode but the different nonlinear evolution is given.

VI. CONCLUSION

In this paper, we have discussed the potential power of the bispectrum of biased objects as a possible new probe to
test the theory of gravity beyond the linear-order perturbation. To investigate the impact of the galaxy bispectrum,
we have performed the generalization of the redshift-space galaxy bispectrum to the wider class of gravity theory
based on the standard cosmological perturbation theory. Since the modification of gravity theory typically changes
the clustering property of large-scale structure, measuring the galaxy bispectrum induced by the late-time nonlinear
gravitational evolution of the density fluctuations can be used to test the gravity theory through the evolution of the
linear growth rate and the second-order kernels. Among them, in order to focus on the time-evolving coefficient λ
in the second-order kernel, we have introduced the second-order index ξ defined in Eq. (69), as a good candidate to
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galaxy power spectrum, the precise measurement conducted by future galaxy surveys can constrain ξ significantly. In
particular, we can distinguish the models in which the expansion history and the linear growth rate are almost same
as the fiducial mode but the different nonlinear evolution is given.
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In this paper, we have discussed the potential power of the bispectrum of biased objects as a possible new probe to
test the theory of gravity beyond the linear-order perturbation. To investigate the impact of the galaxy bispectrum,
we have performed the generalization of the redshift-space galaxy bispectrum to the wider class of gravity theory
based on the standard cosmological perturbation theory. Since the modification of gravity theory typically changes
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linear growth rate and the second-order kernels. Among them, in order to focus on the time-evolving coefficient λ
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We explore the use of galaxy bispectrum induced by the nonlinear gravitational evolution as a
possible probe to test general scalar-tensor theories with second-order equations of motion. We
find that time dependence of the leading second-order kernel is approximately characterized by one
parameter, the second-order index, which is expected to trace the higher-order growth history of
the Universe. We show that our new parameter can significantly carry new information about the
non-linear growth of structure. We forecast future constraints on the second-order index as well as
the equation-of-state parameter and the growth index.

I. INTRODUCTION

It is one of the biggest challenges of modern cosmology to understand the physical origin of the present cosmic
acceleration of the Universe. The origin of the cosmic acceleration is expected to be connected to fundamental theory
beyond the current standard model of particle physics. It might eventually require the presence of a new type of
energy, usually called dark energy. As another possibility, the accelerated expansion might arise due to a modification
of general relativity (GR) on cosmological scales. A variety of theoretical scenarios have been proposed in literature
and carefully compared with observational data (see Refs. [1–3] for reviews).
Among many varieties of current cosmological observational data, measuring the growth rate of the density fluctu-

ations, f(a), is believed to be a powerful tool to test the nature of the dark energy or the modification of the theory
of gravity responsible for the present cosmic acceleration. the growth rate of large-scale structure is mainly measured
by observing galaxy peculiar velocities along the line of sight through redshift-space distortion (RSD) measurements
[4, 5]. To compare the observational data and theoretical predictions efficiently, it should be useful to introduce a phe-
nomenological parameter. A minimal approach to test the theory of gravity from the measurement of the growth rate
of large-scale structure is to introduce an additional parameter called gravitational growth index, γ, defined through
the growth rate [6, 7]:

f(a) = Ω̃γ
m(a) , (1)

where Ω̃m(a) denotes the matter density fraction of the total energy density at a cosmic scale factor a. In the standard
cosmological model responsible for the present cosmic acceleration, called Λ cold dark matter (ΛCDM) model with
GR, we expect the growth index to be approximately constant with γ ≈ 0.545. Although the current constraints on
the growth index have been reported [8–10], at the moment, there is no evidence for a departure from the standard
ΛCDM model. However, since there are numerous different ways of modeling the landscape of cosmological models,
it is further required to consider new possible parametrizations as the signature of the modified gravity theory.
In this paper, we focus on the quasi-nonlinearity of the growth of large-scale structure as a way to provide new insight

into the modified theory of gravity. As an observable for such a nonlinearity, we investigate the bispectrum of the biased
object such as a dark matter halo or galaxy which are frequently discussed as a useful tool to constrain the higher-
order statistical nature of cosmological perturbations (see e.g., Ref. [11] for constraining non-local types of primordial
non-Gaussianity). Even if the primordial perturbations are Gaussian, the non-zero halo/galaxy bispectrum should
be generated from the late-time nonlinear gravitational evolution of the density fluctuations and such a nonlinearity
should have new information about the modification of the gravity theory, which would not be imprinted on the
growth index in the linear perturbation theory. As examples, Refs. [12, 13] have discussed the bispectrum of the
matter density fluctuations in Horndeski theory which has been known as a most general scalar-tensor theory with
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FIG. 2: Forecast 1σ and 2σ marginalized contours in (γ, ξ) plane for SKA1MID(blue), SKA2(red) and Euclid(green), marginal-
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TABLE I: Summary of the 1σ constraints on the equation-of-state parameter , the gravitational growth index γ and the
second-order index ξ marginalized over the linear and nonlinear bias parameters.

survey ∆wDE ∆γ ∆ξ
SKA1MID 0.135 0.067 0.060

SKA2 0.0085 0.0087 0.0094
Euclid 0.016 0.021 0.018

In Fig. 2, we show the 1σ and 2σ confidence regions of the gravitational growth index γ and the second-order
index ξ. The results of our Fisher analysis marginalizing over the bias parameters are summarized in Table I. For
comparison, we also plot the predicted values of {γ, ξ} for the kinetic gravity braiding model [35] (n = 1, 2, 3) as
purple boxes and the large ξ model with p = 1, derived in Appendix B as orange triangle. Although the constraint
from galaxy bispectrum on the gravitational growth index γ is relatively weaker than the expected constraints by
galaxy power spectrum, the precise measurement conducted by future galaxy surveys can constrain ξ significantly. In
particular, we can distinguish the models in which the expansion history and the linear growth rate are almost same
as the fiducial mode but the different nonlinear evolution is given.

VI. CONCLUSION

In this paper, we have discussed the potential power of the bispectrum of biased objects as a possible new probe to
test the theory of gravity beyond the linear-order perturbation. To investigate the impact of the galaxy bispectrum,
we have performed the generalization of the redshift-space galaxy bispectrum to the wider class of gravity theory
based on the standard cosmological perturbation theory. Since the modification of gravity theory typically changes
the clustering property of large-scale structure, measuring the galaxy bispectrum induced by the late-time nonlinear
gravitational evolution of the density fluctuations can be used to test the gravity theory through the evolution of the
linear growth rate and the second-order kernels. Among them, in order to focus on the time-evolving coefficient λ
in the second-order kernel, we have introduced the second-order index ξ defined in Eq. (69), as a good candidate to
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In Fig. 2, we show the 1σ and 2σ confidence regions of the gravitational growth index γ and the second-order
index ξ. The results of our Fisher analysis marginalizing over the bias parameters are summarized in Table I. For
comparison, we also plot the predicted values of {γ, ξ} for the kinetic gravity braiding model [35] (n = 1, 2, 3) as
purple boxes and the large ξ model with p = 1, derived in Appendix B as orange triangle. Although the constraint
from galaxy bispectrum on the gravitational growth index γ is relatively weaker than the expected constraints by
galaxy power spectrum, the precise measurement conducted by future galaxy surveys can constrain ξ significantly. In
particular, we can distinguish the models in which the expansion history and the linear growth rate are almost same
as the fiducial mode but the different nonlinear evolution is given.

VI. CONCLUSION

In this paper, we have discussed the potential power of the bispectrum of biased objects as a possible new probe to
test the theory of gravity beyond the linear-order perturbation. To investigate the impact of the galaxy bispectrum,
we have performed the generalization of the redshift-space galaxy bispectrum to the wider class of gravity theory
based on the standard cosmological perturbation theory. Since the modification of gravity theory typically changes
the clustering property of large-scale structure, measuring the galaxy bispectrum induced by the late-time nonlinear
gravitational evolution of the density fluctuations can be used to test the gravity theory through the evolution of the
linear growth rate and the second-order kernels. Among them, in order to focus on the time-evolving coefficient λ
in the second-order kernel, we have introduced the second-order index ξ defined in Eq. (69), as a good candidate to
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Powerful for testing some class of ST theories !! 



Thus… (based on our efforts ..)

l Bunch of dark energy models ..

cosmological constant

Quintessence models

Scalar- tensor theories 

Resolve the dark energy problem !?



Summary
l Expansion of our Universe is now accelerating.

l There are many attempts to solve the problem;
``what is the source of this acceleration? - dark energy”

l Cosmological constant, quintessence, massive gravity, 
Scalar tensor theories, …

l In cosmological observations, measuring the expansion rate
and also measuring the growth of matter density contrast
should be important.

l Observational cosmology group in Nagoya gives important
contributions in dark energy studies!


