HIGH-ENERGY VS. FLAVOR EXPERIMENTS

JURE ZUPAN U. OF CINCINNATI

1

Hints for NP in Heavy Flavors, Nagoya, Nov 16 2018

HIGH ENERGY VS. FLAVOR EXPERIMENTS

- at low energies probe off-shell states $Br(i \to f) \propto \left(\frac{g_i g_f}{m^2}\right)^2$
- at high energies on-shell production
 - s-channel

$$\sigma(i \to X) \times Br(X \to f) \propto \mathcal{L}_i(m) \left(\frac{g_i g_f}{m^2}\right)^2 \frac{1}{\Gamma_{\text{tot}}}$$

• other options: *t*-channel, pair production,

probe different combinations of couplings and masses*

*small print: at high eng. could also still be off shell, which couplings depend on which prod/decay channel, etc

J. Zupan High-energy vs. flavor

Nagoya, Nov 16 2018

HIGH ENERGY VS. FLAVOR EXPERIMENTS

• flavor experiments: NP scale A (TeV) 10² 10² UTFit 0707.0636, 1411.7233 Re C_K may probe much 2007→~now Im C_K higher scales Im C_D CBd • an impressive C_{Bs} progress on 10⁴ flavor bounds in last 10 years 10³ • in D, B_s mixing 10² also from ε_K $\frac{1}{\Lambda^2} (\bar{b}_L \gamma^\mu d_L) (\bar{b}_L \gamma_\mu d_L)$ 10 C C C_{λ} \mathbf{C} Nagoya, Nov 16 2018 3

UTFit 0707.0636, 1411.7233 for latest charm see also Bazavov et al, 1706.04622

. Lupan ingirenergy

OUTLINE

- $b \rightarrow s \mu \mu$ and $b \rightarrow c \tau v$ anomalies
- theories of flavor and (HE-)LHC
- Higgs and flavor
- electroweak baryogenesis and flavor

BANOMALIES VS. HIGH ENERGY

PRESENT EXPERIMENTAL SITUATION

- many different transitions measured
- two quark level transitions show
 ~4σ deviations from the SM*

* there are other interesting deviations, e.g., ~3σ deviation in ε'/ε, see, e.g., Buras et al, 1507.06345; RBC-UKQCD, 1502.00263
 J. Zupan High-energy vs. flavor
 6
 Nagoya, Nov 16 2018

WHAT KIND OF NP?

- only a finite number of viable single mediators
- $b \rightarrow s\mu\mu$: two classes of models
 - tree level: Z', leptoquarks S_3, V_1, V_3

• can be heavy, 10s of TeV

loop level: need to be light ≤TeV

WHAT KIND OF NP?

- only a finite number of viable single mediators
- $b \rightarrow c\tau v$: needs to be tree level
 - has to be light, up to few TeV

- for both anomalies: coupling to quarks need to be present (*b*,*s* or *b*,*c*)
 - LHC searches should lead to relevant constraints

J. Zupan High-energy vs. flavor

8

BOUNDS ON SIMPLIFIED MODELS

all the four tree level mediators couple to LH quarks and leptons Freytsis, Ligeti, Ruderman, 1506.08896 $g(\ell_L)$

 q_L

 $ar{q}_L d_R \phi + \lambda_u ar{q}_L \mu_R i au_2 \phi^\dagger + \lambda_k ar{\ell}_L e_R \phi)$

$$(\chi \bar{q}_L) \gamma_\mu \ell_L + \tilde{\lambda} \, \bar{d}_R \gamma_\mu e_R) U^\mu$$

$$(\lambda \bar{q}_L^c i \tau_2 \ell_L) + \tilde{\lambda} \bar{u}_R^c e_R) S$$

9

Faroughy, Greljo, Kamenik, 1609.07138

• the q_L flavor struct. that roughly minimizes constraints

 $(g_d\bar{q}_L$

$$Q_3 = \begin{pmatrix} V_{ub}u_L + V_{cb}c_L + V_{tb}t_L \\ b_L \end{pmatrix}$$

- only coupling to
- then $b \rightarrow c\tau v$ is V_{cb} suppressed

J. Zupan High-energy vs. flavor

DIRECT SEARCHES IN TT

- $b \rightarrow c \tau v$ implies a $1/V_{cb}$ enhanced $b \bar{b} \rightarrow \tau^+ \tau^-$
- severe bounds from LHC

• for instance for vector triplet: W', Z'

MODELS WITH RIGHT HANDED NEUTRINO

Robinson, Shakya, JZ, 1807.04753

 b_L

MODELS WITH RIGHT-HANDED NEUTRINO

Robinson, Shakya, JZ, 1807.04753

J. Zupan High-energy vs. flavor

Nagoya, Nov 16 2018

12

direct searches in τv

ATLAS, 1801.06992; CMS, 1807.11421

J. Zupan High-energy vs. flavor

THE Z'MODELS FOR $b \rightarrow s \mu \mu$

- similarly the $b \rightarrow s\mu\mu$ get bounded by ATLAS, CMS from $pp \rightarrow Z' \rightarrow \mu\mu$
 - flavor structure important
 - e.g., for MFV ansatz

$$c_{Q_{ij}L_{22}}^{(3,1)} \sim \left(\mathbf{1} + \alpha Y_u Y_u^{\dagger} + \beta Y_d Y_d^{\dagger}\right)_{ij}$$

$$J_{\mu} = g_{Q}^{(1),ij}(\bar{Q}_{i}\gamma_{\mu}Q_{j}) + g_{L}^{(1),kl}(\bar{L}_{k}\gamma^{\mu}L_{l})$$

Greljo, Marzocca, 1704.09015

J. Zupan High-energy vs. flavor

Nagoya, Nov 16 2018

TOP-PHILIC Z'

Kamenik, Soreq, JZ, 1704.06005

- top-philic Z' avoids contraints from dimuon resonance searches $a^{(3,1)} = (\mathbf{x} + \mathbf{a}\mathbf{y} \mathbf{y}^{\dagger} + \mathbf{\beta}\mathbf{y} \mathbf{y}^{\dagger})$
 - $b \rightarrow s$ due to SM W in the loop
- automatic (*sb*)_{V-A}
 chiral structure

SM value

J. Zupan

$$c_{Q_{ij}L_{22}}^{(3,1)} \sim \left(\mathbf{X} + \alpha Y_{u}Y_{u}^{\dagger} + \beta Y_{d}Y_{d}^{\dagger} \right)_{ij}$$

$$d^{i} \underbrace{\mathbf{A}^{i}}_{W} \underbrace{\mathbf{A}^{j}}_{t} \underbrace{\mathbf$$

• MFV structure: all FV due to CKM

• there is a correlated signal in $K \rightarrow \pi v v$

cf. NA62 reach: 10% of the SM

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) \simeq (8.4 \pm 1.0) \times 10^{-11} \times \frac{1}{3} \sum_{\ell} \left| 1 + 0.11 (C_9^{\ell, \text{NP}} - C_{10}^{\ell, \text{NP}}) \right|^2$$

15

see also Bordone, Buttazzo, Isidori, Monnard, 1705.10729 Nagoya, Nov 16 2018

DIRECT SEARCHES

16

- contraints from dimuon searches: loop production or assoc. $t\bar{t}$
- depends on $Br(Z' \rightarrow \mu \mu)$
 - below *t* threshold:
 - coupling to $\mu_L \Rightarrow Br(Z' \rightarrow \mu\mu) = 0.5$
 - coupling to $\mu_L, \tau_L \Rightarrow Br(Z' \rightarrow \mu\mu) = 0.25$
- interesting possible searches at LHC
 - $pp \rightarrow \bar{t}t(Z' \rightarrow \mu\mu), \bar{t}t(Z' \rightarrow \tau\tau), \bar{t}t(Z' \rightarrow \bar{t}t)$

Nagoya, Nov 16 2018

FLAVOR MODELS AND (HE-)LHC

MODELS OF FLAVOR

- SM flavor puzzle: the origin of hierarchies between SM fermion masses?
- several solutions
 - extra dimensional RS models
 - Frogatt-Nielsen models
 - partial compositness
 - clockwork flavor model

Alonso, Carmona, Dillon, Kamenik, Camalich, JZ, 1807.09792

- in all cases important constraints from flavor observables
- some predict states at ~TeV

MODELS OF FLAVOR

- SM flavor puzzle: the origin of hierarchies between SM fermion masses?
- several solutions
 - extra dimensional RS
 - Frogatt-Nielsen mode
 - partial compositness
 - clockwork flavor model

Alonso, Carmona, Dillon, Kamenik, Camalich, JZ, 1807.09792

- in all cases important constraints from flavor observables
- some predict states at ~TeV

CLOCKWORK FLAVOR

• the hierarchy from clockworking

Alonso, Carmona, Dillon, Kamenik, Camalich, JZ, 1807.09792

chiral fermion coupled to a chain of vector-like fermions

• if Higgs on *0*-th node → hierarchical masses

CW vs FN

- clockwork flavor very reminiscent of Froggatt-Nielsen
- if clockwork from horizontal *U*(1)
 - in FN: $\lambda = \langle \phi \rangle / m \sim 0.2$
 - in CW: $\lambda = m/\langle \phi \rangle \sim 0.2$

CW: vectorlike

chiral FN:

chiral

Alonso, Carmona, Dillon, Kamenik, Camalich, JZ, 1807.09792

vectorlike

CW GEARS

- minimal field content: just vector-like fermion "gears"
 - CW protection against FCNCs from overlap suppressions
- the bounds from flavor require them to be above few TeV
- have relatively complex decay chains

HOW TO SEARCH FOR GEARS?

- from low energy observables Alonso, Carmona, Dillon, Kamenik, Camalich, JZ, 1807.09792
 - B_s , B_d , D, K mixing; rare meson decays $b \rightarrow sll$, $b \rightarrow sv\bar{v}$ and $s \rightarrow dv\bar{v}$
- from on-shell production at LHC
 - pair production with *tW*+*X*, *tH*+*X*, *tZ*+*X* decays
 - vector-like searches: several lightest gears contribute
 - modified hemisphere clustering could reveal individual gears

HIGGS AND FLAVOR

HIGGS - A NEW PROBE OF FLAVOR

in the SM all flavor structure due to the Higgs
 Yukawa couplings
 10¹

 $y_f = \sqrt{2}m_f/v$

- implies Higgs has very hierarchical couplings to fermions
- how well have we tested this?

TESTING THE FLAVOR OF THE HIGGS

Nir, 1605.00433

- several questions
 - proportionality $y_{ii} \propto m_i$
 - factor of proportionality

$$y_{ii}/m_i = \sqrt{2}/v$$

 diagonality (flavor violation)

$$y_{ij} = 0, \quad i \neq j$$

• reality (CP violation) $\operatorname{Im}(y_{ij}) = 0$

$$y_f^{\rm SM} = \sqrt{2}m_f/v$$

HIERARCHICAL COUPLINGS?

- does Higgs couple to the first two generations?
 - tough: couplings are small
- more modest question: can we show that the couplings are hierarchical?
 - yes, but for quarks with some assumptions

MUON YUKAWA

- the SM Higgs muon Yukawa accessible at high-luminosity LHC
- the only one among the first two generations of fermions
- could significantly deviate from the SM
 - could even be zero

FLAVOR VIOLATING COUPLINGS

- in the SM Higgs couplings flavor diagonal
 - discovering flavor violating couplings means New Physics
- for $h \rightarrow \tau \mu$, $h \rightarrow \tau e$ the best probe is LHC
- for *h*→µ*e* the best probe are indirect searches

FLAVOR VIOLATING COUPLINGS

 accessible directly for charged lepton final states

• from
$$h \rightarrow \tau \mu$$
, $h \rightarrow \tau e_{\text{for } \hat{\lambda}_{ij} = 1}$
 $Y_{ij} = \frac{m_i}{v} \delta_{ij} + \frac{v^2}{\sqrt{2}\Lambda^2} \hat{\lambda}_{ij}$
 $A_{\mu\tau} > 5.5 \text{ TeV}$

J. Zupan High-energy vs. flavor
$$A_{e\tau} > 4.4 \text{ TeV}$$
Nagoya, Nov 16 2018

INDIRECT BOUNDS ON $h \rightarrow \tau \mu$

Harnik, Kopp, JZ, 1209.1397

see also Blankenburg, Ellis, Isidori, 1202.5704

 also indirect bounds from charged lepton FCNC transitions

INDIRECT BOUNDS ON $h \rightarrow e\mu$

Harnik, Kopp, JZ, 1209.1397

- indirect bounds especially severe for $h \rightarrow e\mu$
- $Br(h \rightarrow e\mu) < 10^{-8}$ required to surpass the bound from $Br(\mu \rightarrow e\gamma)$
- caveat: could be cancellations in the loop

BOUNDS FROM EDMS

- stringent constraints from EDMs
- recently NLL resummation for bottom and charm for hadronic EDMs Brod, Stamou, 1810.12303
- most stringent bounds from electron EDM
 |d_e| < 1.1 × 10⁻²⁹ e cm

Brod, Haisch, JZ, 1310.1385

ACME collaboration, Nature 562 (2018) 355–360

$$\tilde{\kappa}_t < 1.2 \times 10^{-3} \quad \tilde{\kappa}_b < 0.4 \quad \tilde{\kappa}_c < 1 \quad \tilde{\kappa}_\tau < 0.30$$

J. Zupan High-energy vs. flavor

Nagoya, Nov 16 2018

FLAVOR AND ELECTROWEAK BARYOGENESIS

BARYOGENESIS AND VARYING YUKAWAS

- review: Servant, 1807.11507 in models of flavor Yukawas have dynamical origin
- viable EWBG if Yukawas change during EW phase transition
 - strong 1st order phase transition
 - large Yukawas at early times, thus enhanced sources of CPV
- models: two flavon FN, RS with Goldberger-Wise, composite Higgs

- searches at Belle II: all the classic flavor observables B mixing, etc,
 - sometimes model dep. modes, e.g. decay to axiflavon, a: $B \rightarrow Ka, D \rightarrow \pi a$, etc

J. Zupan High-energy vs. flavor

Calibbi, Goertz, Redigolo, Ziegler, JZ, 1612.08040

Nagoya, Nov 16 2018

34

BARYOGENESIS FROM B MIXING

Elor, Escudero, Nelson, 1810.00880

- viable baryogenesis with only SM CPV
- dark particle ψ carries baryon number
 - search at Belle for $B \rightarrow baryon + MET$
- needs a colored mediator, *Y*, search for it at ATLAS, CMS

 $Br(B \to \xi \phi + Baryon) \simeq$

	Initial State	Final state	OGENE	SIS F	ROM				
	B_d	$\psi + \Lambda \left(usd ight)$	D						
lor	B_s	$\psi + \Xi^0 \left(uss ight)$	BMIX	ING	ψ				
	B^+	$\psi + \Sigma^+ (uus)$	nesis with only SM CPV						
	Λ_b	$\bar{\psi} + K^0$	=carries harvon number						
	B_d	$\psi + n \ (udd)$	= carries varyon number b b b b b b b b b b b b b b b b b b b						
	B_s	$\psi + \Lambda \left(u d s \right)$	e for $B \rightarrow baryon + MET$						
	B^+	$\psi + p\left(duu ight)$	mediator, Y,	$\operatorname{Br}(B \to \xi \phi)$	$\phi + \text{Baryon}) \simeq$				
	Λ_b	$ar{\psi}+\pi^0$	ATLAS, CMS	$(-m_{\psi})^4 \left(\frac{1 \text{ TeV}}{\sqrt{y_{ub}y_{\psi s}}}\right)^4$					
	B_d	$\psi + \Xi_c^0 (csd)$		10 (2	GeV) (m_Y 0.53) .				
	B_s	$\psi + \Omega_c \left(css ight)$	P violating oscillation	B-r S Dark	nesons decay into Matter and hadrons				
	B^+	$\psi + \Xi_c^+ \left(csu \right)$							
	Λ_b	$\bar{\psi} + D^- + K^+$	B^+ B^0_d B^0_s		Dark Matter				
	B_d	$\psi + \Lambda_c + \pi^- (cdd)$	I I	$\rightarrow B$					
	B_s	$\psi + \Xi_{c}^{0} \left(c d s ight)$	$B^ \bar{B}^0_d$ \bar{B}^0_s		A Baryon				
	B^+	$\psi + \Lambda_c \left(dcu ight)$							
	Λ_b	$ar{\psi}+\overline{D}^0$	$A^a_{\ell\ell} A^s_{\ell\ell}$	BR(B	$f \rightarrow \phi \xi + \text{Baryon} + \dots)$				

E

CONCLUSIONS

- nontrivial constraints on $b \rightarrow c\tau v$ and $b \rightarrow s \mu \mu$ anomalies from high p_T measurements
- many other interesting interplays
 - a sample: clockwork flavor, Higgs and flavor, baryogenesis and flavor

BACKUP SLIDES

BARYOGENESIS FROM Elor, Escudero, Nelson, 1810.00880 BARXING

 ψ

 B_d^0

Λ

- viable baryogenesis with only SM CPV
- dark particle ψ carries baryon number
 - search at Belle for $B \rightarrow$ baryon +MET
- needs a colored mediator, *Y*, search for it at ATLAS, CMS

MODELS WITH SM NEUTRINO

Freytsis, Ligeti, Ruderman, 1506.08896

	1		1	
	Operator	Fierz identity	Allowed Current	$\delta {\cal L}_{ m int}$
$\overline{\mathcal{O}_{V_L}}$	$(\bar{c}\gamma_{\mu}P_{L}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)$	($({f 1},{f 3})_0$	$(g_q ar q_L oldsymbol{ au} \gamma^\mu q_L + g_\ell ar \ell_L oldsymbol{ au} \gamma^\mu \ell_L) W_\mu'$
${\cal O}_{V_R}$	$(\bar{c}\gamma_{\mu}P_{R}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)$	2 color single	et	
\mathcal{O}_{S_R}	$(\bar{c}P_Rb)(\bar{\tau}P_L u)$	2 00101 511151		
\mathcal{O}_{S_L}	$(\bar{c}P_Lb)(\bar{\tau}P_L u)$	mediators	$\langle (1,2)_{1/2}$	$(\lambda_d ar q_L d_R \phi + \lambda_u ar q_L u_R \imath au_2 \phi^{ m ext{+}} + \lambda_\ell \ell_L e_R \phi)$
\mathcal{O}_T	$(\bar{c}\sigma^{\mu\nu}P_Lb)(\bar{\tau}\sigma_{\mu\nu}P_L\nu)$			
$\mathcal{O}'_{V_{I}}$	$(\bar{\tau}\gamma_{\mu}P_{L}b)(\bar{c}\gamma^{\mu}P_{L} u)$	$\leftrightarrow \mathcal{O}_{V_{r}}$	$({f 3},{f 3})_{2/3}$	$\lambda ar{q}_L oldsymbol{ au} \gamma_\mu \ell_L oldsymbol{U}^\mu$
0'.	$(\bar{\tau}_{\gamma}, P_{\rm p} h) (\bar{\tau}_{\gamma}^{\mu} P_{\rm r} \mu)$	$ -2O_{\rm c} $	$\langle (3,1)_{2/3} \rangle$	$(\lambda \bar{q}_L \gamma_\mu \ell_L + \tilde{\lambda} \bar{d}_R \gamma_\mu e_R) U^\mu$
\mathcal{O}_{V_R} \mathcal{O}_{\sim}'	$(\bar{\tau} P_{\rm D} h) (\bar{c} P_{\rm L} \nu)$			
\mathcal{O}_{S_L}'	$(\bar{\tau} P_L b) (\bar{c} P_L \nu)$	$\longleftrightarrow -\frac{1}{2}\mathcal{O}_{S_L} - \frac{1}{8}\mathcal{O}_T$	$({\bf 3},{\bf 2})_{7/6}$	$(\lambda \bar{u}_R \ell_L + \tilde{\lambda} \bar{q}_L i \tau_2 e_R) R$ 6 lepto
\mathcal{O}_T^{\prime}	$(\bar{\tau}\sigma^{\mu\nu}P_Lb)(\bar{c}\sigma_{\mu\nu}P_L\nu)$	$\longleftrightarrow -6\mathcal{O}_{S_L} + \frac{1}{2}\mathcal{O}_T$		medi
\mathcal{O}_{V_L}''	$(\bar{\tau}\gamma_{\mu}P_{L}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L}\nu)$	$\longleftrightarrow -\mathcal{O}_{V_R}$		meu
${\cal O}_{V_R}^{\prime\prime}$	$(\bar{ au}\gamma_{\mu}P_{R}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L} u)$	$\longleftrightarrow -2\mathcal{O}_{S_R}$	$(ar{f 3}, {f 2})_{5/3}$	$(\lambda \bar{d}_R^c \gamma_\mu \ell_L + \tilde{\lambda} \bar{q}_L^c \gamma_\mu e_R) V^\mu$
\mathcal{O}_{S_R}''	$(ar{ au} P_R c^c) (ar{b}^c P_L u)$	$\longleftrightarrow \frac{1}{2}\mathcal{O}_{V_L}$	$(ar{3},3)_{1/3}$	$\lambdaar{q}_L^c i au_2oldsymbol{ au}\ell_Loldsymbol{S}$
\mathcal{O}_{S_T}''	$(ar{ au}P_Lc^c)(ar{b}^cP_L u)$	$\longleftrightarrow -\frac{1}{2}\mathcal{O}_{S_L} + \frac{1}{2}\mathcal{O}_T$	$\Big angle (ar{3}, 1)_{1/3}$	$(\lambda ar{q}_L^c i au_2 \ell_L + ilde{\lambda} ar{u}_R^c e_R) S$
\mathcal{O}_T''	$\left[\left(\bar{\tau} \sigma^{\mu\nu} P_L c^c \right) \left(\bar{b}^c \sigma_{\mu\nu} P_L \nu \right) \right]$	$\longleftrightarrow -\hat{6}\mathcal{O}_{S_L} - \frac{1}{2}\mathcal{O}_T$, '	

DIRECT SEARCHES IN TT

gu

 $(\lambda \bar{q}_L^3 \gamma_\mu \ell_L + \tilde{\lambda} d_R \gamma_\mu e_R) U^\mu$

- vector leptoquark: U_μ
 - bounds depend somewhat on flavor structure assumed

DIRECT SEARCHES IN TT

gu

allowing $\mathcal{O}(V_{cb})\bar{q}_L^2\gamma\tau_L U_\mu$

 $(\lambda \bar{q}_L^3 \gamma_\mu \ell_L + \tilde{\lambda} d_R \gamma_\mu e_R) U^\mu$

09.07242

- vector leptoquark: U_{μ}
 - bounds depend somewhat on flavor structure assumed
 Buttazzo, Greljo, Isidori, Marzocca, 1706.07808

Faroughy, Greljo, Kamenik, 1609.07138

Leptoquark for both $b \rightarrow c\tau v$ and $b \rightarrow s\mu\mu$

41

Buttazzo, Greljo, Isidori, Marzocca, 1706.07808

• in EFT possible to explain all anomalies

 $\left|\frac{1}{v^2}\lambda^q_{ij}\lambda^\ell_{\alpha\beta}\left[C_T \ (\bar{Q}^i_L\gamma_\mu\sigma^a Q^j_L)(\bar{L}^\alpha_L\gamma^\mu\sigma^a L^\beta_L) + C_S \ (\bar{Q}^i_L\gamma_\mu Q^j_L)(\bar{L}^\alpha_L\gamma^\mu L^\beta_L)\right]\right.$

 $\lambda^q_{sb} = \mathcal{O}(|V_{cb}|) \;, \quad \lambda^\ell_{ au\mu} = \mathcal{O}(|V_{ au\mu}|) \;, \quad \lambda^\ell_{\mu\mu} = \mathcal{O}(|V_{ au\mu}|^2)$

with MFV-like flavor structure

- predicts $Br(b \rightarrow s\tau\tau) \sim O(100)x SM$
- if NP contribs.
 dominated by one field
 - only one option: vector leptoquark

 $U_1^{\mu} \equiv (\mathbf{3},\mathbf{1},2/3)$

J. Zupan High-energy vs. flavor

Inagoya, Inov

Leptoquark for both $b \rightarrow c\tau v$ and $b \rightarrow s\mu\mu$

Buttazzo, Greljo, Isidori, Marzocca, 1706.07808

• in EFT possible to explain all anomalies

 $\left|\frac{1}{v^2}\lambda_{ij}^q\lambda_{\alpha\beta}^\ell \left[C_T \left(\bar{Q}_L^i\gamma_\mu\sigma^a Q_L^j\right)(\bar{L}_L^\alpha\gamma^\mu\sigma^a L_L^\beta) + C_S \left(\bar{Q}_L^i\gamma_\mu Q_L^j\right)(\bar{L}_L^\alpha\gamma^\mu L_L^\beta)\right]\right.$

 $\lambda_{sb}^q = \mathcal{O}(|V_{cb}|) \ , \quad \lambda_{ au\mu}^\ell = \mathcal{O}(|V_{ au\mu}|) \ , \quad \lambda_{\mu\mu}^\ell = \mathcal{O}(|V_{ au\mu}|^2)$

- with MFV-like flavor
- predicts $Br(b \rightarrow s\tau\tau) \sim C$
- if NP contribs.
 dominated by one field
 - only one option:
 vector leptoquark

$$U_1^{\mu} \equiv (\mathbf{3}, \mathbf{1}, 2/3)$$

J. Zupan High-energy vs. flavor

LEPTOQUARK FOR BOTH

MODELS WITH RIGHT-HANDED NEUTRINO

Robinson, Shakya, JZ, 1807.04753

MODELS WITH RIGHT-

MODELS WITH RIGHT-HANDED NEUTRINO

Robinson, Shakya, JZ, 1807.04753

J. Zupan High-energy vs. flavor

Nagoya, Nov 16 2018

MODELS WITH RIGHT-HANDED NEUTRINO

- left with three simplified models: W', U₁,S₁
- couplings of *U*₁,*S*₁ further constrained
 - potentially too large contribs.
 to neutrino masses
 at 2 loops

 net result: all three match predominantly onto EFT operator

$$\mathcal{O}_{\mathrm{VR}} = \left(\bar{c}_R \gamma^\mu b_R\right) \left(\bar{\tau}_R \gamma_\mu N_R\right),\,$$

'3221' GAUGE MODEL

- straightforward to UV complete W' model
- '3221' gauge model: $SU(3)_c \times SU(2)_L \times SU(2)_V \times U(1)'$
 - $SU(2)_V \times U(1)' \rightarrow U(1)_Y$ breaking, e.g., via $SU(2)_V$ doublet, H_V
 - extra vector-like fermions

Field	$SU(3)_c$	$SU(2)_L$	$SU(2)_V$	U(1)'		
	Extra vector-like fermions					
$Q_{L,R}^{\prime i}$	3	1	2	1/6		
$L_{L,R}^{\prime i}$	1	1	2	-1/2		

• large mixing with b_R , c_R , τ_R , v_R ($\lambda v_V/M \gg 1$)

RIGHT-HANDED NEUTRINO

- the N_R in $b \rightarrow c\tau N_R$ is Majorana, mostly from L_R'
- for single generation neutrino mass matrix

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & \frac{y_{\nu}v_{\rm EW}}{\sqrt{2}} & 0 & 0 \\ \frac{y_{\nu}v_{\rm EW}}{\sqrt{2}} & \mu & \frac{\lambda_{\nu}v_{V}}{\sqrt{2}} & 0 \\ 0 & \frac{\lambda_{\nu}v_{V}}{\sqrt{2}} & 0 & M_{L} \\ 0 & 0 & M_{L} & 0 \end{pmatrix}$$

$$(\nu_L',\nu_R'^c,N_L',N_R'^c)$$

• for $v_{EW} = 0$, SM neutrino v_L' decouples

• for $\mu = 0$ a massless Majorana neutrino is the state

$$N_R^c = \cos \theta_N \nu_R^{\prime c} - \sin \theta_N N_R^{\prime c}$$
 ta

$$\tan \theta_N = (\lambda_\nu v_V) / (\sqrt{2}M_L)$$

for λ_νv_ν»M_L the massless RH neutrino has a large admixture of N_R'

J. Zupan High-energy vs. flavor

LHC CONSTRAINTS

- assume minimal flavor structure needed for the anomaly
 - large couplings to *b*,*c*,*τ*
- LHC constraints from $pp \rightarrow W' \rightarrow \tau N_R, pp \rightarrow Z' \rightarrow \tau \tau$ searches
- if only the SM channels open $Br(W \rightarrow \tau N_R)$: $Br(W \rightarrow cb) \approx 1.3$
- reduced, if vector-like fermions light enough

LHC CONSTRAINTS

vor structure needed for

$$v,c,\tau$$

m $pp \rightarrow W' \rightarrow \tau N_R, pp \rightarrow$

nels open $Br(W \rightarrow \tau N_R)$:

reduced, it vector-like fermions light enough

LHC CONSTRAINTS

