New predictions for $R(D^{(*)})$

Zoltan Ligeti

(ligeti@berkeley.edu)

Mini-workshop on $D^{(*)}\tau\bar{\nu}$ and related topics Nagoya University, March 27–28, 2017

F. Bernlochner, ZL, D. Robinson, M Papucci, 1703.05330
D. Robinson, ZL, M Papucci, JHEP 1701 (2017) 083 [1610.02045]
M. Freytsis, ZL, J. Ruderman, PRD 92 (2015) 054018 [1506.08896]
+ works in progress ...

Flavor anomalies: (subjective) status

- Several measurements are in intriguing tensions with the SM
 Key roles of Δm_K and ε_K remain, to constrain NP
 vs. flood of LHCb data, exploring Higgs flavor, etc.
- Guaranteed to probe and understand the SM much better (e.g., "new" hadronic states)
 We'll at least understand inclusive vs. exclusive better...

Hope of discovering BSM phenomena

• Exp.: NA62 taking data, by 2019 measure $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ to < 10% (at SM level) Belle II approaching, time to make genuine predictions is shrinking LHCb 300/fb upgrade planning + improving EDM, CLFV, DM, sensitivities

• $B \to D^{(*)} \tau \bar{\nu}$ is currently the most significant deviation from the SM (at colliders)

1. Use $B \to D^{(*)} l \bar{\nu}$ to refine $R(D^{(*)})$, lattice independent, improvable

[F. Bernlochner, ZL, Papucci, Robinson, 1703.05330]

Refine $|V_{cb}|$, test HQET, test fitting, test lattice, test measurements...

2. MFV models, leptoquarks [M. Freytsis, ZL, J. Ruderman, PRD 92 (2015) 054018, arXiv:1506.08896]

Suppress $e \& \mu$ instead of enhancing τ ?

[M. Freytsis, ZL, J. Ruderman, to appear]

"When you think you can finally forget something, it's about to become important"

[soon]

The tension with the SM

Reliable SM predictions: heavy quark symmetry + lattice QCD (only D so far)

• Model indep. 2σ tension: $R(D^{(*)})$ vs. $R(X_c) = 0.223 \pm 0.004$ in SM [Freytsis, ZL, Ruderman] No $\mathcal{B}(B \to X\tau\bar{\nu})$ measurement since LEP, $\mathcal{B}(b \to X\tau^+\nu) = (2.41 \pm 0.23)\%$

Imply NP at a fairly low scale (leptoquarks, W', etc.), likely visible at the LHC

- Next: LHCb result with hadronic τ decays, measure R(D), $B_c \& \Lambda_b$ decays
- Experimental precision will improve a lot + theory uncertainty also improvable

Refining SM predictions

Can it be a theory issue?

Basics of $B
ightarrow D^{(*)} \ell ar{
u}$

• Only Lorentz invariance: 6 functions of q^2 , only 4 measurable with e, μ final states

$$\langle D | \bar{c}\gamma^{\mu}b | \bar{B} \rangle = f_{+}(q^{2})(p_{B} + p_{D})^{\mu} + \left[f_{0}(q^{2}) - f_{+}(q^{2}) \right] \frac{m_{B}^{2} - m_{D}^{2}}{q^{2}} q^{\mu}$$

$$\langle D^{*} | \bar{c}\gamma^{\mu}b | \bar{B} \rangle = -ig(q^{2}) \epsilon^{\mu\nu\rho\sigma} \varepsilon_{\nu}^{*} (p_{B} + p_{D^{*}})_{\rho} q_{\sigma}$$

$$\langle D^{*} | \bar{c}\gamma^{\mu}\gamma^{5}b | \bar{B} \rangle = \varepsilon^{*\mu}f(q^{2}) + a_{+}(q^{2}) (\varepsilon^{*} \cdot p_{B}) (p_{B} + p_{D^{*}})^{\mu} + a_{-}(q^{2}) (\varepsilon^{*} \cdot p_{B}) q^{\mu}$$
Two form factors involving $q^{\mu} = p_{B}^{\mu} - p_{D^{(*)}}^{\mu}$ do not contribute for $m_{l} = 0$
HQET constraints: 6 functions $\Rightarrow 1$ in $m_{c,b} \gg \Lambda_{\rm QCD}$ limit + 3 at $\mathcal{O}(\Lambda_{\rm QCD}/m_{c,b})$

$$\langle D | \bar{c}\gamma^{\mu}b | \bar{B} \rangle = \sqrt{m_{B}m_{D}} \left[h_{+}(v + v')^{\mu} + h_{-}(v - v')^{\mu} \right] \qquad w = v_{B} \cdot v'_{D^{(*)}}$$

$$\langle D^{*} | \bar{c}\gamma^{\mu}\gamma^{5}b | \bar{B} \rangle = i\sqrt{m_{B}m_{D^{*}}} h_{V} \varepsilon^{\mu\nu\alpha\beta} \epsilon_{\nu}^{*}v'_{\alpha}v_{\beta}$$

$$\langle D^{*} | \bar{c}\gamma^{\mu}\gamma^{5}b | \bar{B} \rangle = \sqrt{m_{B}m_{D^{*}}} \left[h_{A_{1}}(w + 1)\epsilon^{*\mu} - h_{A_{2}}(\epsilon^{*} \cdot v)v^{\mu} - h_{A_{3}}(\epsilon^{*} \cdot v)v'^{\mu} \right]$$

 $m_{c,b} \gg \Lambda_{\text{QCD}}$ limit: $h_+ = h_V = h_{A_1} = h_{A_3} = \xi(w)$ and $h_- = h_{A_2} = 0$

• Constrain all 4 functions from $B \to D^{(*)} l \bar{\nu} \Rightarrow \mathcal{O}(\Lambda_{\text{QCD}}^2/m_{c,b}^2, \alpha_s^2)$ uncertainties

Form factor expansion details

• Expand form factors to order $\varepsilon_{c,b} = \Lambda_{\rm QCD}/(2m_{c,b})$ and α_s (new results for tensor ff)

$$f_i(w) = \xi(w) \left[1 + \varepsilon_c f_i^{(c,1)}(w) + \varepsilon_b f_i^{(b,1)}(w) + \alpha_s f_i^{(\alpha_s)} \left(\frac{m_c}{m_b}, w\right) + \mathcal{O}(\varepsilon_{c,b}^2, \alpha_s^2) \right]$$

The $\alpha_s \varepsilon_{c,b}$ terms are known, should be included if NP established Expect that fit readjusts subleading Isgur-Wise functions \Rightarrow modest impacts

Known for SM terms since the early 90s, but not written down for others before

Absorbed $\xi(w) \to \xi(w) + 2(\varepsilon_c + \varepsilon_b)\chi_1(w)$, so only $\chi_{2,3}$ and $\eta = \xi_3/\xi$ remain

• Calculated in QCD sum rules — may parametrize them: Lagrangian: $\hat{\chi}_{2}^{\text{ren}}(1) = -0.06 \pm 0.02$ $\hat{\chi}_{2}^{\prime \text{ren}}(1) = 0 \pm 0.02$ $\hat{\chi}_{3}^{\prime \text{ren}}(1) = 0.04 \pm 0.02$ Current: $\eta(1) = 0.62 \pm 0.2$, $\eta'(1) = 0 \pm 0.2$ (Luke: $\hat{\chi}_{3}(1) = 0$)

Central values match what CLN used, these uncertainties > in original papers

Measured spectra for $e\,\&\,\mu$ final states

• 4 functions: two q^2 spectra in $D^{(*)}$ + two q^2 -dependent angular distributions in D^* All form factors = Isgur-Wise function + $\Lambda_{QCD}/m_{c,b} + \alpha_s$ corrections

[Plot from BaBar 0705.4008; only Belle unfolded 1510.03657, 1702.01521]

Consider 7 different fit scenarios

- All calculations of subleading $\Lambda_{QCD}/m_{c,b}$ Isgur-Wise functions model dependent Only R(D) calculated in LQCD — all others did not include uncertainties properly
- Theory [CLN] & exp papers: $R_{1,2}(w) = \underbrace{R_{1,2}(1)}_{\text{fit}} + \underbrace{R'_{1,2}(1)}_{\text{fixed}}(w-1) + \underbrace{R''_{1,2}(1)}_{\text{fixed}}(w-1)^2/2$ In HQET: $R_{1,2}(1) = 1 + \mathcal{O}(\Lambda_{\text{QCD}}/m_{c,b}, \alpha_s)$ $R_{1,2}^{(n)}(1) = 0 + \mathcal{O}(\Lambda_{\text{QCD}}/m_{c,b}, \alpha_s)$

Sometimes calculations using QCD sum rule predictions for $\Lambda_{
m QCD}/m_{c,b}$ corrections are called the HQET predictions

Our fits:				Lattice QCD		
	ГЦ	QUDON	$\mathcal{F}(1)$	$f_{+,0}(1)$	$f_{+,0}(w > 1)$	Delle Dala
	$L_{w=1}$		+	+	_	+
	$L_{w=1}+SR$	+	+	+	—	+
	NoL	—	—		—	+
	NoL+SR	+			—	+
	$L_{w \ge 1}$	—	+	+	+	+
	$L_{w\geq 1}{+}SR$	+	+	+	+	+
	th:L $_{w\geq 1}$ +SR	+	+	+	+	

• Standard choice to minimize range of expansion param' z_* in unitarity constraints:

$$z_*(w) = \frac{\sqrt{w+1} - \sqrt{2} a}{\sqrt{w+1} + \sqrt{2} a}, \qquad a = \left(\frac{1+r_D}{2\sqrt{r_D}}\right)^{1/2}$$

Parametrize similar to CLN — wanted to start with fit comparable to prior results

$$\frac{\mathcal{G}(w)}{\mathcal{G}(w_0)} \simeq 1 - 8a^2\rho_*^2 z_* + \left(V_{21}\rho_*^2 - V_{20}\right)z_*^2$$

Translate this to $\xi(w)/\xi(w_0)$ to be able to simultaneously fit $B \to D$ and $B \to D^*$

Uncertainty in z_*^2 term may be sizable — we checked that fit results are stable if constraint between the slope and the curvature is relaxed

Keep uncertainties and correlations in form factor ratios ($\Lambda_{\rm QCD}/m$ Isgur-Wise fn's)

• In progress: study systematically orders/constraints in fit, HQET corrections, etc.

Experimental inputs and self-consistency

Experimental inputs: $B \to Dl\bar{\nu}$: $d\Gamma/dw$ (Only Belle published fully corrected distributions) $B \to D^* l\bar{\nu}$: $d\Gamma/dw$, $R_1(w)$, $R_2(w)$

Model-dependent inputs in SM predictions for $R_{1,2}$ in all exp. fits & theory papers

Mild tension for $R_1(1)$ — may affect $|V_{cb}|$ from $B \to D^{(*)}l\bar{\nu}$, long standing issues ln 1S scheme: $R_1(1) \simeq 1.34 - 0.12 \eta(1)$, $R_2(1) \simeq 0.98 - 0.42 \eta(1) - 0.54 \hat{\chi}_2(1)$

Other place where $\Lambda_{ m QCD}/m_{c,b}$ matters

At EPS 2001, Ben and I got puzzled by surprising plots...

So we considered corrections up to $\Lambda_{\rm QCD}/m_{c,b}$ and $\alpha_s^2\beta_0$ to the slopes, curvatures, $R_{1,2}$...

[PLB 526 (2002) 345 (2002), hep-ph/0111392]

• Current plots from HFAG 2016:

 $ho_{\mathcal{G}}^2\simeq
ho_{A_1}^2$, as expected

All this is folded into our fits

Our SM predictions for R(D) and $R(D^*)$

• Significance of the tension is (surprisingly) stable across our fit scenarios:

• Fit just a quadratic polynomial in z_* : consistent results

Small variations: heavy quark symmetry & phase space leave little wiggle room

Scenario	R(D)	$R(D^*)$	Correlation
$L_{w=1}$	0.292 ± 0.005	0.255 ± 0.005	41%
$L_{w=1}{+}SR$	0.291 ± 0.005	0.255 ± 0.003	57%
NoL	0.273 ± 0.016	0.250 ± 0.006	49%
NoL+SR	0.295 ± 0.007	0.255 ± 0.004	43%
$L_{w\geq 1}$	0.298 ± 0.003	0.261 ± 0.004	19%
$L_{w\geq 1}+SR$	0.299 ± 0.003	0.257 ± 0.003	44%
th: $L_{w \ge 1} + SR$	0.306 ± 0.005	0.256 ± 0.004	33%
Data [HFAG]	0.403 ± 0.047	0.310 ± 0.017	-23%
Lattice [FLAG]	0.300 ± 0.008	—	
Bigi, Gambino '16	0.299 ± 0.003	—	—
Fajfer et al. '12		0.252 ± 0.003	

• Tension between our " $L_{w\geq 1}$ +SR" fit and data is 3.9 σ , with *p*-value = 11.5×10^{-5} (close to HFAG: 3.9σ , with *p*-value = 8.3×10^{-5})

Impact on new physics effects

• Add only one NP operator to the SM at a time: $O_S - O_P$, $O_S + O_P$, $O_V + O_A$, O_T

- Not all 1/m corrections in literature, some $\mathcal{O}(1/m)$ form factors had 100% uncert.
- Shifts from gray regions non-negligible if one seriously wanted to fit a NP model

Few comments on new physics

Consider redundant set of operators

Fits to different fermion orderings convenient to understand allowed mediators

Usually only the first 5 operators considered, related by Fierz

from dim-6 terms, others from dim-8 only $\downarrow \downarrow$

2	Operator		Fierz identity	Allowed Current	$\delta \mathcal{L}_{\mathrm{int}}$
\mathcal{O}_{V_L}	$(\bar{c}\gamma_{\mu}P_{L}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)$			$(1,3)_0$	$(g_q ar q_L oldsymbol{ au} \gamma^\mu q_L + g_\ell ar \ell_L oldsymbol{ au} \gamma^\mu \ell_L) W'_\mu$
\mathcal{O}_{V_R}	$(\bar{c}\gamma_{\mu}P_{R}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)$			57 07.2 695	
\mathcal{O}_{S_R}	$(\bar{c}P_Rb)(\bar{\tau}P_L\nu)$			\(1, 0)	$(\lambda = J (+ \lambda = - i + j^{\dagger} + \lambda \bar{\ell} - j)$
\mathcal{O}_{S_L}	$(\bar{c}P_Lb)(\bar{\tau}P_L\nu)$			$(1,2)_{1/2}$	$(\lambda_d q_L a_R \phi + \lambda_u q_L u_R i \tau_2 \phi' + \lambda_\ell \ell_L e_R \phi)$
\mathcal{O}_T	$(\bar{c}\sigma^{\mu\nu}P_Lb)(\bar{\tau}\sigma_{\mu\nu}P_L\nu)$			~	
\mathcal{O}'_{V_*}	$(\bar{\tau}\gamma_{\mu}P_{L}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$	\longleftrightarrow	Ov. ($(3,3)_{2/3}$	$\lambdaar{q}_Loldsymbol{ au}\gamma_\mu\ell_Loldsymbol{U}^\mu$
VL.				(3,1)	$(\lambda \bar{a}_{I} \sim \ell_{I} + \tilde{\lambda} \bar{d}_{P} \sim e_{P}) II^{\mu}$
\mathcal{O}'_{V_R}	$(\bar{\tau}\gamma_{\mu}P_{R}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$	\longleftrightarrow	$-2\mathcal{O}_{S_R}$	/(0,1)2/3	$(\chi q_L) \mu e_L + \chi a_R) \mu e_R) 0$
\mathcal{O}'_{S_R}	$(\bar{ au}P_Rb)(\bar{c}P_L u)$	\longleftrightarrow	$-\frac{1}{2}\mathcal{O}_{V_R}$		
\mathcal{O}_{S_L}'	$(\bar{\tau}P_Lb)(\bar{c}P_L\nu)$	\longleftrightarrow	$-\frac{1}{2}\mathcal{O}_{S_L} - \frac{1}{8}\mathcal{O}_T$	$(3,2)_{7/6}$	$(\lambda ar{u}_R \ell_L + ar{\lambda} ar{q}_L i au_2 e_R) R$
\mathcal{O}_T'	$(\bar{\tau}\sigma^{\mu\nu}P_Lb)(\bar{c}\sigma_{\mu\nu}P_L\nu)$	\longleftrightarrow	$-6\mathcal{O}_{S_L} + \frac{1}{2}\mathcal{O}_T$		
\mathcal{O}_{V_L}''	$(\bar{\tau}\gamma_{\mu}P_{L}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L} u)$	\longleftrightarrow	$-{\cal O}_{V_R}$		
\mathcal{O}_{V_R}''	$(\bar{\tau}\gamma_{\mu}P_{R}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L}\nu)$	\longleftrightarrow	$-2\mathcal{O}_{S_R}$	$(\bar{3},2)_{5/3}$	$(\lambda ar{d}_R^c \gamma_\mu \ell_L + ilde{\lambda} ar{q}_L^c \gamma_\mu e_R) V^\mu$
\mathcal{O}_{S_R}''	$(\bar{\tau}P_Rc^c)(\bar{b}^cP_L\nu)$	\longleftrightarrow	$\frac{1}{2}\mathcal{O}_{V_L}\Big\langle$	$(\bar{3},3)_{1/3}$	$\lambdaar{q}_L^c i au_2 oldsymbol{ au} \ell_L oldsymbol{S}$
\mathcal{O}_{S_L}''	$(\bar{\tau}P_Lc^c)(\bar{b}^cP_L\nu)$	\longleftrightarrow	$-\frac{1}{2}\mathcal{O}_{S_L}+\frac{1}{8}\mathcal{O}_T$	$\rangle(\bar{3},1)_{1/3}$	$(\lambda \bar{q}_L^c i au_2 \ell_L + \tilde{\lambda} \bar{u}_R^c e_R) S$
\mathcal{O}_T''	$(\bar{\tau}\sigma^{\mu\nu}P_Lc^c)(\bar{b}^c\sigma_{\mu\nu}P_L\nu)$	\longleftrightarrow	$-6\mathcal{O}_{S_L} - \frac{1}{2}\mathcal{O}_T$		[Freytsis, ZL, Ruderman, 1506.08896

Fits to a single operator

• Large coefficients, $\Lambda = 1 \text{ TeV}$ in plots \Rightarrow fairly light mediators (obvious: 20–30% of a tree-level rate)

In HQET limit, we confirmed the "classic" paper

[Goldberger, hep-ph/9902311]

Fits to two operators

The \bigotimes solution are ruled out by the q^2 spectrum

Operator fits \rightarrow **viable MFV models?**

- Viable mediators: scalar, "Higgs-like" $(1,2)_{1/2}$, vector, "W'-like" $(1,3)_0$ "scalar LQ" $(\bar{3},1)_{1/3}$ or $(\bar{3},3)_{1/3}$, "vector LQ" $(3,1)_{2/3}$ or $(3,3)_{2/3}$
- Flavor structure of TeV-scale NP cannot be generic surprising if only $(\bar{b}c)(\bar{\tau}\nu)$
- New physics at LHC MFV probably useful approximation to its flavor structure \$ \$ \$ New physics at $10^{1-2} \,\mathrm{TeV}$ less strong flavor suppression, MFV less motivated
- Minimal flavor violation (MFV) is probably a useful starting point Global $U(3)_Q \times U(3)_u \times U(3)_d$ flavor sym. broken by $Y_u \sim (\mathbf{3}, \mathbf{\overline{3}}, \mathbf{1}), Y_d \sim (\mathbf{3}, \mathbf{1}, \mathbf{\overline{3}})$
- Which BSM scenarios can be MFV? [Freytsis, ZL, Ruderman, 1506.08896] Not scalars or vectors, viable leptoquarks: scalar $S(1, 1, \overline{3})$ or vector $U_{\mu}(1, 1, 3)$

Bounds: $b \to s\nu\bar{\nu}$, $D^0 \& K^0$ mixing, $Z \to \tau^+\tau^-$, LHC contact int., $pp \to \tau^+\tau^-$, etc.

How odd scenarios may be viable?

• All papers enhance the au mode compared to the SM

Can one suppress the e and μ modes instead?

[Freytsis, ZL, Ruderman, to appear]

• Unique viable option: modify the SM four-fermion operator

Good fit with: $V_{cb}^{(\mathrm{exp})} \sim V_{cb}^{(\mathrm{SM})} \times 0.9$ $V_{ub}^{(\mathrm{exp})} \sim V_{ub}^{(\mathrm{SM})} \times 0.9$

• Many relevant constraints, one of the strongest from ϵ_K

What about $e - \mu$ (non)universality?

• How well is the difference of the e and μ rates constrained?

Parameters	De sample	$D\mu$ sample	combined result
$ ho_D^2$	$1.22 \pm 0.05 \pm 0.10$	$1.10 \pm 0.07 \pm 0.10$	$1.16 \pm 0.04 \pm 0.08$
$\rho_{D^*}^2$	$1.34 \pm 0.05 \pm 0.09$	$1.33 \pm 0.06 \pm 0.09$	$1.33 \pm 0.04 \pm 0.09$
R_1	$1.59 \pm 0.09 \pm 0.15$	$1.53 \pm 0.10 \pm 0.17$	$1.56 \pm 0.07 \pm 0.15$
R_2	$0.67 \pm 0.07 \pm 0.10$	$0.68 \pm 0.08 \pm 0.10$	$0.66 \pm 0.05 \pm 0.09$
$\mathcal{B}(D^0\ell\overline{\nu})(\%)$	$2.38 \pm 0.04 \pm 0.15$	$2.25 \pm 0.04 \pm 0.17$	$2.32 \pm 0.03 \pm 0.13$
$\mathcal{B}(D^{*0}\ell\overline{\nu})(\%)$	$5.50 \pm 0.05 \pm 0.23$	$5.34 \pm 0.06 \pm 0.37$	$5.48 \pm 0.04 \pm 0.22$
χ^2 /n.d.f. (probability)	416/468 (0.96)	488/464 (0.21)	2.0/6 (0.92)

[BaBar, 0809.0828 — similar results in Belle, 1010.5620]

- 10% difference allowed... some wrong statements...
- How much better can difference be constrained better?

Reaching the 1% level on ratio might be possible (but challenging) at Belle II

Γ_1	$e^+ u_e$ anything	$(10.86\pm 0.16)\%$
Γ_2	$\overline{p}e^+ u_e$ anything	$< 5.9 imes 10^{-4}$
Γ_3	$\mu^+ u_\mu$ anything	$(10.86\pm 0.16)\%$
Γ_4	$\ell^+ u_\ell$ anything	$(10.86 \pm 0.16)\%$

Final comments

Conclusions

- Amusing if NP shows up in $B \to D^{(*)} \tau \bar{\nu}$, a mode with little SM suppression
- SM predictions can be improved with more data (with continuum methods)
- Lattice: Calculate subleading Isgur-Wise functions and/or non-SM form factors?
- Ongoing: consistent generator for all six $B \to D^{(*,**)} \ell \bar{\nu}$ modes, for any interaction
- More theory progress to come, will impact measurements and sensitivity to BSM
- With Belle II and LHCb upgrade, even if $R(D^{(*)})$ move toward SM, plenty of room to discover NP
- There are good operator fits, and (somewhat) sensible MFV leptoquark models (Wild scenarios are also viable!)

Bonus slides