Construction of the Belle II TOP counter

Kodai Matsuoka (KMI, Nagoya University) for the Belle II TOP group

The 3rd KMI International Symposium (KMI2017)

The Belle II experiment

B-factory experiments

Confirmed Kobayashi-Maskawa theory with > 1 ab⁻¹ data

Search for new physics via precision measurements with 50 ab⁻¹ data

See A. Gaz's talk on Physics Prospects at SuperKEKB / Belle II

Improvement of particle identification by the TOP counter is the highlight of Belle II.

e.g. ~10% (Belle) \rightarrow ~3% (Belle II) π mis-ID at 86% efficiency of 1-2 GeV/c K for $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+$

Next generation B-factory experiment

Belle II

TOP (Time-Of-Propagation) Counter

- State-of-the-art Cherenkov ring imaging detector
- K/π identification by means of β reconstruction using precise timing measurement of internally reflected Cherenkov photons

Key techniques:

- ✓ Propagate the "ring" image undistorted
- ✓ Detect the photons with a high efficiency (~20 hits/track) and with an excellent time resolution (<50 ps)

Major milestones in the past

- TOP counter proposed at Nagoya in 2000.
- Developed the MCP (Micro-Channel-Plate) PMT at Nagoya in collaboration with Hamamatsu.
 Mass production of 512 (+spare) MCP-PMTs started in 2011.

MCP-PMT

- Proved the principle of the TOP counter with a full-scale prototype at the beam test in 2013.
- 32 (+2 spare) quartz bar (pre)production started in (2012)2014.

Quartz bar (synthetic fused silica)

- Two 1250 x 450 x 20 mm³ bars per TOP module glued together to make a 2500 mm long bar
 - Material: Corning 7980
 - 30 bars polished by Zygo and 2 (+2 spares) by AOS/Okamoto

MCP-PMT

- Square shape to cover the bar edge (fill factor: 73%)
- Enough gain (> 5 x 10⁵ in 1.5 T) to detect single photon
- Transit Time Spread (TTS) < 40 ps</p>
- QE = 29.3% (average) at $\lambda \approx 360$ nm with NaKSbCs photocathode

Lifetime extension of the MCP-PMT

 Outgassing from the MCP deteriorates the photocathode and the QE drops as a function of the integrated output charge.

Front-end electronics

- 8-channel, multi-giga sample/sec, transient waveform recorder ASIC (IRSX) developed at Hawaii Univ.
 - 2.8G sample/sec for TOP
 - 32k (11.6 μs) storage per channel

Board stack: 4 carriers + SCROD (master FPGA etc.)

ASIC die photograph

Carrier board: 4 ASICs + Xilinx FPGA

Module assembly 1 (Gluing optics)

- Assembly of 16 production TOP modules started in Mar. 2015.
- Alignment and gluing of prism-bar-bar-mirror:
 - 1. Insert shims to adjust the gap for glue.
 - 2. Adjust surface positions using a laser displacement sensor and micrometers.
 - 3. Adjust surface angles using an autocollimator and micrometers.
 - 4. Iterate 2-3 several times.

Auto-

5. Tape joints and apply epoxy (EPOTEK 301-2).

Laser displacement sensor

Module assembly 2 (Quartz bar box)

- Quartz Bar Box (QBB) to contain the optics keeping flat
- QBB needs high rigidity ↔ low mass
 - Aluminum honeycomb panels for low mass
 - Round shape to have high rigidity
- PEEK buttons to support the optics
 - Button height was tuned (σ < 0.02 mm) with ring shims or bond thickness according to the optics alignment.
- Truss support (strong back) for handling
 - Keep module sag < 0.5 mm to securely support the optics

PFFK button

Module assembly 3 (PMT and front-end readout)

- 4 MCP-PMTs are assembled in a PMT module.
 - PMT window is glued on a wavelength filter.
 - Wavelength filter cuts $\lambda \le 340$ nm to suppress chromatic dispersion.

- Optical contact of the PMT module on the prism is made by a soft cast silicone cookie.
 - It makes bubble free contact and PMT module replaceable.
 - The optical contact was checked by the CCD cameras.

Installation

- 1st module installed on Feb. 10, 2016.
 - Installed one-by-one module with a dedicated installation jig.
- Module deflection was monitored by three types of gauges.
 - The max sag was kept within 0.5 mm.

Installation completed successfully

Last (16th) module installed on May 11

Side-by-side modules were joined by 2.65 m long Al z-beams for structural integrity.

Strong back removed on May 20

14 Preliminary commissioning with cosmic rays Slot05 Temporary scintillator paddle triggers 06 .07 0 T Slot05 Slot06 Slot07 1.5 T [(1 bre)] 180 Entries [/(1 p.e.)] 001 Entries [/(1 p.e.)] Entries 8543 Entries 8543 100 Entries 8543 10.93 ± 0.1635 Mean Mean 7 825 ± 0 1505 Mean 6.543 ± 0.1413 Std Dev 14 94 ± 0 1156 Std Dev 13.78 ± 0.1064 Std Dev 12.95 ± 0.09994 Entries 160 Underflow Underflow 0 0 Underflow ..0. 100 80 199 Overflow Overflow 155 Overflow 148 140 Integral 8344 Integral 8388 Integral 8395 χ^2 / ndf 30.9/18 χ^2 / ndf 27.26/24 χ^2 / ndf 120 12.21 / 22 60 Prob 0.02959 Prob 0.2925 Prob 0.9528 100 Constant 159.1 ± 4.3 Constant 104.2 ± 3.1 82.32 ± 2.95 Constant 60 Mean 22.39 ± 0.28 Mean 22.78 ± 0.36 Mean 24.06 ± 0.30 80 40 8 148 ± 0 365 9.29 ± 0.40 Sigma Sigma Sigma 8.329 ± 0.380 60 40 40 20 20 20 Filippers in the second second ռեւռվե 10 30 70 80 90 100 10 30 50 80 90 100 10 30 50 70 80 90 10 # of hits [p.e.] 100 # of hits [p.e.] # of hits [p.e.] 20 40 60 20 40 60 20 40 60 0 ()()

Detailed calibration in progress

Number of hits

Summary

- The TOP counter is a key device in Belle II.
- After the long R&D of more than a decade and 2-3 years production/construction, we finally succeeded in
 - Producing the 32 (+2 spare) quartz bars and the other optics
 - Producing the 512 (+spare) MCP-PMTs and extending the lifetime
 - Assembling the 16 (+1 spare) TOP modules
 - Installing 16 TOP modules
- Commissioning/calibration of the installed modules is ongoing toward
 - Phase 2 (SuperKEKB commissioning with Belle II) from Jan. 2018
 - Physics run from Dec. 2018
 - → See poster by R. Omori, N. Tsuzuki and G. Muroyama