SUSY Dark Matter

Kazunori Nakayama (University of Tokyo)

LHC研究会@Nagoya University (2013/5/25)

Dark Matter SUSY SUSY Dark Matter

Kazunori Nakayama (University of Tokyo)

LHC研究会@Nagoya University (2013/5/25)

LHCで何かNew Physics が見えると期待する理由 Naturalness, g-2 ← (浜口さんのトーク) WIMP DM シナリオ $\Omega_{\rm DM} h^2 \sim 0.1 \left(\frac{1 \, {\rm pb}}{\langle \sigma v \rangle} \right) \sim 0.1 \left(\frac{(20 \, {\rm TeV})^{-2}}{\langle \sigma v \rangle} \right)$ PLANCK : $\Omega_{\rm DM} h^2 = 0.1199 \pm 0.0027$

LHCで何かNew Physics が見えると期待する理由 ● Naturalness, g-2 ← (浜口さんのトーク) WIMP DM シナリオ $\Omega_{\rm DM} h^2 = 0.1199 \pm 0.0027$ PLANCK : $\Omega_{\rm DM} h^2 = 0.1199 \pm 0.0027$

= 0.1199

PLANCK : $\Omega_{\rm DM}h^2 = 0.1199 \pm 0.0027$

13年5月25日土曜日

13年5月25日土曜日

LHCで何かNew Physics が見えると期待する理由 Naturalness, g-2 ← (浜口さんのトーク) WIMP DM シナリオ $\Omega_{\rm DM} h^2 \sim 0.1 \left(\frac{1 \, {\rm pb}}{\langle \sigma v \rangle} \right) \sim 0.1 \left(\frac{(20 \, {\rm TeV})^{-2}}{\langle \sigma v \rangle} \right)$ PLANCK : $\Omega_{\rm DM} h^2 = 0.1199 \pm 0.0027$ WIMP DM という観点からSUSYパラメータ 領域を見直してみる(CMSSM & AMSB) 他の (Gravitinoとか) は今回とりあえず考えない

Bino-like neutralino は対消滅断面積が小さいので (helicity suppression)、何らかのメカニズムが必要

非常に軽いBino 既にexcluded Light-bino Well-tempered Large Bino-Higgsino mixing $\tilde{\chi}\tilde{\chi} \to W^+W^-$ A-pole (funnel) Resonance via CP-odd Higgs $\tilde{\chi}\tilde{\chi} \to A^0 \to f\bar{f}$ Stauとして消える $m_{ ilde{\chi}} \sim m_{ ilde{ au}}$ Stau coannihilation Stopとして消える $m_{\tilde{\chi}} \sim m_{\tilde{t}}$ Stop coannihilation

最近の状況(CMSSM)

Ellis, Luo, Olive, Sandick, 1212.4476

何か結構狭くなったように見えますが...

最近の状況 (NUHM)

Ellis, Luo, Olive, Sandick, 1212.4476

まだまだOKという気も。 NUHM : $m_{H_u}^2 = m_{H_d}^2 \neq m_0^2$

13年5月25日土曜日

T.Cohen, J.G.Wacker, 1305.2914

条件:

- $122 \,\mathrm{GeV} < m_h < 128 \,\mathrm{GeV}$
- $0.08 < \Omega_c h^2 < 0.14$
- Vacuum (meta)stability

Green: well-tempered Red: A-pole Blue: stau-coann. Yellow: stop-coann.

```
それぞれの領域に
ついてもう少し
詳しく見てみる
```

• Well-tempered

Pure higgsino limitで DM mass ~ ITeV かなり重い領域まである

将来の直接検出で ほとんどカバー 出来る

A0-Pole

DM mass ~ 3TeVでもOK そこそこのbino-higgsino mixingは必要 直接検出は比較的大きめ

Stau coannihilation

 $A_0 < 0, \mu > 0$

 $A_0 < 0, \mu > 0$

M0もMI/2も割と小さいので LHC 的には比較的見易い

Direct detection は 厳しい

Benchmark point (stau coann.)

Input parameters										
$M_0 \mid M_{\frac{1}{2}} \mid A_0 \mid \tan \beta \mid \operatorname{sign}(\mu) \mid \mu \mid \operatorname{sign}(B_\mu)\sqrt{ B_\mu }$										
765.97	900.	-2882.83	28.3588	1	1736.46	31794.6				

	Low energy spectrum											
$m_{\tilde{g}}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											
1990	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											

$$\begin{split} m_{\tilde{\tau}} - m_{\tilde{\chi}} &= 3.36 \,\text{GeV} \qquad \tilde{\tau} \to (\text{soft}) \ \tau + \tilde{\chi} \\ \sigma(pp \to \tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}) &= 2.3 \,\text{fb} @\ 13 \,\text{TeV} \\ \tilde{\chi}_2^0 \to \tilde{\tau}^{\pm} \tau^{\mp}, \tilde{\chi}_1^+ \to \tilde{\tau}^+ \nu_{\tau} \quad \text{: Challenging} \\ \sigma(pp \to \tilde{q}\tilde{q}) &= 6.0 \,\text{fb} @\ 13 \,\text{TeV} \end{split}$$

$$\tilde{u}_L \to d\tilde{\chi}_1^+, \ \tilde{\chi}_1^+ \to \tilde{\tau}^+ \nu_{\tau}$$

Benchmark point (stau coann.) 2

Input parameters										
M_0	M_0 $M_{\frac{1}{2}}$ A_0 $\tan\beta$ $\operatorname{sign}(\mu)$ $ \mu $ $\sqrt{B_{\mu}}$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										

	Low energy spectrum										
$m_{\tilde{g}}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
1980	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										

 $m_{\tilde{\tau}} - m_{\tilde{\chi}} = 0.28 \, \text{GeV}$: Long-lived stau (lifetime ~ 0.01s)

 $\sigma(pp \to \tilde{\tau}^+ \tilde{\tau}^-) = 0.59 \,\text{fb} @ 13 \,\text{TeV}$ $\sigma(pp \to \tilde{\tau}^\pm + j + X) = 1.4 \,\text{fb} @ 13 \,\text{TeV}$

Eg)
$$\tilde{u}_L \to d\tilde{\chi}_1^+, \quad \tilde{\chi}_1^+ \to \tilde{\tau}^+ \nu_{\tau}$$

Stop coannihilation

Benchmark point (stop coann.)

Input parameters										
M_0 $M_{\frac{1}{2}}$ A_0 $\tan\beta$ $\operatorname{sign}(\mu)$ $ \mu $ $\sqrt{B_{\mu}}$										
2666.67	933.333	-6444.	8.52015	-1	2794.86	18094.8				

	Low energy spectrum											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										Δ_{Ω}		
2170	3200	446	2640	411	791	124	3880	0.116	2.06×10^{-13}	4500	800	

 $\sigma(pp \to \tilde{t}\tilde{t}) = 0.96 \text{pb@13TeV}$ しかし...

 $\widetilde{t}_{1} \to \begin{cases} c \chi_{1}^{0} & 69\% \\ b (W^{+})^{*} \chi_{1}^{0} & 31\% \end{cases}$

 $\sigma(pp \to \tilde{g}\tilde{g}) = 0.23 \text{fb}@13 \text{TeV} \qquad \tilde{g} \to t\tilde{t}$

 $\rightarrow \sigma(pp \rightarrow ttE_{\rm miss}) = 0.22 {\rm fb}@13 {\rm TeV}$

13年5月25日土曜日

• DM-CMSSM まとめ

	Parameter	LHC	直接検出
Well tempered	$m_{ ilde{B}} \sim \mu$ $m_{ ilde{\chi}_0} = 0.3 - 1 ext{TeV}$	$\sum_{i=1}^{n}$	Ton scale で 大体カバー
A0-Pole	$m_{ ilde{B}} \sim m_A/2$ $m_{ ilde{\chi}_0} = 0.5 - 3 { m TeV}$		Ton scale で 結構カバー
Stau coann.	$m_{ ilde{B}} \sim m_{ ilde{ au}}$ $m_{ ilde{\chi}_0} = 0.3 - 1 ext{TeV}$	0	難
Stop coann.	$\frac{m_{\tilde{B}} \sim m_{\tilde{t}}}{m_{\tilde{\chi}_0} = 0.5 - 1.5 \text{TeV}}$	$\sum_{i=1}^{n}$	難

AMSB (Pure-gravity mediation)

Lower bound on Wino DM mass

Ibe, Matsumoto, Yanagida (2012)

PLANCK データを用いて解析中

Kawasaki, KN, Sekiguchi, in prep.

T.Moroi, KN, (2012)

• LHC

Chargino Track

Ibe, Moroi, Yanagida (2006) Asai, Moroi, Nishihara, Yanagida (2007)

IceCube DeepCore Neutrino-induced cascade muon events

S/N

いずれも $m_{ ilde W} \lesssim 300 \, {
m GeV}$ 位

Direct detection

Hisano, Ishiwata, Nagata, 1210.5985

Pure-Wino limit で $\sigma_{SI} \sim 10^{-47} - 10^{-48} \text{ cm}^2$ ちょっと辛いか?

13年5月25日土曜日

Anti-Proton AMS-02でかなりいける。Wino検出の最有力?

Hall, Nomura, Shirai, 1210.2395

DM SUSY まとめ

 CMSSM + Dark Matter + 125GeV Higgs という 領域はかなり残っている。I3TeVLHC+ direct で相補的に割とカバーできそう ● LHC的には Stau coannihilation 領域が面白い (Colored particle search & CHAMP search) ● AMSB は差し当たりAMS (反陽子) に期待

Benchmark point (Well-tempered)

Input parameters										
M_0 $M_{\frac{1}{2}}$ A_0 $\tan\beta$ $\operatorname{sign}(\mu)$ $ \mu $ $\sqrt{B_{\mu}}$										
4103.76 525.385 905.88 13.6663 -1 292.034 1080										

Low energy spectrum

$m_{ ilde{g}}$	$m_{ ilde{q}}$	$m_{ ilde{t}_1}$	$m_{ ilde{ au}_1}$	m_{χ}	$m_{\chi_1^{\pm}}$	m_h	m_A	Ωh^2	$\sigma_{ m SI} \; [m pb]$	Δ_v	Δ_{Ω}
1330	4180	2510	4040	218	292	122	4000	0.139	5.15×10^{-9}	400	37

 $\sigma(pp \to \tilde{g}\tilde{g}) = 30 \text{fb}@13 \text{TeV}$ $\sigma(pp \to \tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}) = 73 \text{ fb} @ 13 \text{ TeV}$

Benchmark point (A-Pole)

	Input parameters										
M_0	M_0 $M_{\frac{1}{2}}$ A_0 $\tan\beta$ $\operatorname{sign}(\mu)$ $ \mu $ $\operatorname{sign}(B_{\mu})\sqrt{ B_{\mu} }$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											

Low energy spectrum

$m_{ ilde{g}}$	$m_{ ilde{q}}$	$m_{ ilde{t}_1}$	$m_{ ilde{ au}_1}$	m_{χ}	$m_{\chi_1^{\pm}}$	m_h	m_A	Ωh^2	$\sigma_{ m SI}~[m pb]$	Δ_v	Δ_{Ω}
1610	2640	1430	1110	292	564	122	564	0.138	6.11×10^{-10}	870	91

 $\sigma(pp \to \tilde{g}\tilde{g}) = 8.0$ fb@13 TeV

 $\sigma(pp \to \tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}) = 14 \,\text{fb} @ 13 \,\text{TeV}$