# Higgs 126 GeV発見を受けて、 およびvs=14 TeVでのSUSY探索

新学術領域研究 先端加速器LHCが切り拓くテラスケールの素粒子物理学



山中 隆志 東京大学 素粒子センター /



## Higgs 126 GeVを受けてのSUSY



### Search Strategy

探索すべきmodelは多岐にわたるが、signature baseで解析 することにより、広い領域を漏らさずにcoverする





cover

objectの

# Stop, Sbottom Search

## Stop Mixing

stopからのHiggs massへのradiative correction

$$\delta m_h^2 = \frac{3G_F}{\sqrt{2}\pi^2} m_t^4 \left( \log \left( \frac{\overline{m}_{\tilde{t}}^2}{m_t^2} \right) + \frac{X_t^2}{\overline{m}_{\tilde{t}}^2} \left( 1 - \frac{X_t^2}{12\overline{m}_{\tilde{t}}^2} \right) \right)$$

- Higgs mass ~126 GeVを与えるにはstop massかXtが大きい
  - |Xt|=V6 m(~t)のとき(maximal mixing)、stop massを低く抑えつつHiggs massが最大 → naturalnessを満たすには不可欠
- 一方で、fine-tuningを避けるには

$$\delta m_{H_u}^2 = -\frac{3y_t^2}{8\pi^2} \left( m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2 \right) \ln \left( \frac{\Lambda}{m_{\tilde{t}}} \right)$$





が小さくあってほしい

 $\Lambda$ : messenger scale of susy breaking eg)  $\Lambda = M_{pl}$  for Sugra

#### **Direct Stop Pair Production**

#### • modelによりstopのdecay modeも様々





| N(leptons)      | 0        | 1      | 2      |  |
|-----------------|----------|--------|--------|--|
| N(bjets)        | >=1 o    | 0 or 2 |        |  |
| N(jets incl. b) | 2,3 or 6 | 4      | 0 or 2 |  |

# Stop→t+LSPなど

• m(~chi1+)>m(~t1)の場合

• stop→b+W+LSP (3-body decay)の場合にはCMSの方が強いlimit

・いずれにせよまだ広い領域が残っている



## Stop → b+Chargino

#### • m(~chi1+)<m(~t1)の場合

Naturalnessを考えるなら、Higgsino LSPの場合がより重要m(~chi1+)-m(~chi10)が小さい



#### Miscellaneous

# Light stops emerging in WW cross section measurements?

 $m(\sim t1)-m(\sim chi1+)=10 \text{ GeV}$  $\sim t1 \rightarrow b+\sim chi1+, \sim chi1+\rightarrow W(*)+\sim chi10$ 



#### 2012年12月時点での全てのconstraint



arXiv:1212.6847

#### Gluino Mediated Stop, Sbottom Production

• gluino pair productionから、 gluino decayによるstop, sbottom







#### **Natural GMSB**

- GMSB case (Gravitino LSP):
  - HiggsinoがNLSPだとすると~chi10→G+Z/hから終状態にZを含む
- GMSBならばmessanger scaleが小さくてもよい→ naturalnessの条件が緩い
- •しかし、|A<sub>0</sub>|は通常は大きく取れない → naïveなGMSBではHiggs 126 GeV困難

#### direct stop pair production



$$\delta m_{H_u}^2 = -\frac{3y_t^2}{8\pi^2} \left( m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2 \right) \ln \left( \frac{\Lambda}{m_{\tilde{t}}} \right)$$

#### direct higgsino pair production



## √s=8 TeV解析の今後

- stopでまだ探索されていないdecay mode
  - stop $\rightarrow$ c+LSP
  - $stop \rightarrow b+f+f'+LSP$
- ・これまでの探索で見落としていた可能性
  - compressed spectrum → soft lepton analysis
- Simplified modelからより現実的なmodelへ
  - Phenomenological MSSM
- Naturalnessを保つmodel
  - NMSSMなど

#### LHC@14 TeV

- 13-14 TeVでのLHC運転
  - bunch spacing 50 ns  $\rightarrow$  25 ns
  - peak luminosity 2-3×10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>、1回のビーム衝突時の平均反応 回数μ~69
- 2020年までに300 fb<sup>-1</sup> (Phase-I)
- High Luminosity LHCで3000 fb<sup>-1</sup> (Phase-II)
  - L=5 ×  $10^{34}$  cm<sup>-2</sup>s<sup>-1</sup>,  $\mu$  ~ 140
- PDFによるhigh mass particleのcross sectionの増加
- 一方でpileupによるresolutionの悪化など

#### Trigger@14 TeV

- High massのSUSY探索ではVs=14 TeVでのtrigger thresholdの上昇による影響はほとんどない
- ただし、縮退したmodelでは無視できない影響
  - R-parity conservationのmodelではMETとのcombined triggerなども考慮する必要あり

L=2×10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>でのtrigger thresholdの予測値

|                      | L1 threshold | Offline threshold |
|----------------------|--------------|-------------------|
| single electron (pT) | 28 GeV       | 33 GeV            |
| single muon (pT)     | 20 GeV       | 25 GeV            |
| single jet (pT)      | 100 GeV      | 250 GeV           |
| pure ETmiss          | 60 GeV       | 190 GeV           |

#### **SUSY Cross Section**

- Vs=7 TeV → 14 TeVによりlow massでは数倍程度しかcross sectionは増えないがhigh massになるほどPDFの効果で急激に14 TeVのcross sectionが増加が大きくなる
  - 一方でSM backgroundの生成断面積も増加する
  - → High massのsignalにre-optimizeしたselectionや高統計を利用した解析が必要



#### Stop Search@14 TeV

- Event selection (for t+LSP)
  - 1-lepton (electron or muon)p<sub>T</sub>>25 GeV
  - $-4 \text{ jets p}_{T}>120,100,50,50 \text{ GeV}$
  - At least one b-tagged jet p<sub>T</sub>>40
     GeV
  - E<sub>T</sub><sup>miss</sup>>225 GeV
  - m<sub>T</sub>(lepton, E<sub>T</sub><sup>miss</sup>)>140 GeV
  - Optimum 1st, 2nd jet p<sub>T</sub>, E<sub>T</sub><sup>miss</sup>,
     E<sub>T</sub><sup>miss</sup>/√H<sub>T</sub>, m<sub>T</sub> cuts for each
     signal point

ATL-PHYS-PUB-2013-002

300 fb<sup>-1</sup>ではstop→t+LSPの場合、 stop mass 800 GeV (LSP mass ~0 GeVのとき) まで発見の可能性あり



# Gluino (Squark) Search

## Gluino/Squark Search

# 一般性を失わないようsignature baseに categorizeし、inclusiveにsearch



| N(leptons)     | 0        | 1 (soft) | 1   | 2 (SS) | 2   |
|----------------|----------|----------|-----|--------|-----|
| N(jets incl.b) | 2-6, 6-9 | 2        | 3,7 | 3,4    | 2,4 |
| N(bjets)       |          |          |     | 0,1,3  |     |





2-lepton SS analysis

#### Squark, Gluino Search@14 TeV

- vs=14 TeVでの発見感度の予測
- Event selection
  - No electron or muon (p<sub>T</sub>>20 GeV)
  - At least 4 jets p<sub>T</sub>>60 GeV
  - $E_T^{miss}/VH_T>15 GeV^{1/2}$

- Optimum  $M_{eff}$  ( $E_{T}^{miss} + H_{T}$ ) cut for



M<sub>eff</sub>以外のcut後の分布<sup>™</sup>

300 fb<sup>-1</sup>ではsquark mass 2.4 TeV, gluino mass 2 TeV程度まで発見の可能性あり



Simplified modelでの予測感度

#### CMS 14 TeV Expectation

- 現在の探索結果から外挿した予測値
  - おおよそATLASと同程度の感度



CMS Submission to the European Strategy Preparatory Group

# **EW Gaugino Search**

## EW Gaugino Search

- squark, gluinoが重い(>10 TeV)場合
  - gaugino massは軽くても良い



Bino LSP, Wino NLSP的なmodel を仮定

m(~chi1+,~chi20), m(~chi10) が縮退した場合がここでも課題



#### EW Gaugino Search@14 TeV

- vs=14 TeVでのEW gauginoの発見感度
- Event selection
  - 3 lepton pT>10 GeV, at least one lepton pT> GeV
  - no b-jet
  - same flavor, opposite sign lepton pair mass > 20 GeV
  - $E_T^{miss} > 150 \text{ GeV}$
  - Multivariate of E<sub>T</sub><sup>miss</sup>, mT, lepton pT, mll, pT(II), ΣpT(jet)

300 fb<sup>-1</sup>ではneutralino2, chargino mass 540 GeV (LSP mass ~50 GeV のとき) まで発見の可能性あり



#### **AMSB**

- Anomaly Mediated SUSY Braking model
  - − Bino:Wino:Gluino ~ 3:1:8
  - NLSP,LSP→wino-like, Δm(~chi1+ -~chi10)~150 MeV
    - → charginoの寿命は~0.1-1 ns → O(1-10) cm





Eventを triggerする ためISR-jet を利用

#### **AMSB Limit and Expectation**

√s=7 TeVでのexclusion limit 8 TeVでは現在解析が進行中 (coming soon)

√s=14 TeVでの感度予測





### まとめ

- ~126 GeVのHiggs発見を受けてのSUSY
  - Naturalnessを信じるならstop (他gluino, sbottom, higgsino)が比較的軽いことが期待されるが、未だ 兆候はない
    - どこまでNaturalnessを信じる?
    - まだ残っているparameter spaceへの対処
  - Naturalnessを放棄した場合でも、gluino、EW gauginoは軽くても良い
    - vs=14 TeVでの探索に期待

## Backup

#### **Direct Shottom Pair Production**

• m(~tL)=m(~bL)なことから、sbototmも軽いと考えられる





#### Gluino Mediated Production



### Slepton Search

• LHCではDirect gaugino productionより更に一 桁小さいcross section





### Gluino/Squark Cross Section





#### Cross Section @ vs=33 TeV

• 14 TeV → 33 TeVでもsusyのcross sectionはお

よそ10倍程度上昇







## Higgs Constraint CMSSM/mSUGRA Grid

|A<sub>0</sub>|, tanβを高く取り、Higgs mass~126 GeVに広い領域でconsistent
• 特にXt=At-√6µcotβ ~0と取ることでstop massを低く保ったまま
Higgs massを高くすることができる。

$$m_H^2 \approx \frac{m_Z^2 \cos^2 2\beta}{m_Z^2 \cos^2 2\beta} + \frac{3}{(4\pi)^2} \frac{m_t^4}{v^2} \left[ \ln \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{X_t^2}{m_{\tilde{t}}^2} \left( 1 - \frac{X_t^2}{12m_{\tilde{t}}^2} \right) \right]$$
 m<sup>2</sup><sub>H</sub> is large if stop mass is large and/or mixing term is maximized

$$A_0 = -2m_0$$
,  $\tan \beta = 30$ 



