Higgs 126 GeV発見を受けて、 およびvs=14 TeVでのSUSY探索

新学術領域研究

先端加速器LHCが切り拓くテラスケールの素粒子物理学

Higgs 126 GeVを受けてのSUSY

2013年5月25日

新学術領域研究

Search Strategy

 探索すべきmodelは多岐にわたるが、signature baseで解析 することにより、広い領域を漏らさずにcoverする

Stop, Sbottom Search

Stop Mixing

stopからのHiggs massへのradiative correction

$$\delta m_h^2 = \frac{3G_F}{\sqrt{2}\pi^2} m_t^4 \left(\log\left(\frac{\overline{m}_{\tilde{t}}^2}{m_t^2}\right) + \frac{X_t^2}{\overline{m}_{\tilde{t}}^2} \left(1 - \frac{X_t^2}{12\overline{m}_{\tilde{t}}^2}\right) \right)$$

- Higgs mass ~126 GeVを与えるにはstop massかXtが大きい
 - |Xt|=V6 m(~t)のとき(maximal mixing)、stop
 massを低く抑えつつHiggs massが最大 →
 naturalnessを満たすには不可欠
- 一方で、fine-tuningを避けるには

$$\delta m_{H_u}^2 = -\frac{3y_t^2}{8\pi^2} \left(m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2 \right) \ln\left(\frac{\Lambda}{m_{\tilde{t}}}\right)$$

$$X_t = A_t - \mu \cot \beta,$$

が小さくあってほしい

 $\Lambda :$ messenger scale of susy breaking eg) $\Lambda \text{=} M_{\text{pl}}$ for Sugra

Direct Stop Pair Production

modelによりstopのdecay modeも様々

N(leptons)	0	1	2
N(bjets)	>=1 c	0 or 2	
N(jets incl. b) 2,3 or 6		4	0 or 2

Stop→t+LSPなど

• m(~chi1+)>m(~t1)の場合

stop→b+W+LSP (3-body decay)の場合にはCMSの方が強いlimit
 いずれにせよまだ広い領域が残っている
 (i, production, i→t x⁰/i→W b x⁰

Stop→b+Chargino

• m(~chi1+)<m(~t1)の場合 Naturalnessを考えるなら、Higgsino LSPの場合がより重要 m(~chi1+)-m(~chi10)が小さい

新学術領域研究

Miscellaneous

2013年5月25日

新学術領域研究

Gluino Mediated Stop, Sbottom Production

 gluino pair productionから、 gluino decayによるstop, sbottom

Natural GMSB

- GMSB case (Gravitino LSP):
 - HiggsinoがNLSPだとすると~chi10→G+Z/hから終状態にZを含む
- GMSBならばmessanger scaleが小さくて もよい→ naturalnessの条件が緩い • しかし、 |A₀|は通常は大きく取れない → naïveなGMSBではHiggs 126 GeV困難

$$\delta m_{H_u}^2 = -\frac{3y_t^2}{8\pi^2} \left(m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2 \right) \ln\left(\frac{\Lambda}{m_{\tilde{t}}}\right)$$

√s=8 TeV解析の今後

- stopでまだ探索されていないdecay mode
 stop→c+LSP
 - stop \rightarrow b+f+f'+LSP
- これまでの探索で見落としていた可能性
 compressed spectrum → soft lepton analysis
- Simplified modelからより現実的なmodelへ
 Phenomenological MSSM
- Naturalnessを保つmodel – NMSSMなど

LHC@14 TeV

- 13-14 TeVでのLHC運転
 - − bunch spacing 50 ns \rightarrow 25 ns
 - peak luminosity 2-3×10³⁴ cm⁻²s⁻¹、1回のビーム衝突時の平均反応
 回数μ~69
- 2020年までに300 fb⁻¹ (Phase-I)
- High Luminosity LHC €3000 fb⁻¹ (Phase-II)
 L=5 × 10³⁴ cm⁻²s⁻¹, μ~140
- PDFによるhigh mass particleのcross sectionの増加
- 一方でpileupによるresolutionの悪化など

Trigger@14 TeV

- High massのSUSY探索ではvs=14 TeVでのtrigger thresholdの上昇による影響はほとんどない
- ただし、縮退したmodelでは無視できない影響
 - R-parity conservationのmodelではMETとのcombined triggerなども考慮する必要あり

L=2×10³⁴ cm⁻²s⁻¹でのtrigger thresholdの予測値

	L1 threshold	Offline threshold
single electron (pT)	28 GeV	33 GeV
single muon (pT)	20 GeV	25 GeV
single jet (pT)	100 GeV	250 GeV
pure ETmiss	60 GeV	190 GeV

SUSY Cross Section

- Vs=7 TeV → 14 TeVによりlow massでは数倍程度しかcross sectionは増え ないがhigh massになるほどPDFの効果で急激に14 TeVのcross sectionが 増加が大きくなる
 - 一方でSM backgroundの生成断面積も増加する
 - → High massのsignalにre-optimizeしたselectionや高統計を利用した解析が必要

Stop Search@14 TeV

- Event selection (for t+LSP)
 - 1-lepton (electron or muon)
 p_T>25 GeV
 - 4 jets p_T>120,100,50,50 GeV
 - At least one b-tagged jet p_T>40
 GeV
 - E_T^{miss} >225 GeV
 - $m_T(lepton, E_T^{miss})>140 \text{ GeV}$
 - Optimum 1st, 2nd jet p_T , E_T^{miss} , E_T^{miss}/VH_T , m_T cuts for each signal point

300 fb⁻¹ではstop→t+LSPの場合、 stop mass 800 GeV (LSP mass ~0 GeVのとき) まで発見の可能性あり

ATL-PHYS-PUB-2013-002

Gluino (Squark) Search

Gluino/Squark Search

一般性を失わないようsignature baseに categorizeし、inclusiveにsearch

\forall	N(leptons)	0	1 (soft)	1	2 (SS)	2
	N(jets incl.b)	2-6, 6-9	2	3,7	3,4	2,4
\bigtriangledown	N(bjets)				0,1,3	

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

W

 \tilde{g}

 \tilde{q}

 \tilde{q}

 $\tilde{\chi}_1^{\pm}$

Squark, Gluino Search@14 TeV

- vs=14 TeVでの発見感度の予測
- Event selection
 - No electron or muon ($p_T > 20 \text{ GeV}$)
 - At least 4 jets p_T>60 GeV
 - $E_T^{miss}/VH_T > 15 \text{ GeV}^{1/2}$

300 fb⁻¹ではsquark mass 2.4 TeV, gluino mass 2 TeV程度まで発見の 可能性あり

CMS 14 TeV Expectation

•現在の探索結果から外挿した予測値 -おおよそATLASと同程度の感度

CMS Submission to the European Strategy Preparatory Group

新学術領域研究

EW Gaugino Search

EW Gaugino Search

squark, gluinoが重い(>10 TeV)場合
 – gaugino massは軽くても良い

EW Gaugino Search@14 TeV

- vs=14 TeVでのEW
 gauginoの発見感度
- Event selection
 - 3 lepton pT>10 GeV, at least one lepton pT> GeV
 - no b-jet
 - same flavor, opposite sign
 lepton pair mass > 20 GeV
 - $E_T^{miss} > 150 \text{ GeV}$
 - Multivariate of E_T^{miss}, mT, lepton pT, mll, pT(ll), ΣpT(jet)

300 fb⁻¹ではneutralino2, chargino mass 540 GeV (LSP mass ~50 GeV のとき) まで発見の可能性あり

AMSB

- Anomaly Mediated SUSY Braking model
 - Bino:Wino:Gluino~3:1:8
 - NLSP,LSP→wino-like, Δm(~chi1+ -~chi10)~150 MeV → charginoの寿命は~0.1-1 ns → O(1-10) cm

AMSB Limit and Expectation

√s=7 TeVでのexclusion limit 8 TeVでは現在解析が進行中 (coming soon)

√s=14 TeVでの感度予測

まとめ

- ~126 GeVのHiggs発見を受けてのSUSY
 - Naturalnessを信じるならstop (他gluino, sbottom, higgsino)が比較的軽いことが期待されるが、未だ 兆候はない
 - どこまでNaturalnessを信じる?
 - まだ残っているparameter spaceへの対処
 - Naturalnessを放棄した場合でも、gluino、EW gauginoは軽くても良い
 - vs=14 TeVでの探索に期待

Backup

Direct Sbottom Pair Production

m(~tL)=m(~bL)なことから、sbototmも軽いと考えられる

新学術領域研究

Gluino Mediated Production

2013年5月25日

新学術領域研究

Slepton Search

 LHCではDirect gaugino productionより更に一 桁小さいcross section

Gluino/Squark Cross Section

Cross Section @ √s=33 TeV

 14 TeV → 33 TeVでもsusyのcross sectionはお よそ10倍程度上昇

Higgs Constraint CMSSM/mSUGRA Grid

|A₀|, tanβを高く取り、Higgs mass~126 GeVに広い領域でconsistent 特にXt=At-√6µcotβ~0と取ることでstop massを低く保ったまま Higgs massを高くすることができる。

