Overview of the Belle II computing

 $\label{eq:Kobayashi-Maskawa Institute} for the Origin of Particles and the Universe$

$\mathsf{Belle} \to \mathsf{Belle} \mathsf{II}$

Computing resource for Belle II

Disk (PB)

Estimation until 2021 (~20 ab⁻¹).

• At the end of data taking (50 ab⁻¹), more than

- 100000 core CPU
- 100 PB storage

are expected to be needed to store and analyze data in a timely manner.

More than 100 PB?

Big data in 2012

 Similar to Google search index or Contents uploaded to Facebook (per year).

Impossible to be hosted by a single institute.

→ Distributed computing

Each institute prepare the resources. Connect by network.

Belle II computing model

Belle II computing system

What we need is..

Extension to meet experimental requirements

- Automation of MC production,
- raw data processing
- \rightarrow Production system
- User interface.
- Analysis framework
- etc

BelleDIRAC Cloud Grid Local cluster LCG **Open Science Grid**

Production system and its development 7

MC production campaigns

- Test the validity of the computing model/system.
- Provide simulation samples for the sensitivity study.

- ~50 computing sites join in the latest campaign.
- More than 20k jobs can be handled now.
- Gradually automating the production procedure.
- Belle II colleagues take computing shifts from 4th campaign as an official service task.

KMI contributions

Significant contribution from KMI

Resource

Belle II dedicated resource in KMI

- 360 (+α) CPU cores.
- 250 TB storage.
- Grid middleware (EMI 3) installed.
- DIRAC server.
- Operation by physicists
 - \rightarrow Learned a lot on operation of

a computing site.

Development of monitoring system

- To maximize the availability of resources
- Automatic detection of the problematic sites
- Operation and development of the shift manual

Contribution of KMI resources

Reserved Space per Site (TB)

Data transferred during MC7

CPU usage during MC7

- Serving as destination storage.
- Executed more than 1 × 10⁵ jobs in MC 7
- We will purchase ~200 cores CPU in this year (~1.5 times).

Monitoring system

• Many interfaces \rightarrow Need to identify "where the trouble happens"

- Store and process information of each step in database.
- Analyze log file to identify the origin of problem further.
- Show the list of problems on the web, if detected.

- Automatic issue detector

Sites

🝳 DIRAC.TIFR.in

• Health checker info. : "Short pilot jobs" has been found since 20:20:00 UTC on 2016/12/25.(details)

🍓 LCG.NTU.tw

- GGUS ticket : "[TW-NTU-HEP] Job aborted with BLAH error" (<u>125175</u>) has been submited at 02:57:16 UTC on 2016/11/25.
- Health checker info. : "CRL has expired" has been found since 21:20:00 UTC on 2016/12/17.
- 😋 LCG.Napoli.it
 - Job submission check : Pilot submission failure has been found since 06:25:00 UTC on 2016/12/26. (details)

Monitoring system (active way)

12

Actively collect site status by submitting diagnosis job.

SiteCrawler:

Check the site environment to execute Belle II job

Site status summary

site	worker node	CPU	#core	memory	os	Kernel	rpm	cvmfs	releases	CPU Norm.	last updated
ARC.DESY.de	batch0905.desy.de	Intel(R) Xeon(R) CPU E5–2640 v3 @ 2.60GHz	x32	3015MB/cores	Scientific Linux release 6.8 (Carbon)	2.6.32-642.6.2.el6.x86_64	2 problems found	Rev. 132	OK (release- 00-07-02)	<u>8.5</u> HS06	2016/12/26 15:25:10
ARC.LMU2.de	vm-141-40-254-95	QEMU Virtual CPU version 2.3.1	х9	3567MB/cores	Scientific Linux release 6.8 (Carbon)	2.6.32-642.6.2.el6.x86_64	4 problems found	Rev. 132	OK (release- 00-07-02)	<u>7.5</u> <u>HS06</u>	2016/12/26 15:23:29

Job Submission check:

As DIRAC does not record failure reason, job submission is tried and record the result.

CE Job Submission test result

FaultDetail=[SSL authentication failed in tcp_connect(): check password, key file, and ca file.]

sitename	CE	queue	status	last updated time
LCG.Cosenza.it	recas-ce-01.cs.infn.it	cream-pbs-belle	submission_failed	2016/12/2610:20:13 UTC
LCG.KEK.jp	kek2=œ02.cc.kek.jp	cream-lsf-gridbelle_heavy	ABORTED	2016/12/2610:00:18 UTC

Our activities maximize the availability of the resource !

Production progress monitoring

Future prospects and coming events 14

- Continue to improve the system
 - Maximize the throughput.
 - More automated monitoring/operation.
- Cosmic ray data processing (2017)
 - First real use case to try raw data processing workflow.
- System dress rehearsal (2017): before Phase-2 runs
 - To try the full chain workflow from raw data to skim.
- Start of the phase 2 run in 2018.

Summary

- Belle II adopted the distributed computing model to cope with required computing resource (first experiment hosted at Japan).
- "BelleDIRAC" is being developed to meet experimental requirements and validated at the MC production campaigns.
- KMI has a huge contribution on distributed computing:
 - Resources
 - Development of the monitor and upgrade the resource in this year
- In 2017, the processing of comic ray data and System dress rehearsal will be performed.

Backup

Distributed computing

Local computer: -Interactive -Data on local disk.

Computer cluster (Belle case):

- Send "job"
- "Homogeneous" resource in single place.
- Data on shared disk

Distributed computing:

- Send Job (to central service)
- -"Heterogeneous" resource distributed over the world.
- Data distributed over the world.

Network data challenge result

▶ This data challenge will begin by measuring bandwidth between major regional centers.

ates		2019	2024
adwidth estimates	KEK In / Out	3 Gbps / 6 Gbps	4.5 Gbps / 19 Gbps
available at	PNNL In / Out	5 Gbps / 3 Gbps	8 Gbps / 4.2 Gbps
	Germany In / Out	1.2 Gbps / 1 Gbps	4.8 Gbps / 2 Gbps
	ltaly In / Out	1.1 Gbps / 1 Gbps	4.7 Gbps / 2 Gbps
	SIGNET In / Out	0.4 Gbps / -	0.6 Gbps / -

SINET5

Increase

1

KEK Outgoing

SINET5

KEK Incoming

Source	SINET4 [Gbps]	SINET5 old KEKCC [Gbps]	SINET5 new KEKCC LHCONE [Gbps]	Increase over old KEKCC & LHCONE
PNNL	4.6	6.3	-	e)
DESY	4	8	-	-
KIT	5	7	-	-
CNAF	7	7	13.5	93%
NAPOLI	5.5	6.6	13	97%

Network challenge results

Destination	SINET4 [Gbps]	old KEKCC [Gbps]	KEKCC LHCONE [Gbps]	KEKCC & LHCONE
PNNL	3.6	3.9	8.4	115%
DESY	3	3	-	-
кіт	3.5	3.2	-	-
CNAF	-	3.8	9.0	136%
NAPOLI	3	3	8.8	190%

User analysis in Belle II

Physics gurus perform bulk MDST Production

Skimming group makes skims from MDST

Almost all user analysis will originate from skims

(Data samples > 1 ab⁻¹ require this)

We should plan for at least 200 simultaneous analyses

Skim production will require an automated Fabrication system

- Options for Physics skims from bulk MDST
 - Output skimmed MDST
 - Output Physics Objects + MDST (µDST) <= Baseline solution
 - Direct copy to WN using DIRAC
 - Stream data using XRootD/http
 - Output Index files which point to skimmed events <= Under investigation
 - Access bulk MDST directly via root on large cluster
 - Stream from bulk MDST using XRootD/http
- Local Cluster/Workstation root
 - Validated by Physics group

Raw Data Size (2)

	ROOT object size (Uncompressed) (kB/event)					
	Y(4S)	events	Bhabha events			
	PXD	PXD	PXD	PXD		
	1% occupancy	3% occupancy	1% occupancy	3% occupancy		
PXD	34.2	86.8	34.2	86.8		
SVD	21.8	21.8	20.8	20.8		
CDC	24	24	18.5	18.5		
TOP	9.2	9.2	5.9	5.9		
ARICH	15.5	15.5	15.5	15.5		
ECL	29.6	29.6	29.6	29.6		
bKLM	4.8	4.8	4.6	4.6		
eKLM	2.7	2.7	2.7	2.7		
TRG						
FTSW	0.18	0.18	0.18	0.18		
HLT	107	107	107	107		
Total	248.98	301.58	238.98	291.58		

CPU Power for Data Reconstruction (1)

Class of events	HEPSpec06 * s / ev
Y(4S)	24.96
ccbar	20.90
uds	18.38
$\tau^+\tau^-$	7.62
$\mu^+\mu^-(\gamma)$	5.00
γγ(γ)	5.00
$e^+e^-(\gamma)$	5.00
e ⁺ e ⁻ e ⁺ e ⁻	5.00
$e^+e^-\mu^+\mu^-$	5.00
Average on classes of events	12.40
Including foreseen software upgrade	18.0 ± 4.0
Including background uncertainty	20.0 ± 4.5
Scale factor for calibration step	1.10
Processing power for raw data reconstruction	22.0 ± 4.9

miniDST size (1)

	Detector events	MC events
Class of events	(kB/event)	(kB/event)
Y(4S)	5.49	8.80
ccbar	4.78	7.33
uds	4.43	6.60
$\tau^+\tau^-$	2.51	3.52
$\mu^+\mu^-(\gamma)$	2.00	2.28
γγ(γ)	2.00	2.28
$e^+e^-(\gamma)$	2.00	2.28
e ⁺ e ⁻ e ⁺ e ⁻	2.00	2.28
e ⁺ e ⁻ µ ⁺ µ ⁻	2.00	2.28
Average on all classes	3.32	4.70
Including software upgrade and optimization	4.3 ± 1.7	6.1 ± 2.5
Including background uncertainty	5.0 ± 1.8	7.0 ± 2.6
mDST size (kB)	5.0 ± 1.8	7.0 ± 2.6

MC Luminosity / Data Luminosity (4)

- Our choice is to have:
 - -4 streams up to 1 ab⁻¹
 - 2 streams up to 5 ab⁻¹
 - -1 stream from 5 ab⁻¹
- In the resource estimate we use:
 - 4 streams in 2018
 - 3 streams in 2019
 - 2 streams in 2020
 - 1 stream in 2021

KEKCC: main computing system

Belle II Dedicated Service/Infrastructure in KEKCC

Example 2

Example 1

Many Belle II critical services, e.g. LFC, SRM, AMGA, and FTS3 are isolated to the other VOs for more stable operation with NO downtime

With NO GSI auth. Fast access Large throughput

HA

100 Gbps Trans-pacific line

Analysis – for any activities other than raw data transfer

For other VOs

For other VOs