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Useful references

e Online textbook: deep learning (1. Goodfellow and Y. Bengio and A. Courville)

e Online textbook: pattern recognition and machine learning (C. M. Bishop)

... sure, you can log out from this session and start reading those books ;) ...


https://www.deeplearningbook.org
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

Machine Learning

e Study of an algorithm that is able to learn from data.

o Given some tasks T and performance measure P, the algorithm is said to learn from data,
or experience E, if its performance at T, measured by P, improves with E.

e A cross-road of statistics (probability) and computer science (algorithms)
where learning is casted to an optimization problem
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What/How to learn from data?

Supervised learning

e Given data X and label Y + assume an underlying function P(X)=Y, learn an
approximate function QQ that mimics P.

e (lassification (i.e. discrete labels like dog v.s. cat), regression (i.e.
continuous variable like energy of a particle), etc.

handbag : 0667 d ‘

person 0.998 umbrella : 0.910

chair >0757» 972cha|r 0639 Thoterc




What/How to learn from data?

Supervised learning
e Given data X and label Y + assume an underlying function P(X)=Y, learn an

approximate function Q that mimics P.
e (lassification (i.e. discrete labels like dog v.s. cat), regression (i.e.
continuous variable like energy of a particle), etc.

Unsupervised learning
e Only given data, learn underlying structure
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What/How to learn from data?

Supervised learning

e Given data X and label Y + assume an underlying function P(X)=Y, learn an
approximate function QQ that mimics P.

e (lassification (i.e. discrete labels like dog v.s. cat), regression (i.e.
continuous variable like energy of a particle), etc.

Unsupervised learning
e Only given data, learn underlying structure
e Partitioning (clustering), principal component analysis, generative models
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What/How to learn from data?

Supervised learning

e Given data X and label Y + assume an underlying function P(X)=Y, learn an
approximate function QQ that mimics P.

e (lassification (i.e. discrete labels like dog v.s. cat), regression (i.e.
continuous variable like energy of a particle), etc.

Unsupervised learning
e Only given data, learn underlying structure
e Partitioning (clustering), principal component analy51s generative models

Reinforcement learning

e May not even have static data! Learn to
gain most cumulative reward by
interacting with the environment

e Playing a game, facility control, etc.

' BEAM NEWS



What/How to learn from data?

Machine learning as a function approximation

e A function G data is sampled from
e A function P(X) that provide response Y
o

hese functions may not be accessible but approximate
functions may be learnable!
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How it works: supervised learning

Unknown function P produce the response (yo, y3, ...) from data (xo, x1, ...)
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How it works: supervised learning

Unknown function P produce the response (yo, y3, ...) from data (xo, x1, ...)
1. Define a parameterized model Q to mimic the behavior of P.
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How it works: supervised learning

Unknown function P produce the response (yo, y3, ...) from data (xo, x1, ...)
1. Define a parameterized model Q to mimic the behavior of P.
2. Tune the parameters of Q to minimize the divergence between P and Q.
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Unknown function P produce the response (yo, y3, ...) from data (xo, x1, ...)

1. Define a parameterized model Q to mimic the behavior of P.

2. Tune the parameters of Q to minimize the divergence between P and Q.
o Define a loss function '
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How it works: supervised learning

Unknown function P produce the response (yo, y3, ...) from data (xo, x1, ...)

1. Define a parameterized model Q to mimic the behavior of P.

2. Tune the parameters of Q to minimize the divergence between P and Q.
o Define a loss function '
o Minimize the loss

: - True model: P M P(x) = {yo,ys,..}
: E . (true response)
| Min {L (P(x), Q(x))}
;. e % {;‘éé g
(o &b 9 U
g/ Data: x ;&% \%{0
“': Our model: Q,




Example A: linear regression
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Full disclosure about data (left):
e x sampled from flat distribution [0,10]

e y=a*x+b+e
o a=2,b=1.5, & ~ Normal (u=0, 06=1.0)

In general, linear regression employs

N
Q(x, w) = wo + Zwﬂbi(x) =w' - P
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e x sampled from flat distribution [0,10]

e y=a*x+b+e
o a=2,b=1.5, & ~ Normal (u=0, 06=1.0)

In general, linear regression employs

N
Q(x, w) = wo + Zwﬂbi(x) =w' - P

x (feature)
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A simple, intuitive model: Q(z) = wo + wyz

Popular one: Mean Square Error (MSE) L = = Z (yi — Q(z;))° | Tune w for: VL =0
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Example A: linear regression + GD

Goal: tune the parameters w and achieve V£ =0
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Example A: linear regression + GD

Goal: tune the parameters w and achieve VL =0

Minimize the loss iteratively: | w; ; = w; — AV L(W, X)

called Gradient Descent (GD) where A controls the rate of learning process.

For a smooth convex functions, GD achieves the loss O(1/Kk) after k steps.
For non-convex functions, there may be multiple optimal points.

o y=ax+b
| MSE loss surface




Example A: linear regression + GD

Goal: tune the parameters w and achieve V£ =0 ... faster?

Mini-batch Stochastic GD (SGD) use a subset of data for gradient.



Example A: linear regression + GD

Goal: tune the parameters w and achieve V£ =0 ... faster?

Mini-batch Stochastic GD (SGD) use a subset of data for gradient.

1. Create a batch = random subset of data.

2. Compute the gradient for the batch and update the parameters.

Note: when data is always new (never seen before), called “online learning’
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Example A: linear regression + GD

Goal: tune the parameters w and achieve V£ =0 ... faster?

Mini-batch Stochastic GD (SGD) use a subset of data for gradient.

1. Create a batch = random subset of data.

2. Compute the gradient for the batch and update the parameters.

Note: when data is always new (never seen before), called “online learning”
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Basic loss functions for regressions
1. Mean Absolute Error (MAE, L1 loss)

] — e Could benefit from an
MAE = — Z lyi — Q(x, W) adjusted learning rate
m J
=1
2. Mean Square Error (MSE, L2 loss) \ /
_ 1 < 2 e Loss gets small when
MhSE= Z <yi B Q(:CZ)) <1 but may explode
= when >> 1 o
3. Huber Loss ... combine them together
Hiiliee — za?.. . fora <o L1 while loss is large,
d|al — %52 ... otherwise L2 when it’s small (6: hyperparameter)

(will be back on “hyperparameter” later)



Side-track: “Minimize the divergence of P & Q”

A metric to measure the divergence between P and Q

Dir(PIQ) = [ Plx.y)log

P(x,y)

Qw(X,Y)

dxdy

Kullback-Leibler (KL) Divergence

DkL >= 0 always, and 0 if and only if
P and Q are identical
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Side-track: “Minimize the divergence of P & Q”

A metric to measure the divergence between P and Q

Dir(PIQ) = [ Plx.y)log

P(x,y)
Qw (X, y)

Kullback-Leibler (KL) Divergence

dxdy Dk >= 0 always, and 0 if and only if

P and Q are identical

Minimization of Dxw using (S)GD can be “tuning of Qw”

Witl = W; — A

VwDkL(P|Q)

=

/ P(x,y)Vw log

P(x,y)
Qw(x,y)

dxdy|= <VW log




Side-track: “Minimize the divergence of P & Q”

A metric to measure the divergence between P and Q

Dir(PIQ) = [ Plx.y)log

P(x,y)

Qw(X,Y)

dxdy

Kullback-Leibler (KL) Divergence

DkL >= 0 always, and 0 if and only if
P and Q are identical

Minimization of Dxw using (S)GD can be “tuning of Qw”

P(x,y) >

—|({ V1
<v % Qw(x,y)

Can compute the expectation value using m data instances

<VW log

P(x,y)
Qw (Xa y)

)

P(Xiayi)

il
= — Vw log
m xzy Qw(xia yi)

... P is still an unknown function, but
average probability of P(xi,yi) might be
possible to approximate from many samples



Side-track: MLE and KL-Divergence

Consider a measurement

e Total number of measurements: N
e Observed occurrence N, for an event type i

We cannot measure underlying probability p, but can build a model g, to approximate p, , and
try to find a “good q,”.

How to define + find a “good q,?”
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e Maybe: “good” if g, has a high likelihood to yield the observed data
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Consider a measurement

e Total number of measurements: N
e Observed occurrence N, for an event type i

We cannot measure underlying probability p, but can build a model g, to approximate p, , and
try to find a “good q,”.

How to define + find a “gOOd qi?” Maximum Likelihood Estimation (MLE)

e Maybe: “good” if g, has a high likelihood to yield the observed data
N

Nol - Nyl N

e Probability to observe datax: P(Z|q) = ¢)° - q)" ---q* ¥

o When N and N, are large ... Ni~ N -p; and N;! = NZ.N"'

all D Maximizing this likelihood means to take
o ..whichyields P(Z|q) ~exp |— ;log — |  the limit of the exponent becoming zero,
y q p pi 108
p d; which is same as minimizing DKL



Side-track: MLE and KL-Divergence

Consider a measurement

e Total number of measurements: N
e Observed occurrence N, for an event type i

We cannot measure underlying probability p, but can build a model g, to approximate p, , and
try to find a “good q,”.

How to define + find a “gOOd qi?” Maximum Likelihood Estimation (MLE)

e Maybe: “good” if g, has a high likelihood to yield the observed data
N

No!- N1l N !

o When N and Ni are large Nz’ ~ N . p; and Ni! - NZ-N'i This is a crude, partial credit argument

(or zero credit if you got a lucky prof.)

e Probability to observe datax: P(Z|q) = ¢)° - q)" ---q* ¥

all D Maximizing this likelihood means to take
o ..whichyields P(Z|q) ~exp |— ;log — |  the limit of the exponent becoming zero,
y q p pi 108
p d; which is same as minimizing DKL



Back to example: MLE and MSE

20.0

Recall our data
e x sampled from flat distribution [0,10]
e y=a*x+b+e

o a=2, b=1.5, & ~ Normal (u=0, 0=1.0)
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Back to example: MLE and MSE

Recall our data

e x sampled from flat distribution [0,10]
e y=a*x+b+e
o a=2, b=1.5, & ~ Normal (u=0, 0=1.0)

... S0 equivalently we can consider that

(y: — (az; + b))?
202

P(yi\xz’) X exp | —

y (response)

20.0

x (feature)
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Back to example: MLE and MSE

Recall our data 200

e x sampled from flat distribution [0,10]
e y=a*x+b+e
o a=2, b=1.5, & ~ Normal (u=0, 0=1.0)

... S0 equivalently we can consider that

P(yi|zi) oc exp [_ (yi — (;; + b))2]

The likelihood is a product of all data instances

Likelihood L = H Plaplza)

10




Back to example: MLE and MSE

Recall our data 200

e x sampled from flat distribution [0,10]
e y=a*x+b+e

o a=2,b=1.5, ¢ ~ Normal (u=0, 6=1.0) g Lo
... S0 equivalently we can consider that ; | o
; — i b p 5.0
The likelihood is a product of all data instances e
Likelihood £ = H P(y;|x;) wp|—log L o Z (ax; +b))*...(MSE)
i

So minimizing MSE was same as maximum likelihood estimate in this case.




Example B: multivariate linear regression

Nothing special. We can just generalize for m regression targets...
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Taking a gradient and solve for minimization:

VWMSE = 2(y —w- X)X # | w = (X7X) ' X7y
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Taking a gradient and solve for minimization:
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Recall “linear” means “linear to features”...
My “features” could be m-th power of x ...
Maybe fit 15-th degree polynomial to a sin curve?



Example B: multivariate linear regression

Nothing special. We can just generalize for m regression targets...

n X m matrix

2
n m /
MSE = yi — Y wizy | =y —X-wl?
Z( Z ) N X

n x 1 vector m X 1 vector

Degree 15

Taking a gradient and solve for minimization: MSE = 1.83e-+08(+/- 5.48e+08)

VWwMSE =2(y —w- X)X ® | w = (XTX)  XTy | ,\/\ o somele
Recall “linear” means “linear to features”... i} \/\ A
My “features” could be m-th power of x ... \“’\/
Maybe fit 15-th degree polynomial to a sin curve?

From scikit webpage



https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

Example B: multivariate linear regression

Hyperparameter: design constants of algorithms (e.g. learning rate)

Overtfit: a model has “memorized data”. Works well on train data but poorly
on independent samples. Typical for complex model + low data statistics

Generalization: model works well equally on the train and unseen datasets



Example B: multivariate linear regression

Hyperparameter: design constants of algorithms (e.g. learning rate)

Overtfit: a model has “memorized data”. Works well on train data but poorly
on independent samples. Typical for complex model + low data statistics

Generalization: model works well equally on the train and unseen datasets

Degree 1
MSE = 4.08e-01(+/- 4.25e-01)

Degree 4
MSE = 4.32e-02(+/- 7.08e-02)

Degree 15
MSE = 1.83e+08(+/- 5.48e+08)

—— Model
True function
e Samples

—— Model
- True function
e Samples

—— Model
True function

X
From scikit webpage

In this case...

A polynomial of a higher
power (hyperparameter!)
makes the model more
complex, or flexible, and
as a result a model can
overfit.


https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

Cross-Validation

Two datasets

e Train set to optimize your model

e Test set to measure performance

... we want to use the test set only
once at the end, never want to tune
anything on it!



Cross-Validation

Two datasets

e Train set to optimize your model

e Test set to measure performance

... we want to use the test set only
once at the end, never want to tune
anything on it!

Strategy:
e Split the train set into k-folds

e Use i-th set as a “validation set” to
measure the performance of a model
trained on the rest (k-1 combined).

e Repeat k-times and take the mean as
a performance.

Split1
Split 2
Split 3
Split 4

Split5

All Data
Training data Test data
Fold1l || Fold2 || Fold3 || Fold4 || Fold5 | )
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
' > Finding Parameters
Fold1 || Fold2 || Fold3 | Fold4 | Folds
Fold1 || Fold2 | Fold3 || Fold4 | Folds
Fold 1 Fold 2 Fold 3 Fold 4 Fold5 | _/

Final evaluation {

Test data

From scikit webpage



https://scikit-learn.org/stable/modules/cross_validation.html

Regularization

There may be more than one solution (i.e. local minimum in GD)... prefer a
simpler solution over complicated ones (=may help generalization).

Liotal = L (y, Q(X, W)) + lozR(w)

model loss regularization loss



Regularization

There may be more than one solution (i.e. local minimum in GD)... prefer a
simpler solution over complicated ones (=may help generalization).

Liotal = L (y, Q(X, W)) + laR(w)

model loss regularization loss

Basic regularization terms are L1, L2, and L1+L2

LETY W2y

L2 = HWH2 — E w? L2 favors weights with
- smaller values <@ <@

L1l = HW || — Z |w ; | L1 favors sparse solution /
(also called LASSO) 1
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Regularization

There may be more than one solution (i.e. local minimum in GD)... prefer a
simpler solution over complicated ones (=may help generalization).

Liotal = L (y, Q(X, W)) + lozR(w)

model loss regularization loss

Basic regularization terms are L1, L2, and L1+L2

L2 = HWH2 — E w? L2 favors weights with
- smaller values
1

L1+ L2=">) (Bw]+ |w)

1

L1 = HW || — E |w i | L1 favors sparse solution Can also combine (“elastic net”)
(also called LASSO)

)




Intermediate summary

e “Learning” is a process of tuning a model Q(x) to make a better approximation of

inaccessible, underlying function P(x)

o Define a model and a loss function, use Gradient Descent (GD) to tune the parameters
o Stochastic GD (SGD) uses a random subset of train data per parameter update

o Minimization of Dxi, maximization of likelihood (MLE)

Linear regression = linear transformation of features (i.e. linear to model parameters)

o Exact solution is available and can be compared to the optimization outcome

o Popular loss functions = Mean Squared Error (MSE), Mean Absolute Error (MAE) ...
Train set = dataset used to optimize Q(x)

Test set = dataset used to benchmark the performance of Q(x)

Generalization = model performs on the test dataset as well as the train dataset

Overfit = memorization of data, a model performs well on train set but poorly on test set
Cross validation = splitting the train set to k-folds to create validation set(s) and measure
model performance and/or tune hyperparameters

Regularization = additional constraints on model parameters, can help avoiding overfitting
o L2 prefers smaller weight values, .1 may lead to a sparse solution



Example C: logistic regression for classification

Full disclosure about data (left):
. x ) e Red data points ~ Normal (u=(-1,-1), 6=(1,1))
T 1 e e Blue data points ~ Normal (u=(1,1), 0=(1,1))
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e Red data points ~ Normal (u=(-1,-1), 6=(1,1))
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What should be Q and loss function?

e A straight line to separate two colors

e C(lassification confidence low on and near the
line, more confident away from the line
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Full disclosure about data (left):
e Red data points ~ Normal (u=(-1,-1), 6=(1,1))
e Blue data points ~ Normal (u=(1,1), 0=(1,1))

What should be Q and loss function?

e A straight line to separate two colors

e C(lassification confidence low on and near the
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. o C|eew) = —
Popular one: logistic (a.k.a. “sigmoid”) function 1 +exp(—w' - x)

e Satisfies what we want + the output is bounded [0,1] (probabilistic) 4 ﬁ




Example C: logistic regression for classification

Popular one: logistic (a.k.a. “sigmoid”) function

Full disclosure about data (left):
e Red data points ~ Normal (u=(-1,-1), 6=(1,1))
e Blue data points ~ Normal (u=(1,1), 0=(1,1))

What should be Q and loss function?

e A straight line to separate two colors

e C(lassification confidence low on and near the
line, more confident away from the line

Qx, w) =

1
1+ exp(—wT - x)

e Satisfies what we want + the output is bounded [0,1] (probabilistic)

Likelihood = H (i Q(x;, W) + (1 —y;)(1 — Q(x4,W))

yi = o if red, 1 if blue

7o




Example C: logistic regression for classification

Full disclosure about data (left):
e Red data points ~ Normal (u=(-1,-1), 6=(1,1))
e Blue data points ~ Normal (u=(1,1), 0=(1,1))

What should be Q and loss function?

e A straight line to separate two colors

e C(lassification confidence low on and near the
line, more confident away from the line

1
. . o e 799 . Q(X,W): 1 g o
Popular one: logistic (a.k.a. “sigmoid”) function +exp(—w! - x)
e Satisfies what we want + the output is bounded [0,1] (probabilistic)
L= [yilog(Qxi, W) + (1 — i) log(1 — Q(x;, w))] | mp g_fv _ LT gl w) —)
1 m

Minimization target = Loss = negative log likelihood For gradient update!



Example C: logistic regression for classification
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Generalization to multiple targets (>2 categorization classes)
e Softmax function for Q + MLE yields cross-entropy loss function

Qi (X7 W’L) —

T

exp(—w; - X)

1

Zj exp(

J—
W

. %)

Qi is a probability for
being i-th class. Need
a set of w per class!

L==Y yilogQ; (x;,w;)

yi = 1 only for the correct class




Classification performance metrics

How should we compare the classification performance that depends on an
interpretation of score (i.e. Q)? This may be application specific, but a
standard procedure exists with useful jargons :)
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How should we compare the classification performance that depends on an
interpretation of score (i.e. Q)? This may be application specific, but a
standard procedure exists with useful jargons :)

Label P=1 Label P=0
Prediction Q=1 | True Positive (TP) | False Positive (FP)
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Classification performance metrics

How should we compare the classification performance that depends on an
interpretation of score (i.e. Q)? This may be application specific, but a
standard procedure exists with useful jargons :)

Label P=1

Label P=0

Prediction Q=1

True Positive (TP)

False Positive (FP)

Prediction Q=0

False Negative (FN)

True Negative (TN)

TP + TN

Accuracy =

TP +FP +FN + TN

False Positive Rate (FPR) =

True Positive Rate (TPR) =

FP

FP + TN
TP

TP 4+ FN

We can create a curve of

FPR v.s. TPR by varying the 100%

score threshold. This is
Receiver Operating
Characteristic (ROC)

curve. The area under this

curve may be used as a
performance metric.

TPR

Image credit to
Wikipedia

FPR


https://en.wikipedia.org/wiki/Receiver_operating_characteristic#:~:text=A%20receiver%20operating%20characteristic%20curve,why%20it%20is%20so%20named.

Classification performance metrics

How should we compare the classification performance that depends on an
interpretation of score (i.e. Q)? This may be application specific, but a
standard procedure exists with useful jargons :)

Label P=1

Label P=0

Prediction Q=1

True Positive (TP)

False Positive (FP)

Prediction Q=0

False Negative (FN)

True Negative (TN)

Precision and Recall

metrics. In physics they are sometimes called
“purity” and “efficiency” of the prediction!

are also often used

Precision =

Recall =

TP

TP + FP
TP

TP +FN

How many selected
items are relevant?

Precision =

1
i How many relevant
| items are selected?

1
1
' Recall= ——
1

relevant elements Image credit to

1 Wikipedia

false negatives true negatives

©o o © o o

selected elements


https://en.wikipedia.org/wiki/Precision_and_recall

More dictionary

e Logistic regression is a task to classify an input into predefined set of classes
o Logistic loss function gives a probabilistic interpretation of a score for binary classification
o Generalization to multinomial regression using softmax function and cross-entropy loss.
o (S)GD can be used to optimize a linear model

e (lassification results with labels can be grouped into 4 categories
o True Positive or TP... (prediction, label) = (1,1)

False Positive or FP ... (prediction, label) = (1,0)

False Negative or FN ... (prediction, label) = (0,1)

True Negative or TN ... (prediction, label) = (0,0)

Accuracy = (TP+TN) / ALL

False Positive Rate or FPR = FP / (FP+TN)

True Positive Rate or TPR = TP / (TP+FN)

Precision = TP / (TP+FP)
o Recall = TP / (TP+FN)

e EFPR v.s. TPR = Receiver Operating Characteristic (ROC) curve, the area under the curve is
larger for a better classifier

e Precision v.s. Recall curve is another metric that is more robust against class imbalance

O O O O O O O
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... this is interesting ...



Next up

Played with linear models today.
What if we convolve multiple linear transformations?

Next topic: Neural Networks!



Scratch Slides



Core 1dea

e Consider 2 statements ... which one is information rich?

o A someone taught gorilla a linear algebra
o A gorilla taught someone a linear algebra
o ... asurprising event contains more information

e Information conte —log P(A)

o Additive: information from event A + B: —log P(A) - P(B) = — [log P(A) + log P(B))]
o e.g.) “I picked 13 of diamond from the stack™ — log (%3 : i) = log 52

e Total expected information content

o Entropy: S= - Z P;log P,



Core 1dea

e Consider a measurement

o Total number of measurements: N
o Observed occurrence N, for an event type i

We cannot measure underlying probability p, but can build a model g, to approximate p, , and
say the task for machine learning is to learn a “good q.”.

How to define + find a “good ¢,?”

e Maybe: “good” if g, has a high likelihood to vield the observed data

L] L] !
e Probability to observe datax: P(|q) = ¢} - ¢ - - - ¢* x N
Nol - Nyl--- N

o WhenNand N,arelarge.. N;~N -p;, and N;! ~ N

, ) s i Maximize the likelihood = minimize the
o ...whichyields P(Z|q) =~ exp |— sz- log "
p i



