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Useful references
● Online textbook: deep learning (I. Goodfellow and Y. Bengio and A. Courville)

● Online textbook: pattern recognition and machine learning (C. M. Bishop)

… sure, you can log out from this session and start reading those books ;) ...

https://www.deeplearningbook.org
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf


Machine Learning
● Study of an algorithm that is able to learn from data. 

○ Given some tasks T and performance measure P, the algorithm is said to learn from data, 
or experience E, if its performance at T, measured by P, improves with E.

● A cross-road of statistics (probability) and computer science (algorithms) 
where learning is casted to an optimization problem



What/How to learn from data?
Supervised learning
● Given data X and label Y + assume an underlying function P(X)=Y, learn an 

approximate function Q that mimics P. 
● Classification (i.e. discrete labels like dog v.s. cat), regression (i.e. 

continuous variable like energy of a particle), etc.
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How it works: supervised learning

Our model: Q𝛉

True model: P
(inaccessible)

P(x) = {y0,y1,...}
(true response)

Q𝛉(X)

Data: x

Unknown function P produce the response (y0, y1, ...) from data (x0, x1, …)
1. Define a parameterized model Q to mimic the behavior of P. 
2. Tune the parameters of Q to minimize the divergence between P and Q. 

○ Define a loss function
○ Minimize the loss

Min {L (P(x), Q(x))}
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Goal: tune the parameters w and achieve  

Minimize the loss iteratively: 

called Gradient Descent (GD) where 𝜆 controls the rate of learning process.

For a smooth convex functions, GD achieves the loss O(1/k) after k steps.
For non-convex functions, there may be multiple optimal points. 

y=ax+b 
MSE loss surface

start

end

Example A: linear regression + GD
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Goal: tune the parameters w and achieve                    … faster?  

Mini-batch Stochastic GD (SGD) use a subset of data for gradient.
1. Create a batch = random subset of data.
2. Compute the gradient for the batch and update the parameters.
Note: when data is always new (never seen before), called “online learning”

Optimized!

Example A: linear regression + GD



Basic loss functions for regressions
1. Mean Absolute Error (MAE, L1 loss)

● Could benefit from an 
adjusted learning rate

2. Mean Square Error (MSE, L2 loss)

● Loss gets small when 
<1 but may explode 
when >> 1

3. Huber Loss … combine them together

L1 while loss is large, 
L2 when it’s small (𝛿: hyperparameter)

(will be back on “hyperparameter” later)
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Side-track: “Minimize the divergence of P & Q”

Minimization of DKL using (S)GD can be “tuning of Qw”

=

Can compute the expectation value using m data instances

Kullback-Leibler (KL) Divergence
DKL >= 0 always, and 0 if and only if 

P and Q are identical

A metric to measure the divergence between P and Q

… P is still an unknown function, but 
average probability of P(xi,yi) might be 
possible to approximate from many samples
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Side-track: MLE and KL-Divergence
Consider a measurement
● Total number of measurements: N
● Observed occurrence Ni for an event type i

We cannot measure underlying probability pi but can build a model qi to approximate pi , and 
try to find a “good qi”.

How to define + find a “good qi?” 

● Maybe: “good” if qi has a high likelihood to yield the observed data

● Probability to observe data x: 

○ When N and Ni are large …                             and 

○ … which yields 
Maximizing this likelihood means to take 
the limit of the exponent becoming zero, 
which is same as minimizing DKL

This is a crude, partial credit argument
 (or zero credit if you got a lucky prof.) 

Maximum Likelihood Estimation (MLE)
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Back to example: MLE and MSE
Recall our data
● x sampled from flat distribution [0,10]
● y = a*x + b + 𝛆 

○ a=2, b=1.5, 𝛆 ~ Normal (μ=0, 𝜎=1.0) 

… so equivalently we can consider that 

The likelihood is a product of all data instances

So minimizing MSE was same as maximum likelihood estimate in this case.
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Nothing special. We can just generalize for m regression targets…

Taking a gradient and solve for minimization:

Recall “linear” means “linear to features”...
My “features” could be m-th power of x …
Maybe fit 15-th degree polynomial to a sin curve?

Example B: multivariate linear regression

n x 1 vector m x 1 vector

n x m matrix

From scikit webpage

https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html


Example B: multivariate linear regression
Hyperparameter: design constants of algorithms (e.g. learning rate)

Overfit: a model has “memorized data”. Works well on train data but poorly 
on independent samples. Typical for complex model + low data statistics

Generalization: model works well equally on the train and unseen datasets



Example B: multivariate linear regression

From scikit webpage

In this case…
A polynomial of a higher 
power (hyperparameter!) 
makes the model more 
complex, or flexible, and 
as a result a model can 
overfit. 

Hyperparameter: design constants of algorithms (e.g. learning rate)

Overfit: a model has “memorized data”. Works well on train data but poorly 
on independent samples. Typical for complex model + low data statistics

Generalization: model works well equally on the train and unseen datasets

https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
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● Test set to measure performance
… we want to use the test set only 
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anything on it!



Cross-Validation

From scikit webpage

Two datasets
● Train set to optimize your model
● Test set to measure performance
… we want to use the test set only 
once at the end, never want to tune 
anything on it!

Strategy:
● Split the train set into k-folds

● Use i-th set as a “validation set” to 
measure the performance of a model 
trained on the rest (k-1 combined).

● Repeat k-times and take the mean as 
a performance.

https://scikit-learn.org/stable/modules/cross_validation.html
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Regularization
There may be more than one solution (i.e. local minimum in GD)... prefer a 
simpler solution over complicated ones (=may help generalization).

model loss regularization loss

Basic regularization terms are L1, L2, and L1+L2

L2 favors weights with 
smaller values

L1 favors sparse solution 
(also called LASSO)

Can also combine (“elastic net”)



Intermediate summary
● “Learning” is a process of tuning a model Q(x) to make a better approximation of 

inaccessible, underlying function P(x)
○ Define a model and a loss function, use Gradient Descent (GD) to tune the parameters
○ Stochastic GD (SGD) uses a random subset of train data per parameter update
○ Minimization of DKL, maximization of likelihood (MLE)

● Linear regression = linear transformation of features (i.e. linear to model parameters)
○ Exact solution is available and can be compared to the optimization outcome
○ Popular loss functions = Mean Squared Error (MSE), Mean Absolute Error (MAE) ...

● Train set = dataset used to optimize Q(x)
● Test set = dataset used to benchmark the performance of Q(x)
● Generalization = model performs on the test dataset as well as the train dataset
● Overfit = memorization of data, a model performs well on train set but poorly on test set 
● Cross validation = splitting the train set to k-folds to create validation set(s) and measure 

model performance and/or tune hyperparameters
● Regularization = additional constraints on model parameters, can help avoiding overfitting

○ L2 prefers smaller weight values, L1 may lead to a sparse solution



Example C: logistic regression for classification
Full disclosure about data (left):
● Red data points ~ Normal (μ=(-1,-1), 𝜎=(1,1))
● Blue data points ~ Normal (μ=(1,1), 𝜎=(1,1))
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Full disclosure about data (left):
● Red data points ~ Normal (μ=(-1,-1), 𝜎=(1,1))
● Blue data points ~ Normal (μ=(1,1), 𝜎=(1,1))

What should be Q and loss function?
● A straight line to separate two colors
● Classification confidence low on and near the 

line, more confident away from the line

A boundary 
here?

Blue team

Red team

Popular one: logistic (a.k.a. “sigmoid”) function
● Satisfies what we want + the output is bounded [0,1] (probabilistic)

yi = 0 if red, 1 if blue

Example C: logistic regression for classification



Full disclosure about data (left):
● Red data points ~ Normal (μ=(-1,-1), 𝜎=(1,1))
● Blue data points ~ Normal (μ=(1,1), 𝜎=(1,1))

What should be Q and loss function?
● A straight line to separate two colors
● Classification confidence low on and near the 

line, more confident away from the line

A boundary 
here?

Blue team

Red team

Popular one: logistic (a.k.a. “sigmoid”) function
● Satisfies what we want + the output is bounded [0,1] (probabilistic)

Minimization target = Loss = negative log likelihood For gradient update!

Example C: logistic regression for classification



Generalization to multiple targets (>2 categorization classes)
● Softmax function for Q + MLE yields cross-entropy loss function

yi = 1 only for the correct class

Qi is a probability for 
being i-th class. Need 
a set of w per class!

Example C: logistic regression for classification
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interpretation of score (i.e. Q)? This may be application specific, but a 
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Classification performance metrics
How should we compare the classification performance that depends on an 
interpretation of score (i.e. Q)? This may be application specific, but a 
standard procedure exists with useful jargons :)

FPR

TPR

ROC curveWe can create a curve of 
FPR v.s. TPR by varying the 

score threshold. This is 
Receiver Operating 

Characteristic (ROC) 
curve. The area under this 

curve may be used as a 
performance metric.

Image credit to
Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic#:~:text=A%20receiver%20operating%20characteristic%20curve,why%20it%20is%20so%20named.


Classification performance metrics
How should we compare the classification performance that depends on an 
interpretation of score (i.e. Q)? This may be application specific, but a 
standard procedure exists with useful jargons :)

Precision and Recall are also often used 
metrics. In physics they are sometimes called 

“purity” and “efficiency” of the prediction!

Image credit to
Wikipedia

https://en.wikipedia.org/wiki/Precision_and_recall


More dictionary
● Logistic regression is a task to classify an input into predefined set of classes

○ Logistic loss function gives a probabilistic interpretation of a score for binary classification
○ Generalization to multinomial regression using softmax function and cross-entropy loss.
○ (S)GD can be used to optimize a linear model 

● Classification results with labels can be grouped into 4 categories
○ True Positive or TP… (prediction, label) = (1,1)
○ False Positive or FP … (prediction, label) = (1,0)
○ False Negative or FN … (prediction, label) = (0,1)
○ True Negative or TN … (prediction, label) = (0,0)
○ Accuracy = (TP+TN) / ALL
○ False Positive Rate or FPR = FP / (FP+TN)
○ True Positive Rate or TPR = TP / (TP+FN)
○ Precision = TP / (TP+FP)
○ Recall = TP / (TP+FN)

● FPR v.s. TPR = Receiver Operating Characteristic (ROC) curve, the area under the curve is 
larger for a better classifier

● Precision v.s. Recall curve is another metric that is more robust against class imbalance





… this is interesting ...



Next up

Played with linear models today.

What if we convolve multiple linear transformations?

Next topic: Neural Networks!



Scratch Slides



● Consider 2 statements ... which one is information rich?
○ A someone taught gorilla a linear algebra
○ A gorilla taught someone a linear algebra
○ … a surprising event contains more information

● Information content:

○ Additive: information from event A + B: 

○ e.g.) “I picked 13 of diamond from the stack”:

● Total expected information content

○ Entropy:  S =

Core idea



● Consider a measurement
○ Total number of measurements: N
○ Observed occurrence Ni for an event type i

We cannot measure underlying probability pi but can build a model qi to approximate pi , and 
say the task for machine learning is to learn a “good qi”.

How to define + find a “good qi?” 
● Maybe: “good” if qi has a high likelihood to yield the observed data
● Probability to observe data x: 

○ When N and Ni are large …                             and 

○ … which yields 

Core idea

Maximize the likelihood = minimize the 


